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By performing an elementary transformation, the conventional velocity autocorrelation function expression
for the temperature and density dependent self-diffusion constantD(T,F) has been reformulated to emphasize
how initial particle momentum biases final mean displacement. Using collective flow variables, an analogous
expression has been derived for 1/η(T,F), the inverse of shear viscosity. The Stokes-Einstein relation for
liquids declares thatD andT/η should have a fixed ratio asT andF vary, but experiment reveals substantial
violations for deeply supercooled liquids. Upon analyzing the self-diffusion and viscous flow processes in
terms of configuration space inherent structures and kinetic transitions between their basins, one possible
mechanism for this violation emerges. This stems from the fact that interbasin transitions become increasingly
Markovian asT declines, and though self-diffusion is possible in a purely Markovian regime, shear viscosity
in the present formulation intrinsically relies on successive correlated transitions.

I. Introduction

The interparticle interactions present in condensed phases,
and the local structures that they produce, influence dynamic
properties of those phases at all length scales. The self-diffusion
process and its associated temperature (T) and number density
(F)-dependent diffusion constantD(T,F) provide an obvious
example of this influence at the molecular length scale. At the
opposite extreme, where macroscopic hydrodynamics becomes
relevant, the shear viscosityη(T,F) supplies a corresponding
example. It has long been a source of wonder and insight that
these two extremes could be tied together, at least empirically,
by the Stokes-Einstein relation for liquids:1-4

HerekB is Boltzmann’s constant,a is the effective hydrodynamic
radius of the diffusing particle, andC is a positive constant with
a value that depends on the hydrodynamic boundary condition
enforced at the particle surface (C ) 6π for “stick”, C ) 4π
for “slip”).

Application of the Stokes-Einstein relation to liquids in their
equilibrium and moderately supercooled regimes succeeds well
in correlating the temperature and density variations ofD(T,F)
and ofη(T,F), which experimentally can span many orders of
magnitude. However, such correlations can break down severely
for deeply supercooled liquids, especially those that are
conventionally identified as “fragile glass formers”.5-7 This
failure has stimulated recent publications offering tentative
explanations for its occurrence.8,9

Exact statistical mechanical expressions of the Mori-Kubo-
Zwanzig type are available for bothD(T,F) and η(T,F).10,11

Interpreting those relations for any material of interest so as to
produce quantitative theoretical predictions is difficult, however.
In such circumstances it can be beneficial to have in hand

alternative representations of those two properties. Offering such
alternatives forms the basis of the present paper.

Section II focuses on the self-diffusion process, and trivially
transforms a well-known velocity autocorrelation function
expression forD(T,F) into a new form with a somewhat
unconventional interpretation. Section III considersη(T,F), and
derives an autocorrelation function expression for its inverse;
this latter relation can be interpreted in a manner roughly
analogous to that of the self-diffusion constant. Section IV
relates results from the prior sections II and III to the
multidimensional “landscape” representation, in particular in-
volving inherent structures (potential energy minima) and their
encompassing basins.12-16 Discussion of the Stokes-Einstein
relation and its low-temperature failure forms the subject in
section V. Connections to empirical heat capacity and viscosity
measurements, leading to inferred Kauzmann paradoxes, and
to so-called “ideal glass transitions” receive attention in section
VI. Section VII discusses our approach and summarizes
conclusions.

II. Self-Diffusion

In a macroscopic many-particle system at a state of thermal
equilibrium, the self-diffusion constantD measures the mean-
square displacement of a single particle in the long-time limit:

Herer i(t) is the location of particlei at timet, and the brackets
〈...〉 indicate an average over an equilibrium ensemble. By
expressing the position vector for particlei as a time integral
of its velocity, eq 2.1 can be converted into the familiar velocity
autocorrelation form:

Although the integrand in this latter expression can be negative
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D(T,F) ) kBT/Caη(T,F) (1.1)

D ) lim
tf∞

〈[∆r i(t)]
2〉/6t

∆r i ) r i(t) - r i(0) (2.1)

D ) (1/3)∫0

∞
〈vi(0)‚vi(t)〉 dt (2.2)
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for some time displacementst, the integral itself obviously must
be nonnegative.

For the purposes of this paper it will be useful to expressD
in a form that amounts to a “hybrid” of eqs 2.1 and 2.2. One
has

wherem is the particle mass andpi ) mvi is the momentum of
particlei. The meaning of this last expression is clear: it relates
D to the ultimate mean displacement of the position of a particle
chosen for observation, as biased by its initial momentum. In
an isotropic medium, specifically a liquid, that mean displace-
ment and the initial momentum producing it will necessarily
be collinear.

The initial momentumpi(0) possesses an equilibrium Max-
well-Boltzmann distributionPeq appropriate for the prevailing
equilibrium temperatureT ≡ 1/kBâ:

It will be conceptually helpful to resolve the contributions toD
in eq 2.3 according to the values of that initial momentum, so
we write

Here the symbol〈f(t)|pi(0)〉 indicates an equilibrium average
of f at time t, subject to the constraint that the momentum of
particle i had the indicated value att ) 0. In (2.5) as written,
the infinite-time limit has been abbreviated but should cause
no confusion. Equation 2.5 is our alternative representation for
the self-diffusion constantD(T,F), relating it specifically to mean
displacement biased (i.e., determined) by initial momen-
tum. From the practical point of view, the influence of the
initial momentum should die out rather quickly, so using
〈∆r i(t*) |pi(0)〉 for moderately large finite timet* in the integrand
of eq 2.5 in place of〈∆r i(∞)|pi(0)〉 should suffice. With such a
t* choice, the distribution of initial-momentum-biased displace-
ments∆r i(t*) will have a manageable width and shape and
should be readily accessible in molecular dynamics computer
simulations.

In any centrosymmetric medium (in particular an isotropic
fluid), the restricted average appearing in the integrand of eq
2.5 must be an odd function of the initial momentum:

The hydrodynamic model underlying the Stokes-Einstein
relation involves a frictional retarding force strictly proportional
to particle velocity. Consequently, that approximate model
implies that (2.6) would be strictly proportional to the initial
momentum. The corresponding specific form that emerges from
the Stokes-Einstein hydrodynamic model is the following:

which of course obeys eq 2.6. Nevertheless, in an exact
description it is reasonable to suppose that such linearity in initial
momentum would be substantially violated at very large
magnitudes of that momentum. The sign of the deviation from

linearity may vary, depending on the substance involved, as
well as its thermodynamic state.

The expressions exhibited thus far in this section have referred
to states of thermodynamic equilibrium. However, extension
to metastable supercooled liquids is both important and feasible.
This requires that the configurational part of the ensemble
averaging denoted above by〈...〉 be modified so as to be phase-
restricted, i.e., to include only those portions of the multidi-
mensional configuration space that would be visited by the
system while in the homogeneous metastable state.17,18Subject
to this proviso, eq 2.5 describes self-diffusion in supercooled
liquids down to their glass transition temperatures.

III. Shear Viscosity

The traditional autocorrelation function expression for shear
viscosity was originally derived by Green, utilizing Fokker-
Planck theory.19 Subsequent derivations have relied on calcula-
tion of linear response to suitable external forces, within the
complete Newtonian dynamical formalism for many-particle
systems.10,11,20That expression has the following form:

whereV ) LxLyLz is the macroscopic system volume andJxy is
the x,y component of a momentum flux tensor:

Fjy is they component of the force experienced by particlej. In
a manner similar to that mentioned above for the self-diffusion
process, (3.1) can be extended in its application to metastable
phases by enforcing a suitable configurational constraint on the
ensemble averaging operation〈...〉. The very large viscosities
exhibited by glass-forming liquids as they are cooled toward
their empirical glass-transition temperatures are covered by this
extension and are associated with long-time persistence of the
fluctuating Jxy quantities. This persistence stems from the
sluggishness of those configurational rearrangement processes
that are required to reduce and eventually to eliminate the initial
system-spanning stress. It seems fair to state that the formally
exact expression (3.2) for shear viscosity has had only limited
value in relating the wide range of experimentally observed
temperature and pressure variations for that transport property,
to molecular details for various substances of interest. No doubt
this stems in part from the great diversity and complexity of
molecular structures and interactions involved, and of the
intermolecular forces that they produce.

Consider next the following quantity, which will play a role
roughly conjugate to that of (3.2):

wherek ) 2πn/Ly, with n a positive integer. This quantity has
a vanishing average value at equilibrium:

but at any instant, for the macroscopic system as a whole, it
provides a measure of a wavevector-k flow pattern in thex
direction, created by momentary fluctuations. The corresponding
equilibrium average of the instantaneous second moment (i.e.,
zero-time autocorrelation) is easily evaluated using independent

η ) (1/kBTV)∫0

∞
〈Jxy(0) Jxy(t)〉 dt (3.1)

Jxy ) ∑
j)1

N

(pjxpjy/m + xjFjy) (3.2)

Jxy(k) ) ∑
j)1

N

sin(kyj)(pjx/m) (3.3)

〈Jxy(k)〉 ) 0 (3.4)

D ) (1/3)lim
tf∞

〈vi(0)‚∫0

t
vi(s) ds〉

) (1/3m)lim
tf∞

〈pi(0)‚∆r i(t)〉 (2.3)

Peq(p) ) ( â
2πm)3/2

exp(- âp2

2m) (2.4)

D ) ( 1
3m) ∫dpi(0) Peq[pi(0)]pi(0)‚〈∆r i(∞)|pi(0)〉 (2.5)

〈∆r i(∞)|pi(0)〉 ) -〈∆r i(∞)| - pi(0)〉 (2.6)

〈∆r i(∞)|pi(0)〉 = (1/Caη)pi(0) (2.7)
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Maxwell-Boltzmann distributionsPeq for the particle momenta:

It should be noted that the existence of a nonvanishing value
of Jxy(k) at t ) 0 has no implication for the value of the conjugate
quantityJxy, eq 3.2, at that same instant.

Although the equal-time autocorrelation forJxy(k), eq 3.5, is
independent of they-direction wavevector magnitudek, the same
is not the case for the time-displaced quantity (t * 0):

However, by time-reversal symmetry in the equilibrium en-
semble, this must be an even function oft. If the potential energy
function describing interactions in the system is continuous and
many-times differentiable away from particle coincidence, one
should expect the autocorrelation functionA(k,t) to have a series
expansion in powers oft2. The leading terms of this series
describe a rapid transient regime during which the matter flow
resulting from the initial momentum distribution generates a
stress field. That stress field resists the flow, causing it ultimately
to vanish.

Provided that the wavevector magnitudek is sufficiently
small, so that the corresponding wavelength 2π/k is much larger
than typical molecular lengths, then it is appropriate to identify
the regression ofJxy(k,t) with macroscopic hydrodynamic flow.
However, this requires timet to be beyond the rapid transient
regime (the Maxwell relaxation time), during which very little
of the final regression will have occurred.21 The relevant
hydrodynamic velocity fieldu(r ,t) for comparison at those later
times has the following spatial dependence:

This type of flow field involves pure shear and thus entails no
macroscopic density change. The compressibility of the moving
fluid thus is irrelevant. Consequently, in the required small-k
limit (but with k > 0) this flow amounts to a macroscopic motion
that could equally well be exhibited by an incompressible fluid.
Therefore, aside from the rapid initial transient reflecting
viscoelastic properties that becomes irrelevant in thek f 0
limit,21 the flow field will be validly described by the standard
Navier-Stokes equation for incompressible fluids.21,22 This
connection allows one to conclude thatu(r ,t) for positive times
(beyond that initial viscoelastic transient) decays exponentially
to zero at a rate determined by the macroscopic shear viscosity:

As beforeF denotes the number densityN/V. Time-reversal
symmetry implies that the ensemble-averaged, fluctuation-
induced buildup substantially prior tot ) 0 must be an
exponential rise, to be consistent with this positive-time
exponential decay.

Although one can consistently neglect short-time transients
when the primary objective is the zero-frequency viscosityη-
(T,F), an extension of the present analysis could be developed
that would yield expressions for the full frequency-dependent
viscoelastic response. This would involve examination of thek
dependence of autocorrelation functions, and of their entire time
of regressiont g 0. However, that extension falls outside the
scope of the present investigation.

Upon combining eqs 3.5 and 3.8, one obtains

wherel(k,t) is a correction term for the initial transient with the
propertyl(k,0) ) 0, and with negligible long-time effect in the
small-k limit of interest. In view of this feature, it is possible to
extract 1/η by integrating this last expression over all positive
times with neglect of the contribution ofl(k,t). The explicit result
may be written as follows:23

Notice the inverse relationship between the pair of autocorre-
lation function expressions (3.1) and (3.10). As before, eq 3.10
is amenable to extension into the metastable supercooling regime
by phase-restricting the ensemble averaging operation〈...〉 that
appears in its integrand.

It is again trivial to rewrite (3.10) in a format analogous to
the “hybrid” representation shown in the earlier eq 2.3 for
diffusion constantD. For this purpose, letKxy denote the net
matter displacement at timet in the wavevector-k shear pattern
contingent upon the specific initial conditionJxy(k,0):

Using this definition, eq 3.10 transforms to the following:

It is important to note at this stage that if the Stokes-Einstein
relation (1.1) were indeed valid, then the combinationT/η(T,F)
obtained from eq 3.12, andD(T,F) from eq 2.5, would remain
exactly proportional to one another as bothT andF vary.

IV. Potential Energy Landscape

The Newtonian dynamics that underlies the self-diffusion and
viscous flow processes is controlled by the potential energy
function Φ(r1...rN) specifying interactions in theN-particle
system. This function defines a multidimensional “landscape”,
the various topographic features of which are probed differently
at different temperatures. For some purposes it is useful to divide
the full multidimensional configuration space into “basins of
attraction” belonging to each of the localΦ minima (“inherent
structures”) by means of a steepest-descent mapping proce-
dure.16,24,25As a result of this partitioning of the configuration
space, the time-varying positionr j(t) of any particlej can be
resolved into two distinct components:26

Here Rj(t) is the spatial position of particlej in the inherent
structure for the basin inhabited at timet, and Sj(t) is the
intrabasin displacement away from that inherent structure. Of
course these two components exhibit canceling discontinuities
each time the Newtonian dynamics for theN-particle system
crosses a shared boundary between a pair of contiguous basins.

It has been pointed out theoretically, and verified by simula-
tion, that eq 2.1 continues to yield the correct self-diffusion
coefficient D(T,F) if the Newtonian positionsr i(t) in that

A(k,0) ) 〈Jxy
2(k)〉 ) NkBT/2m (3.5)

A(k,t) ) 〈Jxy(k,0) Jxy(k,t)〉 (3.6)

ux(r ,t) ∝ sin(ky)

uy ) uz ) 0 (3.7)

ux(r ,t) ) u0 sin(ky) exp(-ηk2t/mF) (3.8)

〈Jxy(k,0) Jxy(k,t)〉 ) [(NkBT/2m) + l(k,t)] exp(-ηk2t/mF)
(3.9)

1/η ) (2/NFkBT) lim
kf0+

k2∫0

∞
〈Jxy(k,0) Jxy(k,t)〉 dt (3.10)

Kxy[k,t|Jxy(k,0)] ) ∫0

t
Jxy(k,t′) dt′

) ∑
j)1

N ∫0

t
sin[kyj(t′)][pjx(t′)/m] dt′ (3.11)

1/η ) (2/NFkBT) lim
kf0+

lim
tf∞

k2〈Jxy(k,0)Kxy[k,t|Jxy(k,0)]〉 (3.12)

r j(t) ) Rj(t) + Sj(t) (4.1)
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expression are replaced by the corresponding inherent structure
positions.26,27 Therefore, one has the equivalent expression:

This invariance stems from the fact that intrabasin displacements
are order-unity quantities, whereas the time-dependent mean-
square displacements, both before and after mapping to minima,
grow without bound ast increases. Consequently, theSj(t) have
no effect in thet f ∞ limit.

The possibility of replacing Newtonian positions with inherent
structure positions in eq 2.1 naturally raises the question about
whether a similar treatment is justified for the “hybrid”D
expression in eq 2.3, or in eq 2.5. However, those alternatives
involve averages with only single occurrences of configurational
coordinate changes∆r i(t), not their squares, and these single
occurrences have bounded ensemble averages ast f ∞.
Consequently no appeal to divergence of averages with increas-
ing time t is available to justify neglect of intrabasin displace-
ments Sj(t). Nevertheless, intrinsic interest surrounds the
comparison of the two corresponding quantities:

and

representing the two versions of the time-dependent mean
displacements for a representative particlei, with the same initial
momentum bias. Assuming that rigid cores are not present in
the interparticle interactions, particles execute essentially linear
trajectories over very short time intervals. Consequently, it is
easy to see that the small-time behavior ofb must be the
following:

i.e., independent of interactions in leading order. The analogous
short-time result forB also exhibits a leading-order linear term,

whose presence depends on interactions via the nonvanishing
probability that the system configuration was initially close to
a basin boundary, and managed to execute an interbasin
transition during the short time spant. But at very low
temperature, interbasin transition rates become extremely low,
so in that regime one naturally expects|B1| , |pi(0)/m|.

It is the opposite time extreme,t f ∞, that is relevant to
D(T,F). A straightforward working hypothesis (that could be
checked eventually by molecular dynamics computer simulation
for several distinct models) is that a contributing interbasin
transition is more likely to occur ifr i(0) is near a boundary-
occupying transition state toward whichpi(0) is pointing, rather
than remote from that transition state in the initially occupied
basin. Such first transitions can be expected to make major
contributions to the finalb, B values. If this is indeed correct,
then more frequently than not one would have|∆Ri| > |∆r i|
for that initial transition. This reasoning would seem to imply
in turn that for large times:

Consequently, the tentative hypothesis suggests that replacement
of Newtonian positions by inherent structure positions in the
“hybrid” representations (2.3) and (2.5) would lead to an upper
bound forD(T,F). Presumably, the same kind of considerations
apply to the quantityKxy in (3.12) for 1/η(T,F); i.e., the
replacement of Newtonian positions with inherent structure
positions would yield a lower bound forη(T,F). We stress that
these suggested relations are very much in the realm of
conjecture and deserve be the subject of future deeper analysis.

V. Stokes-Einstein Relation

The configurationally “coarse-grained” dynamical description
of the system’s time evolution, in which the particle positions
r1(t)...rN(t) are replaced by the inherent structure positionsR1-
(t)...RN(t) may offer some insight into a mechanism whereby
the Stokes-Einstein relation breaks down for strongly super-
cooled liquids. At very low temperature, interbasin transitions
are infrequent and are separated by complicated intrabasin
vibrations described by the vector setS1(t)...SN(t). This produces
a loss of “memory”, so that the sequence of successive interbasin
transitions reduces to a Markov process.28 In this limiting
circumstance, the coarse-grained time dependence of the
system’s state can be described by a master equation.29 Let pR-
(t) be the occupancy probability of basinR at time t. These
basin probabilities obey the time-independent normalization
condition:

The master equation that determines their temporal evolution
has the following form:

As indicated here, the transition rateskγfR andkRfγ depend on
the (conserved) system total energyE. The only rates that can
differ from zero are those for basin pairsR, γ sharing a nonzero
boundary element. Furthermore, the forward and reverse rate
pairs for such contiguous basin pairs must satisfy detailed
balance.29

An important distinction to be drawn is that the self-diffusion
process survives low-temperature reduction to Markov kinetics,
whereas hydrodynamic flow does not. Individual particles can
eventually move over arbitrary distances within the macroscopic
system as a result of a long sequence of uncorrelated interbasin
transitions. However, the macroscopic spatially and temporally
coherent flow that characterizes hydrodynamics is inextricably
connected to basin transition memory effects. The collection
of particles comprising the system, when behaving hydrody-
namically, continues to move in substantially the same direction,
as viewed either in 3 or in 3N dimensions, cutting across portions
of a huge sequence of basins. Incidentally, this observation
suggests that the “hybrid” equation (3.12) for 1/η(T,F) would
remain valid ify-components of Newtonian positions,yj(t) in
Kxy (eq 3.11), were to be replaced by their inherent structure
mappingsYj(t), thus indicating a qualitative difference with the
hybrid D(T,F) expression, eq 2.3.

As the temperature of a liquid is reduced, first through the
thermodynamically stable range, then across the melting tem-
perature toward the deeply supercooled regime, one must
anticipate that the basin-transition chronological sequence trends
inevitably toward the Markovian limit. This creates a situation
that increasingly works against the cooperative phenomenon of

∑
R

pR(t) ) 1 (5.1)

dpR(t)/dt ) ∑
γ(*R)

[kγfR(E) pγ(t) - kRfγ(E) pR(t)] (5.2)

D ) lim
tf∞

〈[∆Ri(t)]
2〉/6t

∆Ri(t) ) Ri(t) - Ri(0) (4.2)

b[t|pi(0)] ) 〈∆r i(t)|pi(0)〉 (4.3)

B[t|pi(0)] ) 〈∆Ri(t)|pi(0)〉 (4.4)

b[t|pi(t)] ) [pi(0)/m]t + O(t3) (4.5)

B[t|pi(t)] ) B1[pi(0)]t + O(t3) (4.6)

|b[t|pi(0)]| < |B[t|pi(0)]| (4.7)
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shear flow, compared to the single-particle property of self-
diffusion. Such a distinction constitutes a mechanism for
decoupling between the two kinetic processes by dispropor-
tionately foreshortening the integrand in eq 3.10 for 1/η.
Consequentlyη is disproportionately increased. This offers at
least a partial explanation for low-temperature violation of the
Stokes-Einstein relation, eq 1.1, whereinD(T,F) substantially
exceeds its prediction based on the value ofη(T,F).

It needs to be emphasized at this stage that Markovian
transition character, and dynamical heterogeneity, are distinct
and independent attributes. The latter refers to the clustering in
three dimensions of configurational shifts during small time
intervals and could be either Markovian or not. Dynamical
heterogeneity might indeed be another contributing phenomenon
to break down the Stokes-Einstein relation.9 It has also been
implicated in the experimental observation that molecular
rotational diffusion is considerably less decoupled from shear
viscosity, in deep supercooling, than is translational diffusion.8

VI. “Ideal” Glass Transitions

To expand the context in which the present alternative
representations can be viewed, it will be helpful to revisit the
historically prominent concept of “ideal” glass transitions,
closely connected to the so-called “Kauzmann paradox”.30 On
one hand, experimental glass formers exhibit an empirical glass
transition of strictly kinetic origin at a glass transition temper-
atureTg > 0, where completion of structural relaxation processes
begins to take longer than experimental cooling rates permit.
But on the other hand it has often been suggested that if the
cooling rate could be slowed arbitrarily to maintain structural
equilibration through and belowTg, then a lower but still positive
temperatureTK (the “Kauzmann temperature”) would appear,
at which the system configurationally had fallen into, and
become trapped within, the deepest amorphous basin.31 To be
more precise, this deepest amorphous basin is one ofN!
structurally equivalent basins that differ only by particle
permutations, and which are uniformly distributed throughout
the multidimensional configuration space. This trapping pre-
sumption has been based on both calorimetric and kinetic
measurements, each extrapolated in a seemingly innocuous
manner to temperatures belowTg.

If indeed the ideal glass presumption were correct for one or
more glass formers, then both self-diffusion and viscous flow
would be completely shut down. In particular,∆Ri(t) would
vanish identically at allt, implying similarly that

Also one would have

as a result of thermal equilibration within the trapping basin.
For all glass forming materials with finite molecular weight,

the interaction potentialΦ(r1...rN) that produces the multidi-
mensional “landscape”, and thus its basins and inherent
structures, obeys a set of general conditions. The conditions
relevant to the present context are (a)Φ is bounded below by
-KN, whereK is anN-independent positive constant, (b)Φ is
continuous and at least twice differentiable away from nuclear
coincidences, and (c) the change inΦ resulting from a local
rearrangement ofO(1) particles, avoiding nuclear coincidences,
is itselfO(1). From the last of these it is not possible to endorse
eq 6.1 above. At any positive temperature in a macroscopic
system of particles, the Maxwell-Boltzmann momentum dis-

tribution (2.4) requires that there exists a positive probability
for particle i to possess any arbitrarily large (but finite)
momentumpi(t). This would virtually always create a local
structural disruption as the “fast” particle rips its way through
its cage of neighbors, thus causing the system to exit its basin
to occupy instead an alternative basin, and possibly one that
has a higher inherent structure energy.

Nevertheless, it is conceivable that the transitions induced
by high particle momentum might cause the system to pass from
one lowest-lying amorphous basin to one of the otherN! - 1
related to it simply by permutational exchange of particle
positions. However, any one permutation can in principle be
attained from any other by a sequence of particle pair (or other
low order) exchanges. Thus, local permutations would eventually
have the effect of transporting particles diffusively throughout
the entire system. In contrast to the ideal glass transition
presumption,D(T,F) > 0 for all T > 0 in systems of macroscopic
size.

A sequence of permutational transitions would not involve
viscous shear flow if those transitions were a strictly Markovian
process. As argued in the preceding section, lowering the
temperature causes a closer and closer approach to the Markov
ideal. But there is no compelling reason to suppose that
absolutely strict Markov kinetics ever obtains at any positive
temperature. A small amount of non-Markovian “memory” in
basin transition sequences should be found at any positive
temperature. This implies thatη(T,F) remains finite at all positive
temperatures, though admittedly its actual values might be
enormous by conventional standards. Again, the implication of
the simply interpreted ideal glass transition concept is unac-
ceptable.

Although it has not been directly invoked in the arguments
just presented, another approach also undermines the idea of
an ideal glass transition for molecular glass formers.17,32 This
approach involves general aspects of basin enumeration as a
function of depth (i.e., inherent structure potential energy) and
establishes the connection of that enumeration to phase-restricted
thermal equilibrium properties. It concludes that the existence
of an ideal glass transition would contradict the nature of realistic
molecular interactions and of the low-energy amorphous inherent
structures that they can produce. Although it is no doubt possible
to construct mathematical models whose exact properties exhibit
some form of a low temperature “ideal glass transition”, they
apparently would do so only at the cost of violating realistic
potential energy landscape attributes.

VII. Discussion and Conclusions

By virtue of a trivial transformation, the familiar velocity
autocorrelation function expression for the self-diffusion constant
D(T,F) has been recast into a form that emphasizes the mean
displacement of a chosen particle, owing to the rearrangement
of its neighbors, biased by the initial momentum of that chosen
individual. An analogous rearrangement can be applied to an
autocorrelation function expression forT/η(T,F), that emphasizes
mean hydrodynamic displacement of the entire collection of
particles comprised in the system, biased by an initial matter
flow pattern. The Stokes-Einstein approximation, eq 1.1,
declares that these two expressions should retain the same
numerical ratio under arbitrary changes inT and inF.

However, it has become a well-established experimental fact
that many liquids that conform closely to the Stokes-Einstein
behavior above, and somewhat below, their thermodynamic
melting temperatures, deviate more and more significantly from
Stokes-Einstein behavior as they are brought into the deeply

B[t|pi(0)] ) 0 (6.1)

b[tf∞|pi(0)] ) 0 (6.2)
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supercooled regime. The analysis provided in section V offers
a plausibility argument based upon the multidimensional
potential energy landscape, its division into discrete basins for
the potential energy minima (inherent structures), and the
kinetics of transitions between those basins. We plan to
investigate this computationally. As temperature becomes
strongly reduced, those interbasin transitions become more and
more Markovian, a trend that does not in itself intrinsically affect
self-diffusion. However, viscous flow necessarily relies upon
interbasin kinetic memory (persistence) effects, and so is
disproportionately inhibited, compared to self-diffusion. This
distinction permitsD(T,F) to exceed the small magnitude that
the viscosity-containing Stokes-Einstein relation would predict.

Molecular dynamics computer simulation can play an il-
luminating role in this “hybrid” context. In particular, it should
be able to evaluate the quantitiesb[t|pj(0)] and B[t|pj(0)] for
various interactions, temperatures, and densities. The extent to
which these quantities deviate from linearity in initial particle
momentumpj(0) as the magnitude of that momentum substan-
tially exceeds normal thermal values should eventually be one
of the foci of investigation.

Considering the fact that binary mixtures are a favorite family
of models for simulation of low-temperature liquid behavior,33-36

we note in passing the obvious fact that the self-diffusion and
shear viscosity expressions derived above for a single component
system, generalize straightforwardly to mixtures. Hybrid expres-
sions of the type (2.3) and (2.5) are immediately available for
the self-diffusion constantsDµ(T,F1...Fν) for each of theν distinct
components in mixed systems. Of course only a single shear
viscosity is present for a mixture, withJxy and Kxy in (3.12)
each involving a sum over all particles of whatever species might
be present. One desirable objective would be to see if strong
supercooling causes the separateDµ to deviate from the Stokes-
Einstein predictions by a common factor, or whether they
manifest deviations in rather distinct, individual fashion for each
speciesµ.
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