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Despite their long history in experiment, simulation, and analytical theory, pair correlation functions that
describe local order in many-body systems still retain a legacy of mathematical mysteries. One such open
question concerns “realizability” of a given candidate pair correlation function, namely whether it actually
represents the pair correlation for some spatial distribution of particles at number densityF >0. Several necessary
conditions that must be satisfied by the candidate are known, including nonnegativity of the function and its
associated structure factor, as well as constraints on implied local density fluctuations. However, general
conditions sufficient to ensure realizability are not known. To clarify this situation, we have examined
realizability for a simple one-dimensional lattice model, with single-site occupancy, and nearest-neighbor
exclusion. By virtue of exhaustive enumeration for systems of 15 or fewer sites subject to periodic boundary
conditions, several conclusions have been formulated for the case of a constant pair correlation beyond the
exclusion range. These include (a) pair correlation realizability over a nonzero density range, (b) violation of
the Kirkwood superposition approximation for many such realizations, and (c) inappropriateness of the so-
called “reverse Monte Carlo” method that uses a candidate pair correlation function as a means to suggest
typical many-body configurations.

I. Introduction

The subject of atomic and molecular distribution functions
has enjoyed a long and rich history. This stems both from the
experimental use of radiation scattering to determine such
functions at least at the pair level,1,2 as well as a wide range of
theoretical developments motivated by the presence of exact
relations for thermodynamic properties in terms of those
distribution functions.3,4 This combination of experimental
measurements and theoretical insights has been an indispensable
component of condensed-matter physical chemistry and physics.
However, not surprisingly for a scientific area so characterized
by intrinsic complexity, some deep problems of incomplete
understanding still persist.

One of the basic problems concerns pair correlation function
realizability. In its simplest version, this concernsg(r ), the pair
correlation function for a statistically homogeneous single-
component many-body system comprising structureless (spheri-
cally symmetric) particles. In the large system limit, this function
is conventionally defined to approach unity asr f ∞. By
definition, it cannot be negative:

Furthermore, its corresponding structure factor cannot be
negative for any value of the wavevectork (F ) N/V is number
density):5

If the many-body system of interest is isotropic, in addition to
being statistically homogeneous, theng(r ) andS(k) reduce to
functions of scalar variables,g(r) andS(k).

The relations I.1 and I.2 are necessary conditions that any
spatial distribution of particles at number densityF > 0 must
satisfy.6 Beyond these, other necessary conditions have been
derived that become applicable in various circumstances.7-10

At present no sufficient condition with finite implementation
for a given functiong(r) has been identified that would guarantee
its realizability as the correlation function for a point process.

One context in which the pair correlation realizability problem
arises is in the so-called iso-g(r) process.11,12 It is explained in
the following section, section II, with some supplemental detail
appearing in the Appendix. To attain at least a modest
contribution to the overall realizability problem, we have elected
to reexamine the iso-g(r) problem while confining our analysis
to the elementary case of a one-dimensional lattice model. This
choice allows an essentially complete enumeration of system
configurations for small systems, and a full mathematical
solution for configuration weights required under an iso-g(r)
constraint. Section III briefly outlines basic properties of the
lattice model considered. Section IV describes the required
enumeration process. Section V presents results deduced for
the lattice model. In short, the lattice model calculations provide
support for the proposition that, in the infinite system limit, the
necessary conditions I.1 and I.2 for anyg(r) are also sufficient
to ensure realizability, at least over a nonvanishing density range
that includesF ) 0 (an illustrative example appears in ref 10).
This presentation ends with a few concluding remarks in section
VI about our results and about the general realizability problem.

II. Iso-g Problem

Consider a classical many-body system in which structureless
particles interact only with pair potentialsV(r). If this system is
in a state of thermal equilibrium at absolute temperatureT, then
in the low-density limit, the pair correlation function for this
system is equal to the pair Boltzmann factor:† Part of the special issue “Frank H. Stillinger Festschrift”.

g(r ) g 0 (I.1)

S(k) ) 1 + F ∫[g(r ) - 1] exp(ik‚r ) dr g 0 (I.2)
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where as usualâ ) 1/kBT. The “iso-g(r) problem” consists of
asking if the pair potentialV(r) can be continuously perturbed
isothermally, as number densityF increases from zero, in such
a way that the pair correlation function remains unchanged:
11,12

In other words, the density increase and the changing interaction
are to have precisely canceling effects at the pair correlation
level. If in fact it exists, the corresponding perturbed pair
potential might be denoted byV*( r,F). An Appendix outlines a
formal argument, based on the density series for the pair
correlation function, suggesting that such a perturbed pair
potential indeed exists for some density interval, in the form of
a density series:

However, that formal argument falls short of a rigorous existence
proof, and furthermore, it fails to establish what, if any, upper
terminal density exists for the iso-g(r) process.

An exceptionally simple case of the iso-g(r) process involves
the unit step function, the pair Boltzmann factor for the rigid
sphere (or disk, or rod) potential in dimensionD ) 3 (or 2, or
1):

wherea is the collision diameter. Obviously this choice obeys
the first necessary condition, eq I.1. The corresponding structure-
function is the following

whereJ1 is the Bessel function of order 1.13,14

When the number densityF is sufficiently small (but still
positive), the structure factor forms in (II.5) obey the second
nonnegativity condition I.2. However, asF increases, a terminal
densityFt is reached at which that necessary condition no longer
is satisfied. The violation first occurs atk ) 0 for D ) 1, 2,
and 3. Expanding the expressions displayed in eq II.5 around
the origin shows that

Each of these results falls well below the close-packed limit
for rigid rods, disks, and spheres, respectively.

Although this establishes an upper terminal density above
which the step-functiong(r) cannot exist, it does not guarantee
that this simple pair correlation function is actually achievable
up to that density. In other words, sufficiency of constraints I.1
and I.2 for this case (eq II.4) mathematically remains an open
question (although some limited numerical evidence supporting
the proposition is available15). The step-functiong(r) is not
special in this regard; anyg(r) for which the integral term in its

S(k) has a negative region leads to a qualitatively similar
situation. The objective of the following section III is to develop
a simple testing ground to aid in deciding whether the two
conditions I.1 and I.2 are indeed sufficient.

III. Lattice Model

To permit an exact and complete analysis, we now restrict
attention to the case of a linear array ofM equally spaced sites.
This array will be subject to periodic boundary conditions, so
the first and theMth sites topologically are nearest neighbors.
The sites in principle can act as single occupancy locations for
0 e N e M point particles. The configurations of particles in
this array can conveniently be specified by a binary string of
occupancy variablesêj ) 0,1 (1e j e M), for empty and filled
sites, respectively, so that

Furthermore, we shall suppose that the point particles exclude
one another from occupying nearest neighbor sites, i.e.,êjêj+1

) 0. As a result,N will be restricted to 0e N e int(M/2),
where int(x) stands for the greatest integer inx. When M is
even andN is at its upper limit, the system displays a perfect
alternating pattern of particles and vacant sites. With oddM,
two contiguous vacant sites must be present somewhere in the
system whenN is at its maximum. This lattice system will be
treated as closed, that is,N will be fixed for each case
considered.

The number of distinct particle configurations in the array,
with first-neighbor exclusion, is

Each of these configurations will be assigned a weightW({êi})
g 0, subject to normalization:

Because the underlying array has periodic boundary conditions,
and has nothing to distinguish forward and backward directions,
it is appropriate henceforth to assume that the weights are
symmetric under translation and inversion (mirror reflection)
of the configurations. As a result, the site-occupancy distribution
functions

will themselves possess translational and inversion symmetries.
Note that

The primary objective will be to determine, for givenM and
N, what sets of weights (if any) will produce a flat site-pair
distribution function for distances beyond the excluded first-
neighbor:

∑
j)1

M

êj ) N (III.1)

Ω(M, N) )
M[M - N - 1]!

N![M - 2N]!
(III.2)

∑
{êi}

W({êi}) ) 1 (III.3)

〈êj ‚ ‚ ‚ês〉 ) ∑
{êi}

êj‚ ‚ ‚êsW({êi}) (III.4)

〈êj〉 ) N/M

∑
j,l)1

M

〈êjêl〉 ) N(N - 1) (III.5)

g(r,F ) 0) ) exp[-âV(r)] (II.1)

g(r,F>0) ) g(r,0) (II.2)

V*( r,F) ) V(r) + ∑
n)1

∞

FnVn*( r) (II.3)

g(r,0) ) U(r - a) (II.4)

S(k) ) 1 - (2F/k) sin (ka) (D ) 1)

) 1 - (2πFa/k)J1(ka) (D ) 2)

) 1 + (4πF/k3)[kacos(ka) - sin (ka)] (D ) 3) (II.5)

Fta ) 1/2 (D ) 1)

Fta
2 ) 1/π (D ) 2)

Fta
3 ) 3/4π (D ) 3) (II.6)
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Notice that for int(M/2) < n, the periodic boundary conditions
simply cause the pair distribution function to fold back on itself:

Inserting form III.6 into the second part of eq III.5 serves to
identify K:

The lattice model version of the pair correlation functiong(r)
will be denoted by gˆ(n). The lattice spacing will serve as the
distance unit. In the case of the flat pair distribution III.6, this
leads to the following:

Collective density variablesF(k) can be defined for any
pattern of particles on the lattice

where the wavevectors obey

Consequently, one has

and fork * 0

When the pair distribution has the “flat” form (eq III.6) beyond
the nearest-neighbor distance, one can rewrite the above equation
as follows:

This expression serves as the structure factor for the lattice
model with flat pair correlation.

For nonzerok, the last expression attains its minimum value
at |k| ) 2π/M, the points closest to the origin. BecauseŜ(k)
cannot be negative, it is necessary thatN not exceed a terminal
upper limit Nt(M) derivable from eq III.14, specifically the
following:

Whether N can actually rise to the value int[Nt(M)] while
maintaining a flat pair distribution function in the lattice is one
of the main questions to be answered below.

IV. Enumeration Details

The Ω(M,N) configurations ofN particles distributed onM
sites, subject to nearest-neighbor exclusion, need to be separated
into pattern classes. Each class collects all configurations that
differ only by the symmetry operations of translation and/or
inversion. The weightsW({êi}) will be the same for all members
of the same class, and can be denoted aswj for the jth class. If
mj is the number of configurations belonging to classj, then
the normalization eq III.3 can be restated as

whereC(M,N) is the number of classes.
For the sake of illustration, consider the caseM ) 11, N )

3. Five distinct patterns for the three particles are possible. They
correspond to the following binary strings{êj} with respective
weightsw1...w5:

Notice that the second and third patterns are not inversion
invariant, so twice as many class members occur as for the first,
fourth, and fifth patterns which possess that symmetry.

Table 1 presents the values ofC(M,N) for all cases withM
e 17. The central objective is to search for sets of class weights
wj which produce a flat pair distribution function. No such set
can exist ifN exceeds the terminal valueNt(M).

To examine the possibility of attaining a flat pair distribution
function, it is necessary to evaluate the contribution of individual
classes to each〈êiêi+n〉 ≡ 〈ê1ên+1〉. This requires identifying how
many members of each class exhibit simultaneous occupancy
of sites 1 andn, and attributing a weightwj to each. For the
specific M ) 11, N ) 3 case considered above, this process
yields the following expressions:

These are the only independent pair distribution values beyond
the nearest neighbor exclusion distance, and the requirement
of a flat pair distribution function sets each of these equal toK,
eq III.7, as shown. Analogous sets of linear expressions apply
to all otherM, N cases, each of which must equalK(M,N) to

Nt(M) ) 1 + M - 3
1 + 2 cos(2π/M)

) M
3

+ 4π2

9M
- 4π2

3M2
+ O(M-3) (III.15)

∑
j)1

C

mjwj ) 1 (IV.1)

10101000000 (m1 ) 11)

10100100000 (m2 ) 22)

10100010000 (m3 ) 22)

10010010000 (m4 ) 11)

10010001000 (m5 ) 11) (IV.2)

〈ê1ê3〉 ) 2w1 + 2w2 + 2w3 ) K

〈ê1ê4〉 ) 2w2 + 2w4 + w5 ) K

〈ê1ê5〉 ) w1 + 2w3 + 2w5 ) K

〈ê1ê6〉 ) 2w2 + 2w3 + w4 ) K (IV.3)

〈êiêi+n〉 ) 0 (n ) 1)

) K > 0 (2 e n e int(M/2)) (III.6)

〈êiêi+n〉 ≡ 〈êiêi+M-n〉 (III.7)

K )
N(N - 1)

M(M - 3)
(III.8)

ĝ(n) ) 0 (n ) 0, (1)

) 〈êiêi+n〉/K ) 1 (n ) (2, (3, ...,( int(M/2)) (III.9)

F(k) ) ∑
j)1

M

êj exp(ikj) (III.10)

k ) 0, (2π/M, (4π/M, ... (III.11)

N-1〈[F(0)]2〉 ) N (III.12)

N-1〈F*(k)F(k)〉 ) 1 + (M/N)∑
l)2

M

〈ê1êl〉 exp[ik(l - 1)]

g 0 (III.13)

N-1〈F*(k)F(k)〉 ) 1 + (M/N){∑
l)2

M

[〈ê1êl〉 - K] ×

exp[ik(l - 1)] - K}

) 1 - (N - 1
M - 3)[1 + 2 cosk]

≡ Ŝ(k) (III.14)
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produce the required flat pair distribution. It is then necessary
to verify which of these equation sets have solutions with all
weightswi g 0.

V. Results

The four linear equations in eq IV.3 for the illustrative
exampleM ) 11,N ) 3 can formally be solved in terms ofw1:

To avoid having any of these four weights become negative, it
is necessary to restrictw1 to the interval

but otherwisew1 is unconstrained. Consequently, for this
illustrative case, the set of acceptable solutions for the five
weights constitutes a finite, simply connected, one-dimensional
manifold.

Similar considerations apply to otherM, N choices, although
the outcomes can be quite different. Table 2 describes the results
qualitatively for all cases withM e 15. Those casesM, N for

which a fixed (i.e. unique) set of weights produces the desired
flat pair correlation are designated by “f” in Table 2; in particular
this is true wheneverN ) 2, the lowest density situation for
which pair correlation is meaningfully defined. If no solution
with nonnegative weights exists, the corresponding entry in
Table 2 is “n”, and this is necessarily true wheneverN >
Nt(M). The remaining cases have multiple solution sets that
constitute bounded convex manifolds with some positive
dimensioni; these cases have been identified in Table 2 by the
symbol “m(i)”. For some of the cases in this last category,
numerical exploration was used to identify exact positive rational
values for thewj satisfying the flat pair distribution constraint,
i of which could then be independently varied while still
satisfying that constraint.

Examination of Table 2 reveals the presence of two cases
for which no solution exists (“n”), althoughN < Nt(M). These
are M, N ) 8, 3 and 15, 5, and for both theN value is just
below theNt(M) boundary by less than unity. The reason for
nonexistence of acceptable solutions is not the same for both
of these anomalous cases. In the former, only two distinct
configuration types exist [C(8,3) ) 2], while three pair
distribution constraints need to be imposed; thus the two weights
are overconstrained. In the latter, more than enough distinct
configurations are available [C(15,5) ) 16] to satisfy the six
pair distribution flat constraints; however no solution with
nonnegative weights for those configurations exists.

Because eq III.15 indicates for largeM that Nt(M) ∼ M/3,
the number of particle configurations available at this boundary
can be estimated by applying Stirling’s asymptotic approxima-
tion:

This enumerates all configurations; they fall into classes as noted
above, but with no more than 2M configurations per class.
Consequently, the number of classes rises essentially exponen-
tially with M at the boundary. In view of this fact it is not
possible for any other “n” cases analogous to 8, 3 to occur, in
which overdetermination of an insufficient number of class
weights exists withN just less thanNt. However, at present
one cannot exclude further isolated “n” cases analogous to 15,5,
with M > 15 and withN in a narrow strip just less thanNt.
Indeed these may proliferate asM increases, and in the large-M
limit (for the flat pair correlation case) may place an upper limit
on N that is a fraction ofNt less than unity.

Yamada7 has derived a necessary condition for pair correla-
tion functions that concerns number variance in subregions
(“windows”) of the full system.14 For the present context, the
fluctuating quantity of interest isNa, the number of particles
occurring in 1e a e M contiguous sites:

Let θ denote the noninteger part of〈Na〉:

Then the Yamada necessary condition is

TABLE 1: Numbers C(M,N) of Configuration Classes for
the One-Dimensional Lattice System, with Nearest-Neighbor
Exclusions, and Periodic Boundary Conditions

M N ) 2 N ) 3 N ) 4 N ) 5 N ) 6 N ) 7 N ) 8

4 1
5 1
6 2 1
7 2 1
8 3 2 1
9 3 3 1

10 4 4 3 1
11 4 5 4 1
12 5 7 8 3 1
13 5 8 10 5 1
14 6 10 16 10 4 1
15 6 12 20 16 7 1
16 7 14 29 26 16 4 1
17 7 16 35 38 26 8 1

TABLE 2: Classification of Outcomes for the
Flat-Correlation Constraint in Finite-Size One-Dimensional
Latticesa

M N ) 2 N ) 3 N ) 4 N ) 5 N ) 6 N ) 7 Nt(M)

4 f 2.000 00
5 f 2.236 07
6 f n 2.500 00
7 f n 2.780 17
8 f n n 3.071 07
9 f f n 3.369 59

10 f f n n 3.673 67
11 f m(1) n n 3.982 28
12 f m(2) f n n 4.294 23
13 f m(3) m(5) n n 4.608 92
14 f m(4) m(10) n n n 4.925 85
15 f m(6) m(14) n n n 5.244 65

a Number of sites) M, number of particles) N. The symbols used
are: “n” for no acceptable solution, “f” for a fixed set of configurational
weights (unique solution) that produces a flat pair correlation, m(i) for
multiple solution sets of configurational weights havingi parametric
degrees of freedom. The formal terminal filling numberNt(M) is defined
in eq III.14.

w2 ) K/3 - 3w1/2

w3 ) K/6 + w1/2

w4 ) 2w1

w5 ) K/3 - w1 (V.1)

0 e w1 e 2K/9 ) 1/66 (V.2)

Ω(M,M/3) )
M[(2M/3) - 1]!

[(M/3)!]2

∼ (33/2/2π1/2)22M/3 (V.3)

Na ) ∑
j)1

a

êj (V.4)

θ ) 〈Na〉 - int〈Na〉 (V.5)

〈Na
2〉 - 〈Na〉

2 g θ(1 - θ) (V.6)
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Of course this inequality must be satisfied for all of the cases
listed in Table 2 that have solutions, and for alla. However,
the two anomalous casesM, N ) 8, 3 and 15, 5 need not
formally satisfy it. The variance can always be expressed in
terms of the pair correlation function, and is straightforward to
evaluate under our specific assumption of a flat form. The
required calculations show that theM, N ) 8, 3 overdetermined
case violates inequality V.6 whena ) 4. By contrast,M, N )
15, 5 formally satisfies eq V.6 for alla, suggesting that some
further necessary condition or conditions must be involved in
preventing its realizability.

VI. Concluding Remarks

The principal focus of this paper has been the pair distribution
function realizability problem, illustrated by study of finite-size
lattice systems in one dimension. These lattice systems involve
single-occupancy lattice sites, nearest-neighbor exclusion, and
periodic boundary conditions. The objective was to determine
what configurational probabilities, if any, would lead to a pre-
assigned pair distribution function. The specific situation
examined involved a “flat” pair distribution function, i.e., one
which is independent of distance beyond the excluded nearest-
neighbor separation. Table 2 summarizes the results obtained
(without approximation) for various modest values of the
number of sitesM and of the number of particlesN. These
results include cases in which (a) no solution is possible, (b)
an unique set of configurational probabilities produces the
desired flat pair distribution, and (c) a multidimensional
manifold of configurational-weight sets exists yielding the
desired flat pair distribution.

Although the flat pair distribution is perhaps the simplest
example that might be chosen to illustrate the realizability issue,
alternatives could equally well have been analyzed using the
same basic enumeration approach. One such alternative could
have been a pair distribution function with a maximum value
at the second-neighbor separation, then a smaller constant value
beyond. One would expect that the corresponding entries
analogous to those shown in Table 2 would be somewhat altered,
but still would present a qualitatively similar pattern.

For anyM, N case that admits of at least an unique set of
configurational weights, those weights can always be expressed
as normalized Boltzmann factors:

In this expressionΦi is the potential energy for theN particles
arranged in configurationi on theM-site lattice,â ) 1/kBT,
and D(M,N,â) is the normalization constant. In general, the
potential energy function appearing here would consist of a sum
of 2-particle, 3-particle, ...,N-particle contributions. Any weight
wi that vanishes corresponds toΦi f + ∞, i.e. to a multiparticle
hard core.

The overall pattern of configuration-weight solution types
presented by Table 2 has some significant implications. In
particular, the reader will notice that for a given system sizeM
> 10, the midrange values of the particle numberN lead to
solutions that are not unique, and that the maximum dimen-
sionality of the solution sets appears to rise with increasing
system sizeM. Although the pair distribution function remains
invariant over these multidimensional solution sets, the higher-
order distribution functions will not. This is clear from the fact
that the potential energy function in eq VI.1 will vary across
the solution sets involved. To paraphrase, fixing the pair
distribution function generally does not fix the higher-order

distribution functions, and specifically, it does not determine
the triplet distribution function. This last observation points out
an explicit violation of the Kirkwood superposition approxima-
tion.16,17

Another area of relevance for the present analysis is the so-
called “reverse Monte Carlo” method.18-21 This method attempts
to infer typical full-system configurations using only measured
pair correlation functions as input, and utilizes a stochastic
procedure to move particles spatially so as to conform closely
to that input. However, as just stressed in connection with the
Kirkwood superposition approximation, fixing the pair distribu-
tion generally leaves higher-order distribution functions unde-
termined. The final pattern of particle positions produced by a
reverse Monte Carlo computation implicitly depends on details
of that computation in a way that will bias that result in an
unanticipated, perhaps even unphysical, manner. Examples such
as M, N ) 15, 4 above directly illustrate the underlying
difficulty, because the 7 pair constraints that would be applied
by the reverse Monte Carlo method cannot resolve the 14-
dimensional degeneracy [m(14) in Table 2] presented by this
case. Consequently, one may legitimately question the logical
basis of the reverse Monte Carlo approach to the extent that it
presumes uniquely to produce valid many-particle spatial
patterns.

Of course it would be desirable to extend the present
calculations in a variety of directions, not the least of which
would be increasingM substantially above the present upper
limit 15. It seems unlikely to the authors that the presently
revealed trends would be qualitatively overturned by that
substantial increase. Specifically, in the large-system limit
(whether lattice or continuum models are involved) it appears
that pair distribution realizability is feasible over a nonvanishing
density range that includesF ) 0. The appearance of the two
anomalous casesM, N ) 8, 3 and 15, 5 with no solution, with
N < Nt, illustrates the fact that the two necessary conditions I.1
and I.2 generally cannot be sufficient. In particular, it has been
pointed out7,10 that local number-fluctuation constraints exist
that are not implied by (I.1) and (I.2). Furthermore, the specific
failure of theM, N ) 15, 5 case to possess any solution hints
that at least one additional necessary condition beyond those
already known has yet to be articulated. However, whether a
finite set of necessary conditions will ultimately suffice to ensure
pair correlation function realizability remains a challenging open
question.
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Appendix

The conventional density expansion for the pair correlation
functiong(r12,F), in an infinite system of spherically symmetric
particles, can be expressed in the following way:22

HereF is the number density,â ) 1/kBT, andV(r12) is the pair
potential that is normally construed to be independent of density.
The functionsγn(r12) are sums of doubly rooted Mayer cluster
integrals withn field points, subject to the proviso that those
field points be connected among themselves and have no

wi ) D(M,N,â) exp[-âΦi] (VI.1)

ln g(r12,F) ) -âV(r12) + ∑
n)1

∞

Fnγn(r12) (A.1)
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articulation points:

Although these expressions and those to follow refer to
continuum systems, they can be formally modified so as to apply
equally well to lattice systems such as that considered at length
in the main body of this paper.

The objective of the iso-g problem is to find aF-dependent
pair interactionV*( r12,F) to stand in place ofV(r), which causes
g(r12) to be independent ofF, at least for some interval of this
variable including the origin. Suppose that the required effective
pair interaction has at least a formal density expansion:

The fixed pair correlation function then would be

and successive terms in expansion A.3 have the task of
maintaining this form as density increases from zero.

Let the series A.3 forV* be inserted into each of the Mayer
f functions in eq A.2 in place ofV, followed by density expansion
of each of thosef functions. As a result, each of theγn likewise
becomes a power series inF:

in which theγn,l contain only pair interactionsV, V1*, ..., vl*.
When both density series in eqs A.3 and A.5 are inserted into
eq A.1, the result is

In order to satisfy the iso-g constraint, each bracketed combina-
tion {....} for n g 1 must individually vanish:

The right-hand member of this last equation can only contain
the lower-order functionsV, V1*, ..., Vn-1*. Consequently, these
relations (eq A.7) amount to a sequence of explicit expressions
for sequential determination of the entire set ofVn*. Only then
) 1 result in this sequence has been previously displayed.11
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γn(r12) ) (1/n!)∑ ∫dr3 ...∫drn+2∏
conn.

f(rij)

f(rij) ) exp[-âV(rij)] - 1 (A.2)

V*( rij,F) ) V(rij) + ∑
k)1

∞

Fkvk*( rij) (A.3)

g(r12) ) exp[-âV(r12)] (A.4)

γn(r12,F) ) ∑
l)0

∞

Flγn,l(r12) (A.5)

ln g(r12) )

-âV(r12) + ∑
n)1

∞

Fn{ -âVn*( r12) + ∑
l)0

n - 1

γn-l,l(r12)} (A.6)

âVn*( r12) ) ∑
l)0

n-1

γn-l,l(r12) (A.7)
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