PHYSICAL REVIEW B 71, 024301(2005

Aspects of phonon spectra for classical Gaussian core models
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Calculations have focused on several key aspects of phonon spectra for the stable lattice structures of the
Gaussian core model. These structures include the linear @rag), the close-packed triangular latti¢®
=2), and the low-density face-centered and high-density body-centered-cubic laRic&$. In each dimen-
sion, compressing the system isotropically eventually causes strong depression of phonon frequencies for wave
vectors approaching the Brillouin zone boundary, and this depression moves inward towesspéee origin
with increasing compression. Phonon spectra for uniformly shear-strained triangular lattices illustrate the
development of mechanical instability for those systems, also with increasing compressidd=Bpithe
unstrained face-centered-cubic lattice exhibits an upper density limit of mechanical stability owing to devel-
opment of a “soft” long-wavelength transverse mode and the unstrained body-centered-cubic lattice displays an
analogous lower density limit due to a corresponding “soft” long-wavelength transverse mode; furthermore,
those upper and lower limiting densities satisfy the basic Gaussian core model duality relation. Finally, these
various phonon characteristics are tied to the negative thermal expansions possessed by the model and to the
density-dependent potential energy landscape as it relates to the melting transition.
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I. INTRODUCTION crystal and fluid phase regions of negative thermal expansion

o . . (for D=2,3) (Refs. 6 and 1 (e) the decline of the melting
When it is expressed in natural energy and length Un'tstemperature to zertfor D=2 and 3 as density increasés:
the N-particle interaction function that defines a Gaussian, 4 (f) an asymptotic reduction of properties of the high-

core T“Ode'(‘??'\") in space dimensiol has the followng density fluid phase to those predicted by the hypernetted
pairwise additive form: chair? (HNC) and mean-fielt (MF) approximations.
_ 2 The present paper is devoted to an examination of se-
Dry-eery) ‘g exp(=rij"). (1D |ected aspects of the GCM phonon spectra. Of course these
= phonons cannot literally represent the dynamics for a collec-
Formally, this describes a set of structureless, sphericalljion of polymers suspended in a viscous solvent. However,
symmetrical particles. However, one of the motivating reathey do determine the absolute entropy and free energy of the
sons for examining a GCM is that it represents an idealize@rdered states of the idealized GCM in every dimension and
version of interacting linear polymer molecules in a suitablethus are basic for locating phase transitions in connection
solvent medium, a fact first evident in the work of Flory andwith high-temperature expansioh#\s we shall see below,
Krigbaum' and supported more recently by both analyticalthe phonon spectra for GCM’s have some unusual features
studied? and computer simulatioh Furthermore, Gaussian that are logically connected to poins), (c), and(e) above.
pair interactions also appear to be an appropriate description Section Il initiates the present study by calculating the
for the family of flexible dendrimergrecursively branched frequencies of harmonic normal modgshonons$ for the
polymers.? In these interpretations, eaah in Eq. (1.1)  regular linear arrayD=1). The conventional dispersion re-
above is the position of a molecular “center.” Although thesdation for w(k) is numerically easy to evaluate at low density,
polymer connections nominally identify the continuousbut becomes increasingly cumbersome to use as the density
GCM as belonging irD=3 dimensions, it has nevertheless increases. Fortunately, the theory of Jacébunctions(de-
been useful from the analytical viewpoint to study this modeltails in the Appendix offers a transformation that is roughly
for other values oD.*8 analogous to the duality relation mentioned in poib}
Prior studies of the GCM, including both analytical and above and which greatly facilitates extraction of the high-
simulational approaches, have established several remarllensity w(k). The results exhibit a peculiar phenomenon;
able properties. These include) a reduction to the hard specifically, the phonon frequencies at and near the Brillouin
sphere (or disk or rod system in the low-density, low- zone boundary drop precipitously toward zero with increas-
temperature limi (b) the existence of an exact duality rela- ing density. This has the effect of producindg-apace inter-
tion that connect3 =0 lattice energies at conjugate low and val over which phase and group velocities have opposite
high densitie$,(c) the equivalence of any density increase todirections.
a convolution smoothing operation applied to the multidi- Section Il presents results for tiiz=2 GCM, for which
mensional “rugged landscape” for potential enerdy  the regular triangular lattice is the most stable configuration
thereby reducing its collection of inherent structuflesal®  at all densities. In a manner analogous to that observed for
minima) (Ref. 10; (d) the presence of a single melting tem- D=1, one of the phonon branchésngitudina) displays a
perature maximum versus density or pressiras well as  precipitous frequency decline at and near the Brillouin zone
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boundary as the density increases. The ofttemsversg 127
branch in fact is strongly depressed at all wave vectors by the
density increase. These phenomena are connected with tF 11
potential landscape self-smoothing characteristic mentionec

in point (c) above. 0.8

Section IV contains a variant of th2=2 analysis, involv-
ing the effect of uniform anisotropic strains on the triangular ¢ — =13
lattice. Producing these strains costs energy, of course, ang """ p=122

moves the system out of its global potential minimum into a
higher-lying relative minimum. Diagonalization of the secu-
lar equation reveals the appearance of imaginary frequencie 0z
when the magnitude of the strain exceeds a density-
dependent magnitude. Such imaginary frequencies indicati
instability of the strained-lattice inherent structures in favor 02 04 06 08 . 2
of less strained versions, just as pdiot above demands. In kalx
terms of the multidimensional potential energy “landscape,”
the appearance of imaginary frequencies signals the conver- FIG. 1. Phonon frequencies for the ling@=1) GCM, at the
sion of inherent structures to saddle points, as they are afjwo relatively low number densities 1/3 and 1/2.
sorbed into neighboring inherent-structure basins.

Section V considerd =3, for which the stable crystal k=2mn/L (0<n=<N-1). (2.2)
form is face-centered cubic at low density and body-centered . _
cubic at high densit§® The latter once again exhibits a dra- Here«(k) is the angular frequency and the phonon amplitude
matic compression-induced frequency drop within the phoA(K) must be small to remain in the regime of harmonic
non dispersion relation. This feature constitutes a substantidnotions(independent phonops
breakdown of the Debye approximation for the vibrational ~The force experienced by each partigtllows from the
spectrum:2 a comment also applicable to tiz=1 andD  corresponding gradient of potential energy, Eq. (1.1),
=2 cases. Even without the influence of uniform anisotropicevaluated at the displaced positions, E22). Using these
strain, the face-centered-cubic crystal develops imaginaryforces in the Newtonian equations of motion and after lin-
frequency instability as the density rises into the metastabléarizing with respect to amplitudé(k), one finally obtains
density regime for that structure. Inversely, the body-an equation for determinating the(k) dispersion relation.
centered-cubic crystal becomes unstable as it is expandésssuming for this and all subsequent calculations that all
below its lowest density of stability. The respective densitiegarticles have unit mass, the determining equation has the
of first-encountered instability satisfy the aforementioned dufollowing form:
ality, point (b) above, owing to a connection to elastic con- ®
stants for the two cubic structures. 201e) — 2 2 2

The closing section VI summarizes results, discusses a (k)_4§l [2(1/p)* = 1][1 — cogkl/p) Jexp(~ 1/p).
few implications and related issues, and suggests some topics
for future research.

0.4 1

(2.3

Figure 1 presents(k) plots computed from this equation for
two relatively low densitiesp=1/3 and 1/2,showing for
each a simple monotonic rise &sincreases from 0 to the

In each of the phonon spectrum calculations to be preBrillouin zone boundarf at k/p=, as well as a strong

sented in this and the following sections, periodic boundaryPsitive density dependence at fixied

conditions will apply. The ground-state array fdrparticles As the particle density increases, the number of terms
along a line interval of length thus will be free to translate. ©ON the right-hand side of E¢2.3) required to attain a given
Prior to imposition of a phonon disturbance, tKeparticles numer|cal precision also increases. Furthermore, a qualita-

are arranged in numerical sequence at the time-independefif¢ change in the form ofu(k) appears whem exceeds
positions approximately unity. Specificallyp(k) develops a maximum

within the Brillouin zone, and declines in value &sap-

(O <i< proaches the zone boundary. Figure 2 illustrates this phe-
7 =ILUN - (L=]=N). 2. nomenon forp=2 and 5. While the initial slope ab(k) at
itthe origin continues to increase with density, the maximum
moves inward toward the origin, and frequencies beyond the
maximum plunge strongly toward zero. It may be worth re-
minding the reader that the group velocity of a wave packet
of phonons is determined byw/dk,* and because this
shows a sign reversal, phonon phase velocities and group

©) o0 velocities fork's beyond the maximum travel in opposite
(1) =% + A(Kexpikx ™ —iw(k)t], directions.

II. LINEAR CHAIN (D=1)

Because the primary interest lies in the large-system limit,
may be supposed thatfar exceeds the range of the Gauss-
ian pair potential, even at high number dengityN/L. A
phonon of wave vectok involves perturbing the positions
(2.1 to the time-dependent locations
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3504 N tice anda is the nearest-neighbor separation at number den-
o sity p:
-~ p= a(p) =[2/(3"%p)]*"2. (3.3

: . As stated earlier, periodic boundary conditions apply to this
2004 + x two-dimensional system afl particles.
@ : \ Phonons with wave vectde and angular frequency(k)
1501 ; will be described by the following generic set of displaced
: ; positions:

0 =r,Y+AKexdik 19 -iwkit]. (3.4

Upon inserting this form into the coupled Newton equations
0.00 - - - - - - of motion for theN patrticles of the lattice, there emerges a
0.00 0.20 o4 L& & 1.00 120 pair of homogeneous equations that must be satisfied by the
component, (k) andAy(k) of the amplitude vectoA (k):

0 =[(1/2)w* + 0y = 20, JAc = 20, A,

3.00 1

2.50 A

1.004.

0.50 4}

FIG. 2. Phonon frequencies for the ling&=1) GCM at num-
ber densities 2 and 5. These cases illustrate the development of a
frequency maximum within the Brillouin zone in the high-density

regime. 0 == 20, A+ [(1/2) 0 + 0y = 20y, A, (3.5
o ) ) where
The determining equatiof2.3) can be transformed into

an alternative form, using results from the theory of Ja@obi o1(k) = > [1 - cogk - ri)lexp(- rjz),

functions!* so that it is better adapted to describe the high- i

density limit of the one-dimensional GCM. Details appear in

the Appendix. That alternative form is the following: oK) =D sz[l - cogk - rj)]exp(— rjz),
i

w?(k) = 7pk? exp(— k?/4) - 4771/2p2 exp(— m2p2?)

= T(K) = k) = 2 xy[1 =~ cogk - 1) lexp(=17),

X {2m2p1% + exp(— K3/ 4)[ 2pkI sinh(mpk]) .

— (K¥2 + 272pA?) cos{mmpkl) ]} (2.9 (k) = E Yj2[1 - cogk - r;)Jexp(— rjz). (3.6)
J

Whereas more and more terms were necessary to evaluate
the right-hand side of E¢2.3) to given precision for non- In each of these four sumg,indexes all undisplaced lattice
zerok as density increased, the reverse is true for the trangsositions relative to a fixed lattice site.

formed version(2.4). In fact, for fixedk>0, the asymptotic The pair of equation$3.5) is compatible only if the de-
behavior in the high-density limit emerges from the leadingterminant of coefficients vanishes, which leads to the follow-
term in Eq.(2.4) alone: ing expression for the two phonon branches at each wave

vectork:
(k)12 = oy (K) + oyy(k) = o5(K)
+{[k) = ayy(K) P+ 402 (K)}2. (3.7)

The angular frequency functiono(k) for this two-
dimensional example is doubly periodic. Its Brillouin zone
lIl. REGULAR TRIANGULAR LATTICE  (D=2) (fundamental periodis a regular hexagon ik space, sur-
4 rounding the origin, with side length equafto

w(K) ~ 7 pMKlexp(- k8)  (p— =) (2.5
At the zone boundary,
w(k=7p) ~ 7% exp(— mp?l8). (2.6

The position vectors of alN particles in the undisturbe
triangular lattice are generated as integer multiples of basis 47/3a= 2%2p1%33/4, (3.9

vectorsb,; andb.:
! 2 Figure 3 shows the first Brillouin zone for the given choice

1% =ny(j)by + ny(j)by, (3.1  of lattice orientation, Eqs(3.1) and (3.2). This zone and its
periodic images are the Voron@iearest-neighbpipolygons

where for the reciprocal lattice ink space, which is also
b, = au,, triangulart®
Numerical solutions to the determining E(B.7) have
b,=a[(1/2)u, + (31’2/2)uy]. (3.2 been exhaustively studied throughout the Brillouin zone for

densities in the range<Qp=<5. The upper and lower signs in
Hereu, andu, are unit vectors for th&,y Cartesian coordi- Eq. (3.7) correspond to phonons that at smalexhibit lon-
nate system aligned with the principal directions of the lat-gitudinal and transverse polarizations, respectively. Conse-
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kya IV. STRAINED TRIANGULAR LATTICE (D=2)
The next objective is to determine how the phonon spec-
o tra of the two-dimensional GCM respond to a uniform strain
r that does not change the number density. In particular, the
case to be considered amounts to the following change in
it ka basis vectors from the previous forms E¢%.2) for the un-

strained lattice:
bi(e) =a(l +e)uy,

FIG. 3. First Brillouin zone for the triangular-lattice ground state 1o
of the two-dimensional GCM. The nearest-neighbor spacing has b,(s) = a l1+e + 3 u (4.1)
been denoted by a, E(.8). 2 2 )7 \2(1+e)) Y]’ '

quently we shall label the frequencies of these branches byhe parametee controls a stretcor compressionalong
the symbolsw;(k) andw,(k). In addition to the trivial case of the x direction and, simultaneously, a compressitr
degeneracy at the origin, these two phonon branches becoriilfétch along they direction. The interest here involves fi-
degenerate for all densities at the vertices of the hexagon&ité, not infinitesimal, strains. Note thatand - produce
Brillouin zone (e.g.,k,a=4/3, k,a=0). inequivalent states. The basis vectérs andK, for the re-

The transverse phonon branek(k) is found to be mono- ciprocallEEBrag@ lattice are determined by, and b, as

tonically increasing, at every density, along any ray that exllows:

tends _from the origin to the zone b_oundary. Howev_er, the K, -b; =24, (4.2)

same is not the case for the longitudinal braagtk), which

at least in some ray directions at all densities passes throughs a result, one has

a maximum before reaching the zone boundary. In fact, this A 312 1+

behavior appears along every ray at sufficiently high density, K,(e) = (1—/2)“—)1&— (—)u } ,

with strong depressions in frequencies at the boundary. 37a/[\2(1+e) 2

These depressions increase in severity with increasing den-

sity, although allk >0 frequencies remain positive. In this [ 4w

respect the longitudinal modes are analogous toDhel K2(8)‘(§ngi>(1+8)uy- (4.3

phonon branch discussed in the preceding section II. Figure o ) o

4 offers an illustrative example, where both branches aré&onsequently, the direction of distortion is rotated hy/2.

plotted along the ray,=0k,=0, for the relatively high den- Just as the number densipy of lattice points inr space

sity p=2. remains independent of, so too does the densitye. of
Evidently these phenomena stem from the convolutiorf€ciprocal lattice points irk space. The product of direct-

smoothing property, pointc) in the Introduction, that links lattice and reciprocal-lattice densities for any dimendidn

density increase to a reduction in barriers between neighbofas the value

ing potential energy basins in the multidimensional configu- ppres= (27) P (4.4

ration space for the system and, by implication, to a reduc- ree ' '

tion in at least some harmonic force constants at the The first Brillouin zone, illustrated in Fig. 3 as a regular

surviving basin minima. hexagon, experiences distortion fo# 0. Consequently, the
vertical distance along thka axis from the origin to the
3.00 L midpoint of the upper edge has become
,/ ~.
2.50 1 \‘\ 2m(1 +¢)/3%2, (4.5)
200 - 7 w’ while the horizontal distance from the origin to the vertex on
' / the positivek,a axis is now
1504 / ~ 3
(] / N (1 + 8) 1
/ + . 4.6
100{ [ . 77[ 3 1+8:| (4.6
1 \\
[ ~,
050 - /I \\ The prior equatior(3.7) for the determination of angular
/ ______M frequencies in the undistorted triangular lattice still remains
0.00 . T r T T r " valid for determination of thex(k,¢) in the presence of dis-
0.00 0.20 0.40 0.60 0.80 1.00 1.20 1.40

tortion, provided that each of the foufs that it contains be
appropriately generalized. These generalizations simply re-
FIG. 4. Plots of frequencies of the two phonon branches for thequire that each of the four definitiort8.6) now must incor-
planar GCM at number density 2, along the igy=0k,=0. The  porate sums over relative particle positions in the strained
ratio of slopes(group velocities near the origin in this case is lattice of interest. As a result of the lattice deformation, the
approximately 3000. degeneracy of transverse and longitudinal frequencies at the

k.alx
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p=1.00 TABLE I. Strain threshold values at which th2=2 triangular
e=0.10 lattice becomes unstable.
1.0
p &- 4
0.10 -0.062 0.100
k,a/z 0.15 -0.076 0.112
0.0 C——D 0.20 -0.085 0.121
0.25 -0.090 0.127
't -0.092 0.131
0.50 -0.085 0.129
0.75 -0.073 0.128
10 1.00 -0.063 0.134
' 1.25 -0.056 0.145
-15 0.0 15
1.50 —-0.050 0.158
kpalnw
1.75 —-0.046 0.170
FIG. 5. Two-lobed region fop=1,=-0.1 within which trans- 2.00 -0.042 0.180

verse mode frequencias(k) are all imaginary. The longitudinal
branch frequencies,(k) remain real over the entire hexagonal Bril-

louin zone. with four lobes that have diagonal orientations. This differ-
ence in thresholds and region shapes arises from the funda-
vertices of the Brillouin zone is now removed. mental nonequivalence of negative and positive strains as

The main objective in this section IV is identification of applied to the triangular lattice.
phonon modes with frequencies forced to become imaginary Table I presents a collection of numerically estimated in-
as a result of lattice distortion. The presence of such imagistability thresholds, denoted, respectively,sayp) ande.(p)
nary frequencies is equivalent to the existence of instabilityfor negative and positive strains. These results span a factor
modes for the periodic lattice structure—i.e., to a loss ofof 20 in density. A smooth extrapolation suggests that both of
status as a mechanically stable inherent structure for théhese quantities approach zero as the density approaches
many-particle system. But because every particle in the unizero. But in the high-density regime they evidently exhibit
formly strained lattice is a center of symmetry, no particlediverging behaviors, withe_(p) converging to zero, while
experiences a net force. Th&¥sP=0 in the N-dimensional &.(p) appears to increase without limit. It may be significant
configuration space, as was the case before application of thiat both of these threshold functions have extrema at or near
uniform strain. The appearance of imaginary frequencieshe self-dual densitp=7"1, an absolute minimum fo_(p),
simply indicates conversion of locab minima (inherent and a relative maximum fa,(p).
structureg to horizontal saddle points. The number of imagi-
nary frequenciegi.e., the number of directions of negative
curvature in the configuration spaagetermines the order of V. THREE-DIMENSIONAL LATTICES

the saddle point. Figures 6a) and Gb) illustrate local structures, basis vec-

Figure 5 provides an illustration. It shows the distorted- .
; o _ tors, and coordinate systems that have been used to calculate
hexagon first Brillouin zone for the cage=1, e=-0.1. The . . )
L . . ._phonon frequencies for the undistorted low-density face-
interior of a small two-lobed region, centered at the origin . . . .
) . entered-cubic and high-density body-centered-cubic Bra-
and shaped roughly like an elongated version of the symbal . ; - . i
“oom . : vais lattices. The associated first Brillouin zones are a convex
0,” contains transverse-mode frequencigék) that are all :
imagin On its boundary th fr ncies vanish. Outsi tetradecahedron and dodecahedron, respecti%#éiPhonon
aginary. S boundary these frequencies vanish. u‘Q’df?'equenues for these three-dimensional structures require

of t.hls. region the w(k) are real. BY contrast, the solving the following triplet of linear homogeneous equa-
'O”Q't“d"?a"?ra”‘?h frquenme@(k) remain real over the i, for the components of the polarization vecddk):
entire Brillouin zone. This example in Fig. 5 amounts to a

very high-order saddle if the system is large, because an 0:[(1/2)w2+01—ZUXX]AX—thxyAy—Zﬂszz,

O(1) fraction of the first Brillouin zone lies within the

imaginary-frequency re_gion._ _ 0= 20y A+ [(1/2) 0+ oy - 20, A, - 20, A,,
The occurrence of imaginary frequencies for any. ®
<o requires that the strain magnitufid, both for negative == 20, A~ 20, A, +[(12)0? + oy = 20, A, (5.1)
XZ™ yzZ7y zz1M\zy .

and for positive strains, exceed a density-dependent thresh-

old. Forp=1 ande <0, detailed calculations reveal that this where the variousr's are straightforward extensions of the
threshold occurs at approximately—0.063. In contrast, for quantities defined in Eqgs(3.6) above for the two-
p=1 and&>0, the corresponding threshold occurs at ap-dimensional lattice. By setting the>x33 determinant of co-
proximately e=0.134, and where exceeds this value, the efficients in Eqgs.(5.1) equal to zero, a cubic equation
region containing imaginary,(k) is centered at the origin, emerges whose roots are the valueswdfk) for the three
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z ing its ratio to that at the boundary. Furthermore, the
frequencies of all three modes at the boundary decrease with
o increasingp (albeit with distinct rates of declinerovided
that p>0.75. Because the density range of stability for the
face-centered-cubic lattice is much lower, no analogous re-
sults exist for that structure.

J The samd110) k-space directiottk, =k, k,=0) possesses
another important distinction. It is along such a ray, particu-
larly in the |k|— O limit, that the face-centered-cubic particle

¥ array loses its mechanical stability asncreases. Numerical
analysis reveals this instability point to be

b,

b;

(@ p* (fcc) = 0.3297. (5.4

This locates the point at which the transverse mode with
polarization vector in the,y plane has its frequency decline
to zero. Equivalently, the lattice loses its shear restoring
force at this compression. Notice that this instability density
b; ‘ by considerably exceeds the valwe®?=0.1796 at which the

face-centered and body-centered structures have equal

‘ _ energies, so metastability precedes instability.
The body-centered-cubic lattice also suffers an analogous

J by mechanical instability, but as a result of decompression. The
lower-density limit of mechanical stability has been compu-
x tationally estimated to be

® p** (bco = 0.09782, (5.5

FIG. 6. Lattice structures, basis vectors, and coordinate systemghich is well below the equal-energy density®2. Once
used to calculate phonon frequencies(f@rthe face-centered-cubic again this is associated with vanishing of the frequency of a
lattice and(b) the body-centered-cubic lattice. transverse mode with polarization vector in thg plane and

therefore corresponds to vanishing of shear restoring force.
phonon branches. Extensive calculations have been carrigkt each of the instability densitigg and p**, the numerical
out numerically for both the face-centered-cubic and bodyanalysis reveals that all phonon frequencieg(k) («
centered-cubic lattices, over a wide range of number densi1,2,3 for k# 0 remain positive throughout the Brillouin
ties p, and throughout the first Brillouin zone. Only a small zone.
portion of those results will be reported here. The shear instabilities of both lattices are associated with

Along the k-space directiork,=ky, k,=0, the Brillouin  a combination of two of the three elastic constants for cubic
zone boundary for the body-centered-cubic case is encouystems,” specifically A~ My A Special feature of the
tered at Gaussian core model is that it displays identities that link

corresponding properties of the face-centered- and body-
kxa:kya:3l/277/ 2, (5.2) centergd-cubigc F')strl?ctures evaluated at a conjugate pair )(/)f
wherea denotes the nearest-neighbor distance: dual densitie§_.|n_ particular thg ab.ove combination of elastic
constants satisfies the following identit:
a(p) = 3"%(4p)*=. (5.9

-3/ — (-3l ’ ’
Along this (110 direction, symmetry dictates that one of the * Dhicool) = Mol lee = (0 sl ) = Mool e
phonon branches retain pure longitudinal character from the (5.6
origin k=0 all the way to the zone boundary, while the other -
two (nondegenerajemodes retain pure transverse charactepvhere the dual densities are related by
along the same path. In a manner similar to that observed
above in Secs. Il and Il for the linear array and the undis- pp' =3, (5.7
torted triangular lattice, the longitudinal mode along this ray
develops a maximum interior to the Brillouin zonegfis  If the left member of identity5.6) is evaluated at the face-
sufficiently large. As an example, whegr=1.60 this maxi- centered-cubic instability density*, the square-bracketed
mum occurs close to halfway to the zone boundary, with dactor vanishes by definition. Consequently the correspond-
frequency that is about 1.75 times that at the boundary. Ining square-bracketed term in the right member must also
creasingp has the effect of moving the position of this lon- vanish, with its elastic constants evaluated at the dual den-
gitudinal mode frequency in toward the origin, while increas-sity. This implies that
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p* (fco)p** (bco = 7 3. (5.9 angular lattice would presumably survive unbounded com-
) ) . ) pression, while in three dimensions it would be tienher-
Indeed, the numerical estimat€s.4) and (5.5 satisfy this  gnt stryctures and basins for the undistorted body-centered-
rele_mon, within the four-significant-figure accuracy of those o pic |attice. If this hypothesis is correct, it raises an
estimates. engaging basic question about the fate of the first-order melt-
ing transition in the high-compression asymptotic regime
VI. CONCLUSIONS AND DISCUSSION (within which the melting temperature is declining toward
_ N zerg. Survival of a melting phase transition, with only one
The Gaussian core model presents a specific example @fpe of multidimensional basin present, would then necessar-
interacting “soft” matter, with constituent particles that arejly pe an intrabasin anharmonic phenomenon. Indeed, the
capable of overlap and full interpenetration. This contrastgheoretical possibility of intrabasin melting has been previ-
with more familiar cases, such as the Lennard-Jones mod&lysly exploredthough not in connection with the Gaussian
which exhibit strong and diverging pair repulsion at smallcore model2® Whether this elementary view of melting in
separation. It should not be surprising, then, that the Gausshe high-compression limit is valid or whether a more deli-
ian core model displays unusual collective behavior, specificate balancing of basin elimination and interbasin thermal

cally as revealed by phonon calculations for its crystalexcitation is involved will have to await subsequent math-
phases. Notable results uncovered during this study includgmatical analysis.

(1) the decline of phonon frequencies as the wave vector
increases toward the_Brllloum zone boundgry, when the APPENDIX A
model is compressed in one, two, or three dimensigas;
compression-induced mechanical instabilities of uniformly One of the standard Jacolsl functions is defined as
shear-strained crystal structures in two and three dimensionfllows:4
and(3) stability upper(fcc) and lower(bco) density limits for "
unstrained crystal structures, where those limit densities are _ n2
L = + )
duals[Eq. (5.8)]. In particular, conclusiortl) indicates that 93(2,0) =1+ 22 q" cod2n2) (A1)

=1
the Debye approximation for the phonon spectra is qualita- "

tively inapplicable to the Gaussian core model at high denlf one sets

sity. q=exp-a?), 2z=ka, (A2)

As mentioned in the Introduction, previous wbtR has
established that the Gaussian core model in two and in threen Eg.(Al) leads to the expression
dimensions exhibits negative thermal expansion at interme-
diate and high density, encompassing both crystal and fluid
phases. This observation contrasts with familiar examples
such as water and silica, where the negative thermal expan-
sion can logically be attributed to the presence of nonspheri- (A3)
cal dynamical units that experience strongly directionalin addition, Eq.(A1) also allows one to concludsubject to
forces. Interparticle forces are spherically symmetric in thesypstitutiong A2)]
present case and the phonon frequencies that they create in
the crystal possess density dependences that produce nega- -
tive thermal expansion, at least at low temperature. Property ~ (3/01n1nq)95(z,0) = 2 na? exp(- n%a?)cogkan).

[

Ifkal2,expg-a?)]-1=2>, exp(-n%a®cogkan).

n=1

(1) listed above implies that many of the mode Grineisen n=1

constant¥’ (A4)
dIn w;(k) Relations(A3) and(A4) then allow the determining E¢2.3)
ij_ = (k) (6.1 for phonon frequencies in the one-dimensional GCM to be

formally expressed in terms of th#&; function:
can be strongly negative and through their contribution to the 2
pressure equation of stafean thereby produce the observed (k) = 2{[2(a/dInIn q) - 1]
effect. The co_rresponding phenomenon in the higher- X[93(0,0) = F3(ka/2,0) [}gmexp-a2)-  (AD)
temperature fluid may be roughly analogous, but must re-
quire a more complicated explanation, because considerabl@ this formulaa=1/p represents the nearest-neighbor sepa-
intrabasin anharmonicity is present. ration in the linear chain.

The loss of mechanical stability as strained lattices are Page 476 of Ref. 14 presents the following identity:
densified, discussed in Sec. IV above and documented in ® )
Table | for the triangular lattice, is a special case of the S' ayp2mir+ 2nig) = (- 192 S ex M]
property(c) mentioned in the Introduction. That convolution =, S T
smoothing property as density increases has the effect of (AB)
eventually eliminating all but the most stable inherent struc-
tures and their surrounding basins. In two dimensions, onlyFor the one-dimensional GCM phonon study it is convenient
the N! permutation-equivalent basins for the unstrained tri-to set
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mir=-a% 2z=ka. (A7)

Upon making these substitutions and rearranging the result,

Eqg. (A1) leads to the following:

oo

1+ 2>, exp(- n%a®)cognka)

n=1

1+22, exp(- n?m?la?)

n=1

= (m’a)exp(— k2/4)[

xoosr(nrrk/a)} : (A8)

Apply the differential operator #/Jk? to both sides of this
last expression to obtain

PHYSICAL REVIEW B71, 024301(2005
2> na? exp(- na®)cognka)
n=1

(55 ol

2ﬂ2n2) I’(nﬂkﬂ
>— |cosh —
a a

Equations(A8) and (A9) suffice to convert Eq(2.3) of the
main text to the alternative form E¢R.4), after replacinga
with 1/p.
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