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Calculations have focused on several key aspects of phonon spectra for the stable lattice structures of the
Gaussian core model. These structures include the linear arraysD=1d, the close-packed triangular latticesD
=2d, and the low-density face-centered and high-density body-centered-cubic latticessD=3d. In each dimen-
sion, compressing the system isotropically eventually causes strong depression of phonon frequencies for wave
vectors approaching the Brillouin zone boundary, and this depression moves inward toward thek-space origin
with increasing compression. Phonon spectra for uniformly shear-strained triangular lattices illustrate the
development of mechanical instability for those systems, also with increasing compression. ForD=3, the
unstrained face-centered-cubic lattice exhibits an upper density limit of mechanical stability owing to devel-
opment of a “soft” long-wavelength transverse mode and the unstrained body-centered-cubic lattice displays an
analogous lower density limit due to a corresponding “soft” long-wavelength transverse mode; furthermore,
those upper and lower limiting densities satisfy the basic Gaussian core model duality relation. Finally, these
various phonon characteristics are tied to the negative thermal expansions possessed by the model and to the
density-dependent potential energy landscape as it relates to the melting transition.
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I. INTRODUCTION

When it is expressed in natural energy and length units,
the N-particle interaction function that defines a Gaussian
core modelsGCMd in space dimensionD has the followng
pairwise additive form:

Fsr 1 ¯ r Nd = o
i, j

exps− r ij
2d. s1.1d

Formally, this describes a set of structureless, spherically
symmetrical particles. However, one of the motivating rea-
sons for examining a GCM is that it represents an idealized
version of interacting linear polymer molecules in a suitable
solvent medium, a fact first evident in the work of Flory and
Krigbaum1 and supported more recently by both analytical
studies2,3 and computer simulation.3 Furthermore, Gaussian
pair interactions also appear to be an appropriate description
for the family of flexible dendrimerssrecursively branched
polymersd.2 In these interpretations, eachr i in Eq. s1.1d
above is the position of a molecular “center.” Although these
polymer connections nominally identify the continuous
GCM as belonging inD=3 dimensions, it has nevertheless
been useful from the analytical viewpoint to study this model
for other values ofD.4–8

Prior studies of the GCM, including both analytical and
simulational approaches, have established several remark-
able properties. These includesad a reduction to the hard
sphere sor disk or rodd system in the low-density, low-
temperature limit;9 sbd the existence of an exact duality rela-
tion that connectsT=0 lattice energies at conjugate low and
high densities;8 scd the equivalence of any density increase to
a convolution smoothing operation applied to the multidi-
mensional “rugged landscape” for potential energyF,
thereby reducing its collection of inherent structuresslocal F
minimad sRef. 10d; sdd the presence of a single melting tem-
perature maximum versus density or pressure,3,9 as well as

crystal and fluid phase regions of negative thermal expansion
sfor D=2,3d sRefs. 6 and 10d; sed the decline of the melting
temperature to zerosfor D=2 and 3d as density increases;3,9

and sfd an asymptotic reduction of properties of the high-
density fluid phase to those predicted by the hypernetted
chain3 sHNCd and mean-field11 sMFd approximations.

The present paper is devoted to an examination of se-
lected aspects of the GCM phonon spectra. Of course these
phonons cannot literally represent the dynamics for a collec-
tion of polymers suspended in a viscous solvent. However,
they do determine the absolute entropy and free energy of the
ordered states of the idealized GCM in every dimension and
thus are basic for locating phase transitions in connection
with high-temperature expansions.5 As we shall see below,
the phonon spectra for GCM’s have some unusual features
that are logically connected to pointssbd, scd, andsed above.

Section II initiates the present study by calculating the
frequencies of harmonic normal modessphononsd for the
regular linear arraysD=1d. The conventional dispersion re-
lation for vskd is numerically easy to evaluate at low density,
but becomes increasingly cumbersome to use as the density
increases. Fortunately, the theory of Jacobiu functionssde-
tails in the Appendixd offers a transformation that is roughly
analogous to the duality relation mentioned in pointsbd
above and which greatly facilitates extraction of the high-
density vskd. The results exhibit a peculiar phenomenon;
specifically, the phonon frequencies at and near the Brillouin
zone boundary drop precipitously toward zero with increas-
ing density. This has the effect of producing ak-space inter-
val over which phase and group velocities have opposite
directions.

Section III presents results for theD=2 GCM, for which
the regular triangular lattice is the most stable configuration
at all densities. In a manner analogous to that observed for
D=1, one of the phonon branchesslongitudinald displays a
precipitous frequency decline at and near the Brillouin zone
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boundary as the density increases. The otherstransversed
branch in fact is strongly depressed at all wave vectors by the
density increase. These phenomena are connected with the
potential landscape self-smoothing characteristic mentioned
in point scd above.

Section IV contains a variant of theD=2 analysis, involv-
ing the effect of uniform anisotropic strains on the triangular
lattice. Producing these strains costs energy, of course, and
moves the system out of its global potential minimum into a
higher-lying relative minimum. Diagonalization of the secu-
lar equation reveals the appearance of imaginary frequencies
when the magnitude of the strain exceeds a density-
dependent magnitude. Such imaginary frequencies indicate
instability of the strained-lattice inherent structures in favor
of less strained versions, just as pointscd above demands. In
terms of the multidimensional potential energy “landscape,”
the appearance of imaginary frequencies signals the conver-
sion of inherent structures to saddle points, as they are ab-
sorbed into neighboring inherent-structure basins.

Section V considersD=3, for which the stable crystal
form is face-centered cubic at low density and body-centered
cubic at high density.3,9 The latter once again exhibits a dra-
matic compression-induced frequency drop within the pho-
non dispersion relation. This feature constitutes a substantial
breakdown of the Debye approximation for the vibrational
spectrum,12 a comment also applicable to theD=1 andD
=2 cases. Even without the influence of uniform anisotropic
strain, the face-centered-cubic crystal develops imaginary-
frequency instability as the density rises into the metastable
density regime for that structure. Inversely, the body-
centered-cubic crystal becomes unstable as it is expanded
below its lowest density of stability. The respective densities
of first-encountered instability satisfy the aforementioned du-
ality, point sbd above, owing to a connection to elastic con-
stants for the two cubic structures.

The closing section VI summarizes results, discusses a
few implications and related issues, and suggests some topics
for future research.

II. LINEAR CHAIN „D=1…

In each of the phonon spectrum calculations to be pre-
sented in this and the following sections, periodic boundary
conditions will apply. The ground-state array forN particles
along a line interval of lengthL thus will be free to translate.
Prior to imposition of a phonon disturbance, theN particles
are arranged in numerical sequence at the time-independent
positions

xj
s0d = jL/N s1 ø j ø Nd. s2.1d

Because the primary interest lies in the large-system limit, it
may be supposed thatL far exceeds the range of the Gauss-
ian pair potential, even at high number densityr=N/L. A
phonon of wave vectork involves perturbing the positions
s2.1d to the time-dependent locations

xjstd = xj
s0d + Askdexpfikxj

s0d − ivskdtg,

k = 2pn/L s0 ø n ø N − 1d. s2.2d

Herevskd is the angular frequency and the phonon amplitude
Askd must be small to remain in the regime of harmonic
motionssindependent phononsd.

The force experienced by each particlej follows from the
corresponding gradient of potential energyF, Eq. s1.1d,
evaluated at the displaced positions, Eq.s2.2d. Using these
forces in the Newtonian equations of motion and after lin-
earizing with respect to amplitudeAskd, one finally obtains
an equation for determinating thevskd dispersion relation.
Assuming for this and all subsequent calculations that all
particles have unit mass, the determining equation has the
following form:

v2skd = 4o
l=1

`

f2sl/rd2 − 1gf1 − cosskl/rdgexps− l2/r2d.

s2.3d

Figure 1 presentsvskd plots computed from this equation for
two relatively low densities,r=1/3 and 1/2,showing for
each a simple monotonic rise ask increases from 0 to the
Brillouin zone boundary13 at k/r=p, as well as a strong
positive density dependence at fixedk.

As the particle densityr increases, the number of terms
on the right-hand side of Eq.s2.3d required to attain a given
numerical precision also increases. Furthermore, a qualita-
tive change in the form ofvskd appears whenr exceeds
approximately unity. Specifically,vskd develops a maximum
within the Brillouin zone, and declines in value ask ap-
proaches the zone boundary. Figure 2 illustrates this phe-
nomenon forr=2 and 5. While the initial slope ofvskd at
the origin continues to increase with density, the maximum
moves inward toward the origin, and frequencies beyond the
maximum plunge strongly toward zero. It may be worth re-
minding the reader that the group velocity of a wave packet
of phonons is determined by]v /]k,13 and because this
shows a sign reversal, phonon phase velocities and group
velocities for k’s beyond the maximum travel in opposite
directions.

FIG. 1. Phonon frequencies for the linearsD=1d GCM, at the
two relatively low number densities 1/3 and 1/2.
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The determining equations2.3d can be transformed into
an alternative form, using results from the theory of Jacobiu
functions,14 so that it is better adapted to describe the high-
density limit of the one-dimensional GCM. Details appear in
the Appendix. That alternative form is the following:

v2skd = p1/2rk2 exps− k2/4d − 4p1/2ro
l=1

`

exps− p2r2l2d

3 h2p2r2l2 + exps− k2/4df2prkl sinhsprkld

− sk2/2 + 2p2r2l2dcoshsprkldgj. s2.4d

Whereas more and more terms were necessary to evaluate
the right-hand side of Eq.s2.3d to given precision for non-
zerok as density increased, the reverse is true for the trans-
formed versions2.4d. In fact, for fixedk.0, the asymptotic
behavior in the high-density limit emerges from the leading
term in Eq.s2.4d alone:

vskd , p1/4r1/2ukuexps− k2/8d sr → `d s2.5d

At the zone boundary,

vsk = prd , p5/4r3/2 exps− p2r2/8d. s2.6d

III. REGULAR TRIANGULAR LATTICE „D=2…

The position vectors of allN particles in the undisturbed
triangular lattice are generated as integer multiples of basis
vectorsb1 andb2:

r j
s0d = n1s jdb1 + n2s jdb2, s3.1d

where

b1 = aux,

b2 = afs1/2dux + s31/2/2duyg. s3.2d

Hereux anduy are unit vectors for thex,y Cartesian coordi-
nate system aligned with the principal directions of the lat-

tice anda is the nearest-neighbor separation at number den-
sity r:

asrd = f2/s31/2rdg1/2. s3.3d

As stated earlier, periodic boundary conditions apply to this
two-dimensional system ofN particles.

Phonons with wave vectork and angular frequencyvskd
will be described by the following generic set of displaced
positions:

r jstd = r j
s0d + Askdexpfik · r j

s0d − ivskdtg. s3.4d

Upon inserting this form into the coupled Newton equations
of motion for theN particles of the lattice, there emerges a
pair of homogeneous equations that must be satisfied by the
componentsAxskd andAyskd of the amplitude vectorAskd:

0 = fs1/2dv2 + s1 − 2sxxgAx − 2sxyAy,

0 = − 2sxyAx + fs1/2dv2 + s1 − 2syygAy, s3.5d

where

s1skd = o
j

f1 − cossk · r jdgexps− r j
2d,

sxxskd = o
j

xj
2f1 − cossk · r jdgexps− r j

2d,

sxyskd = syxskd = o
j

xjyjf1 − cossk · r jdgexps− r j
2d,

syyskd = o
j

yj
2f1 − cossk · r jdgexps− r j

2d. s3.6d

In each of these four sums,j indexes all undisplaced lattice
positions relative to a fixed lattice site.

The pair of equationss3.5d is compatible only if the de-
terminant of coefficients vanishes, which leads to the follow-
ing expression for the two phonon branches at each wave
vectork:

v2skd/2 = sxxskd + syyskd − s1skd

± hfsxxskd − syyskdg2 + 4sxy
2 skdj1/2. s3.7d

The angular frequency functionvskd for this two-
dimensional example is doubly periodic. Its Brillouin zone
sfundamental periodd is a regular hexagon ink space, sur-
rounding the origin, with side length equal to13

4p/3a = 23/2r1/2/33/4. s3.8d

Figure 3 shows the first Brillouin zone for the given choice
of lattice orientation, Eqs.s3.1d and s3.2d. This zone and its
periodic images are the Voronoisnearest-neighbord polygons
for the reciprocal lattice ink space, which is also
triangular.13

Numerical solutions to the determining Eq.s3.7d have
been exhaustively studied throughout the Brillouin zone for
densities in the range 0,rø5. The upper and lower signs in
Eq. s3.7d correspond to phonons that at smallk exhibit lon-
gitudinal and transverse polarizations, respectively. Conse-

FIG. 2. Phonon frequencies for the linearsD=1d GCM at num-
ber densities 2 and 5. These cases illustrate the development of a
frequency maximum within the Brillouin zone in the high-density
regime.
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quently we shall label the frequencies of these branches by
the symbolsvlskd andvtskd. In addition to the trivial case of
degeneracy at the origin, these two phonon branches become
degenerate for all densities at the vertices of the hexagonal
Brillouin zone se.g.,kxa=4p /3, kya=0d.

The transverse phonon branchvtskd is found to be mono-
tonically increasing, at every density, along any ray that ex-
tends from the origin to the zone boundary. However, the
same is not the case for the longitudinal branchvlskd, which
at least in some ray directions at all densities passes through
a maximum before reaching the zone boundary. In fact, this
behavior appears along every ray at sufficiently high density,
with strong depressions in frequencies at the boundary.
These depressions increase in severity with increasing den-
sity, although allk .0 frequencies remain positive. In this
respect the longitudinal modes are analogous to theD=1
phonon branch discussed in the preceding section II. Figure
4 offers an illustrative example, where both branches are
plotted along the raykxù0,ky=0, for the relatively high den-
sity r=2.

Evidently these phenomena stem from the convolution
smoothing property, pointscd in the Introduction, that links
density increase to a reduction in barriers between neighbor-
ing potential energy basins in the multidimensional configu-
ration space for the system and, by implication, to a reduc-
tion in at least some harmonic force constants at the
surviving basin minima.

IV. STRAINED TRIANGULAR LATTICE „D=2…

The next objective is to determine how the phonon spec-
tra of the two-dimensional GCM respond to a uniform strain
that does not change the number density. In particular, the
case to be considered amounts to the following change in
basis vectors from the previous forms Eqs.s3.2d for the un-
strained lattice:

b1s«d = as1 + «dux,

b2s«d = aFS1 + «

2
Dux + S 31/2

2s1 + «dDuyG . s4.1d

The parameter« controls a stretchsor compressiond along
the x direction and, simultaneously, a compressionsor
stretchd along they direction. The interest here involves fi-
nite, not infinitesimal, strains. Note that« and −« produce
inequivalent states. The basis vectorsK 1 andK 2 for the re-
ciprocal sBraggd lattice are determined byb1 and b2 as
follows:15

K i ·b j = 2pdi j . s4.2d

As a result, one has

K 1s«d = S 4p

31/2a
DFS 31/2

2s1 + «dDux − S1 + «

2
DuyG ,

K 2s«d = S 4p

31/2a
Ds1 + «duy. s4.3d

Consequently, the direction of distortion is rotated by ±p /2.
Just as the number densityr of lattice points inr space
remains independent of«, so too does the densityrrec of
reciprocal lattice points ink space. The product of direct-
lattice and reciprocal-lattice densities for any dimensionD
has the value

rrrec = s2pd−D. s4.4d

The first Brillouin zone, illustrated in Fig. 3 as a regular
hexagon, experiences distortion for«Þ0. Consequently, the
vertical distance along thekya axis from the origin to the
midpoint of the upper edge has become

2ps1 + «d/31/2, s4.5d

while the horizontal distance from the origin to the vertex on
the positivekxa axis is now

pF s1 + «d3

3
+

1

1 + «
G . s4.6d

The prior equations3.7d for the determination of angular
frequencies in the undistorted triangular lattice still remains
valid for determination of thevsk ,«d in the presence of dis-
tortion, provided that each of the fours’s that it contains be
appropriately generalized. These generalizations simply re-
quire that each of the four definitionss3.6d now must incor-
porate sums over relative particle positions in the strained
lattice of interest. As a result of the lattice deformation, the
degeneracy of transverse and longitudinal frequencies at the

FIG. 3. First Brillouin zone for the triangular-lattice ground state
of the two-dimensional GCM. The nearest-neighbor spacing has
been denoted by a, Eq.s3.8d.

FIG. 4. Plots of frequencies of the two phonon branches for the
planar GCM at number density 2, along the raykxù0,ky=0. The
ratio of slopessgroup velocitiesd near the origin in this case is
approximately 3000.
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vertices of the Brillouin zone is now removed.
The main objective in this section IV is identification of

phonon modes with frequencies forced to become imaginary
as a result of lattice distortion. The presence of such imagi-
nary frequencies is equivalent to the existence of instability
modes for the periodic lattice structure—i.e., to a loss of
status as a mechanically stable inherent structure for the
many-particle system. But because every particle in the uni-
formly strained lattice is a center of symmetry, no particle
experiences a net force. Thus=F=0 in the 2N-dimensional
configuration space, as was the case before application of the
uniform strain. The appearance of imaginary frequencies
simply indicates conversion of localF minima sinherent
structuresd to horizontal saddle points. The number of imagi-
nary frequenciessi.e., the number of directions of negative
curvature in the configuration spaced determines the order of
the saddle point.

Figure 5 provides an illustration. It shows the distorted-
hexagon first Brillouin zone for the caser=1, «=−0.1. The
interior of a small two-lobed region, centered at the origin
and shaped roughly like an elongated version of the symbol
“`,” contains transverse-mode frequenciesvtskd that are all
imaginary. On its boundary these frequencies vanish. Outside
of this region the vtskd are real. By contrast, the
longitudinal-branch frequenciesvlskd remain real over the
entire Brillouin zone. This example in Fig. 5 amounts to a
very high-order saddle if the system is large, because an
Os1d fraction of the first Brillouin zone lies within the
imaginary-frequency region.

The occurrence of imaginary frequencies for any 0,r
,` requires that the strain magnitudeu«u, both for negative
and for positive strains, exceed a density-dependent thresh-
old. Forr=1 and«,0, detailed calculations reveal that this
threshold occurs at approximately«=−0.063. In contrast, for
r=1 and «.0, the corresponding threshold occurs at ap-
proximately «=0.134, and when« exceeds this value, the
region containing imaginaryvtskd is centered at the origin,

with four lobes that have diagonal orientations. This differ-
ence in thresholds and region shapes arises from the funda-
mental nonequivalence of negative and positive strains as
applied to the triangular lattice.

Table I presents a collection of numerically estimated in-
stability thresholds, denoted, respectively, by«−srd and«+srd
for negative and positive strains. These results span a factor
of 20 in density. A smooth extrapolation suggests that both of
these quantities approach zero as the density approaches
zero. But in the high-density regime they evidently exhibit
diverging behaviors, with«−srd converging to zero, while
«+srd appears to increase without limit. It may be significant
that both of these threshold functions have extrema at or near
the self-dual densityr=p−1, an absolute minimum for«−srd,
and a relative maximum for«+srd.

V. THREE-DIMENSIONAL LATTICES

Figures 6sad and 6sbd illustrate local structures, basis vec-
tors, and coordinate systems that have been used to calculate
phonon frequencies for the undistorted low-density face-
centered-cubic and high-density body-centered-cubic Bra-
vais lattices. The associated first Brillouin zones are a convex
tetradecahedron and dodecahedron, respectively.13,16 Phonon
frequencies for these three-dimensional structures require
solving the following triplet of linear homogeneous equa-
tions for the components of the polarization vectorAskd:

0 = fs1/2dv2 + s1 − 2sxxgAx − 2sxyAy − 2sxzAz,

0 = − 2sxyAx + fs1/2dv2 + s1 − 2syygAy − 2syzAz,

0 = − 2sxzAx − 2syzAy + fs1/2dv2 + s1 − 2szzgAz, s5.1d

where the variouss’s are straightforward extensions of the
quantities defined in Eqs.s3.6d above for the two-
dimensional lattice. By setting the 333 determinant of co-
efficients in Eqs.s5.1d equal to zero, a cubic equation
emerges whose roots are the values ofv2skd for the three

FIG. 5. Two-lobed region forr=1,«=−0.1 within which trans-
verse mode frequenciesvtskd are all imaginary. The longitudinal
branch frequenciesvlskd remain real over the entire hexagonal Bril-
louin zone.

TABLE I. Strain threshold values at which theD=2 triangular
lattice becomes unstable.

r «− «+

0.10 −0.062 0.100

0.15 −0.076 0.112

0.20 −0.085 0.121

0.25 −0.090 0.127

p−1 −0.092 0.131

0.50 −0.085 0.129

0.75 −0.073 0.128

1.00 −0.063 0.134

1.25 −0.056 0.145

1.50 −0.050 0.158

1.75 −0.046 0.170

2.00 −0.042 0.180
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phonon branches. Extensive calculations have been carried
out numerically for both the face-centered-cubic and body-
centered-cubic lattices, over a wide range of number densi-
ties r, and throughout the first Brillouin zone. Only a small
portion of those results will be reported here.

Along the k-space directionkx=ky, kz=0, the Brillouin
zone boundary for the body-centered-cubic case is encoun-
tered at

kxa = kya = 31/2p/2, s5.2d

wherea denotes the nearest-neighbor distance:

asrd = 31/2/s4rd1/3. s5.3d

Along this s110d direction, symmetry dictates that one of the
phonon branches retain pure longitudinal character from the
origin k =0 all the way to the zone boundary, while the other
two snondegenerated modes retain pure transverse character
along the same path. In a manner similar to that observed
above in Secs. II and III for the linear array and the undis-
torted triangular lattice, the longitudinal mode along this ray
develops a maximum interior to the Brillouin zone ifr is
sufficiently large. As an example, whenr=1.60 this maxi-
mum occurs close to halfway to the zone boundary, with a
frequency that is about 1.75 times that at the boundary. In-
creasingr has the effect of moving the position of this lon-
gitudinal mode frequency in toward the origin, while increas-

ing its ratio to that at the boundary. Furthermore, the
frequencies of all three modes at the boundary decrease with
increasingr salbeit with distinct rates of declined provided
that r.0.75. Because the density range of stability for the
face-centered-cubic lattice is much lower, no analogous re-
sults exist for that structure.

The sames110d k-space directionskx=ky,kz=0d possesses
another important distinction. It is along such a ray, particu-
larly in the uk u→0 limit, that the face-centered-cubic particle
array loses its mechanical stability asr increases. Numerical
analysis reveals this instability point to be

r * sfccd > 0.3297. s5.4d

This locates the point at which the transverse mode with
polarization vector in thex,y plane has its frequency decline
to zero. Equivalently, the lattice loses its shear restoring
force at this compression. Notice that this instability density
considerably exceeds the valuep−3/2>0.1796 at which the
face-centered and body-centered structures have equal
energies,8 so metastability precedes instability.

The body-centered-cubic lattice also suffers an analogous
mechanical instability, but as a result of decompression. The
lower-density limit of mechanical stability has been compu-
tationally estimated to be

r ** sbccd > 0.09782, s5.5d

which is well below the equal-energy densityp−3/2. Once
again this is associated with vanishing of the frequency of a
transverse mode with polarization vector in thex,y plane and
therefore corresponds to vanishing of shear restoring force.
At each of the instability densitiesr* and r**, the numerical
analysis reveals that all phonon frequenciesvaskd sa
=1,2,3d for k Þ0 remain positive throughout the Brillouin
zone.

The shear instabilities of both lattices are associated with
a combination of two of the three elastic constants for cubic
systems,17 specifically lxxxx−lxxyy. A special feature of the
Gaussian core model is that it displays identities that link
corresponding properties of the face-centered- and body-
centered-cubic structures evaluated at a conjugate pair of
dual densities.8 In particular the above combination of elastic
constants satisfies the following identity:18

r−3/2flxxxxsrd − lxxyysrdgfcc = sr8d−3/2flxxxxsr8d − lxxyysr8dgbcc,

s5.6d

where the dual densities are related by

rr8 = p−3. s5.7d

If the left member of identitys5.6d is evaluated at the face-
centered-cubic instability densityr*, the square-bracketed
factor vanishes by definition. Consequently the correspond-
ing square-bracketed term in the right member must also
vanish, with its elastic constants evaluated at the dual den-
sity. This implies that

FIG. 6. Lattice structures, basis vectors, and coordinate systems
used to calculate phonon frequencies forsad the face-centered-cubic
lattice andsbd the body-centered-cubic lattice.
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r * sfccdr ** sbccd = p−3. s5.8d

Indeed, the numerical estimatess5.4d and s5.5d satisfy this
relation, within the four-significant-figure accuracy of those
estimates.

VI. CONCLUSIONS AND DISCUSSION

The Gaussian core model presents a specific example of
interacting “soft” matter, with constituent particles that are
capable of overlap and full interpenetration. This contrasts
with more familiar cases, such as the Lennard-Jones model,
which exhibit strong and diverging pair repulsion at small
separation. It should not be surprising, then, that the Gauss-
ian core model displays unusual collective behavior, specifi-
cally as revealed by phonon calculations for its crystal
phases. Notable results uncovered during this study include
s1d the decline of phonon frequencies as the wave vectork
increases toward the Brillouin zone boundary, when the
model is compressed in one, two, or three dimensions;s2d
compression-induced mechanical instabilities of uniformly
shear-strained crystal structures in two and three dimensions;
ands3d stability uppersfccd and lowersbccd density limits for
unstrained crystal structures, where those limit densities are
dualsfEq. s5.8dg. In particular, conclusions1d indicates that
the Debye approximation for the phonon spectra is qualita-
tively inapplicable to the Gaussian core model at high den-
sity.

As mentioned in the Introduction, previous work6,10 has
established that the Gaussian core model in two and in three
dimensions exhibits negative thermal expansion at interme-
diate and high density, encompassing both crystal and fluid
phases. This observation contrasts with familiar examples
such as water and silica, where the negative thermal expan-
sion can logically be attributed to the presence of nonspheri-
cal dynamical units that experience strongly directional
forces. Interparticle forces are spherically symmetric in the
present case and the phonon frequencies that they create in
the crystal possess density dependences that produce nega-
tive thermal expansion, at least at low temperature. Property
s1d listed above implies that many of the mode Grüneisen
constants19

] ln v jskd
] ln r

= g jskd s6.1d

can be strongly negative and through their contribution to the
pressure equation of state19 can thereby produce the observed
effect. The corresponding phenomenon in the higher-
temperature fluid may be roughly analogous, but must re-
quire a more complicated explanation, because considerable
intrabasin anharmonicity is present.

The loss of mechanical stability as strained lattices are
densified, discussed in Sec. IV above and documented in
Table I for the triangular lattice, is a special case of the
propertyscd mentioned in the Introduction. That convolution
smoothing property as density increases has the effect of
eventually eliminating all but the most stable inherent struc-
tures and their surrounding basins. In two dimensions, only
the N! permutation-equivalent basins for the unstrained tri-

angular lattice would presumably survive unbounded com-
pression, while in three dimensions it would be theN! inher-
ent structures and basins for the undistorted body-centered-
cubic lattice. If this hypothesis is correct, it raises an
engaging basic question about the fate of the first-order melt-
ing transition in the high-compression asymptotic regime
swithin which the melting temperature is declining toward
zerod. Survival of a melting phase transition, with only one
type of multidimensional basin present, would then necessar-
ily be an intrabasin anharmonic phenomenon. Indeed, the
theoretical possibility of intrabasin melting has been previ-
ously exploredsthough not in connection with the Gaussian
core modeld.20 Whether this elementary view of melting in
the high-compression limit is valid or whether a more deli-
cate balancing of basin elimination and interbasin thermal
excitation is involved will have to await subsequent math-
ematical analysis.

APPENDIX A

One of the standard Jacobiu functions is defined as
follows:14

q3sz,qd = 1 + 2o
n=1

`

qn2
coss2nzd. sA1d

If one sets

q = exps− a2d, 2z= ka, sA2d

then Eq.sA1d leads to the expression

q3fka/2,exps− a2dg − 1 = 2o
n=1

`

exps− n2a2dcosskand.

sA3d

In addition, Eq.sA1d also allows one to concludefsubject to
substitutionssA2dg

− s]/] ln ln qdq3sz,qd = 2o
n=1

`

n2a2 exps− n2a2dcosskand.

sA4d

RelationssA3d andsA4d then allow the determining Eq.s2.3d
for phonon frequencies in the one-dimensional GCM to be
formally expressed in terms of theq3 function:

v2skd = 2hf2s]/] ln ln qd − 1g

3fq3s0,qd − q3ska/2,qdgjq=exps−a2d. sA5d

In this formulaa=1/r represents the nearest-neighbor sepa-
ration in the linear chain.

Page 476 of Ref. 14 presents the following identity:

o
n=−`

`

expsn2pit + 2nizd = s− itd−1/2 o
n=−`

`

expF sz− npd2

pit
G .

sA6d

For the one-dimensional GCM phonon study it is convenient
to set
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pit = − a2, 2z= ka. sA7d

Upon making these substitutions and rearranging the result,
Eq. sA1d leads to the following:

1 + 2o
n=1

`

exps− n2a2dcossnkad

= sp1/2/adexps− k2/4dF1 + 2o
n=1

`

exps− n2p2/a2d

3coshsnpk/adG . sA8d

Apply the differential operator −]2/]k2 to both sides of this
last expression to obtain

2o
n=1

`

n2a2 exps− n2a2dcossnkad

= Sp1/2

a
DexpS−

k2

4
DH1

2
−

k2

4

+ o
n=1

`

expS−
k2

4
DF2pnk

a
sinhSnpk

a
D

+ S1 −
k2

2
−

2p2n2

a2 DcoshSnpk

a
DGJ . sA9d

EquationssA8d and sA9d suffice to convert Eq.s2.3d of the
main text to the alternative form Eq.s2.4d, after replacinga
with 1/r.
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