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Unexpected Density Fluctuations in Jammed Disordered Sphere Packings
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We computationally study jammed disordered hard-sphere packings as large as a million particles. We
show that the packings are saturated and hyperuniform, i.e., that local density fluctuations grow only as a
logarithmically augmented surface area rather than the volume of the window. The structure factor shows
an unusual nonanalytic linear dependence near the origin, S�k� � jkj. In addition to exponentially damped
oscillations seen in liquids, this implies a weak power-law tail in the total correlation function, h�r� �
�r�4, and a long-ranged direct correlation function c�r�.
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The characterization of local density fluctuations in
many-particle systems is a problem of great fundamental
interest in the study of condensed matter, including atomic,
molecular, and granular materials. In particular, long-
wavelength density fluctuations are important to such di-
verse fields as statistical mechanics, granular flow, and
even cosmology [see Ref. [1] and references therein].
Previous work by some of us [1] considered the quantita-
tive characterization of local density fluctuations in point
patterns, and, in particular, those in which infinite-
wavelength fluctuations are completely suppressed, i.e.,
the structure factor S�k� vanishes at the origin. In these
so-called hyperuniform [or superhomogeneous [2] ] sys-
tems, the variance in the number of points inside a large
window grows slower than the volume of the window,
typically like the window surface area. Known examples
include ordered lattices and quasicrystals [1,2], but it is
important to identify statistically homogeneous and iso-
tropic systems (e.g., glasses) that are hyperuniform.

For equilibrium liquids and crystals, S�k � 0� is propor-
tional to the isothermal compressibility and is thus posi-
tive. Strictly jammed sphere packings [3] are rigorously
incompressible (and nonshearable), but they are also non-
equilibrium systems. In Ref. [1], it was conjectured that all
saturated [4] strictly jammed packings are hyperuniform.
Of particular importance are disordered jammed packings,
especially the maximally random jammed (MRJ) state [5].
The MRJ state is the most disordered among all strictly
jammed packings and is related to the view of jamming as a
rigidity transition and/or dynamic arrest in both granular
[6] and glassy materials [7]. Hyperuniformity involves an
‘‘inverted critical phenomenon’’ in which the range of the
direct correlation function c�r� diverges [1]. It is hence of
great interest to test whether disordered jammed sphere
packings are hyperuniform. In this Letter, we demonstrate
that MRJ packings are indeed hyperuniform and saturated.
Moreover, we observe an unusual nonanalytic structure
factor S�k� � jkj for k! 0, or equivalently, a quasi-long-
ranged negative tail of the total pair correlation function
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h�r� � �r�4, just as found in diverse systems such as the
early Universe [2] and in liquid helium [8].

We prepare jammed packings of hard spheres under pe-
riodic boundary conditions using a modified Lubachevsky-
Stillinger (LS) packing algorithm [see Ref. [9] ]. The gen-
erated disordered sphere packings typically have volume
fractions in the range � � 0:64–0:65, and to a good ap-
proximation the packings should be representative of the
MRJ state. For this study, we have generated a dozen
packings of N � 105 and N � 106 particles jammed up
to a reduced pressure of 1012 using an expansion rate of
10�3 [9] with � � 0:644. Generating such unprecedented
one-million-particle packings was necessary in order to
study large-scale density fluctuations without relying on
dubious extrapolations.

The packings generated by the LS and other algorithms
have a significant fraction ��2:5%� of rattling particles
that are not truly jammed but can rattle inside a small cage
formed by their jammed neighbors [9]. Assuming that the
rattlers are more or less randomly distributed among all
particles, a hyperuniform packing from which the rattlers
are then removed would have S�0� � 0:025> 0. Similarly,
the hyperuniformity could be destroyed by randomly fill-
ing large-enough voids with additional rattlers. It is there-
fore important to verify that the jammed packings are
saturated, i.e., that there are no voids large enough to insert
additional rattlers. Figure 1 shows the complementary
cumulative pore-size distribution [10] F���, which gives
the probability that a sphere of diameter � could be in-
serted into the void space, with and without the rattlers.
Clearly there is no room to insert any additional rattlers;
the largest observed voids are around �max � 0:8D. The
algorithm used to produce the packings appears to fill all
void cages with particles; i.e., the packings are saturated.

When periodic boundary conditions apply with a pe-
riodic box of length L, particle correlations can only be
studied up to a distance L=2, and there are large finite-size
corrections for distances comparable to L. Additionally, as
we show later, strong statistical fluctuations appear due to
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FIG. 2 (color online). Structure factor for a jammed
106-particle packing �� � 0:642� and for a hard-sphere liquid
near the freezing point �� � 0:49�, as obtained via two alter-
native numerical methods and also from the Percus-Yevick (PY)
theory [14]. DFT results are also shown over a larger range of K
for a jammed 105-particle packing �� � 0:643�. The left inset
shows the range near the origin, revealing that while a parabola
matches the liquid data reasonably well [S�K� � 0:02
 4�
10�3K2 according to PY theory, which is known to underesti-
mate S�0�], it does not appear appropriate for the jammed
packing for large-to-intermediate wavelengths [as obtained
from Eq. (2)]. The right inset shows c�r� convolved with a
narrow Gaussian [due to numerical truncation of S�k�]. The
peak at r � D is essentially a � function.
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FIG. 1 (color online). The cumulative pore-size distribution
F��� for a (single) packing with N � 105 particles, with and
without the rattlers. The method of trial spheres with 2� 109

trials was used [10]. A very similar F��� with cutoff around
�max � 0:8D is observed when N � 106, when rattlers are
present. The cutoff is, however, not as sharply defined as it is
for the fcc crystal, shown for comparison.
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finite system size, making it necessary to use even larger
systems to measure pair correlations at large distances. In
reciprocal space, S�k� can only be measured for k 	 2�=L,
with large discretization errors for the smallest wave vec-
tors. To overcome these finite-size effects, it was necessary
to generate packings of one million particles.

Consider a large isotropic three-dimensional packing of
N hard spheres of diameter D, with average number den-
sity � � N=V and average volume fraction � � ��D3=6.
We employ the usual pair correlation function g2�x �
r=D� or the total correlation function h�x� � g2�x� � 1 in
real space, or the equivalent Fourier representation given
by the structure factor

S�K � kD� � 1
 24�
Z 1

0

sin�Kx�
Kx

x2h�x�dx:

Of particular interest are the moments of h�x�, hxni �R
1
0 x

nh�x�dx. Computer-generated packings are always
finite, and thus binning techniques must be used to obtain
probability densities like h. Accordingly, we prefer to use
the more readily measurable excess coordination

�Z�x� � 1
 24�
Z x

0
w2h�w�dw:

This is the average excess number of points inside a
spherical window of radius xD centered at a particle,
compared to the ideal-gas expectation 8�x3. Any integral
containing h�x� can easily be represented in terms of �Z�x�
using integration by parts. For the structure factor we get
S�K� � limR!1S�K;R�, where

S�K;R���Z�R�
sin�KR�
KR

�
Z R

0
�Z�x�

d
dx

sin�Kx�
Kx

dx: (1)

This has quadratic behavior near k � 0 when expanded in a
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Taylor series,

S�K� � S�0� 

K2

3

Z 1

0
x��Z�x� � S�0��dx; (2)

where S�0� � �Z�x! 1� vanishes for a hyperuniform
system. For large x, an explicit finite-size correction of
order 1=N needs to be applied to the infinite-system excess
coordination, �Z�x� � S�0��1� 8�x3=N� [11], as it is
clear that the excess coordination must vanish for windows
as large as the whole system.

Figure 2 shows S�k� for the simulated packings as ob-
tained via a direct Fourier transform (DFT) of the particle
positions, S�k� � N�1j�N

i�1 exp�ik � ri�j2, where k is a
reciprocal lattice vector for the periodic unit cell [12]. To
obtain an approximation to the radially symmetric infinite-
system S�k�, we average over the reciprocal lattice vectors
inside a spherical shell of thickness 2�=L. Using Eq. (1)
together with a numerical (truncated) �Z�x� quickly gives
S�k� over a wide range of wavelengths. However, the
behavior near the origin is not reliable since it depends
on the analytic extension for the tail of �Z�x�. The results
of the DFT calculations are shown in Fig. 2, and they
closely match the one obtained from �Z�x� for wave-
lengths smaller than about 20 diameters.

Figure 2 reveals that the saturated packing is indeed
hyperuniform [as conjectured in Ref. [1] ] to within S�0�<
10�3. The behavior of S�k� near the origin is very surpris-
ing. The observed S�k� follows closely a nonanalytic linear
4-2



0 10 20 30 40 50

R/D
0

500

1000

1500

2000

2500

σ2 (R
)

All terms
Surface term
Data

FIG. 3 (color online). The variance �2 vs window radius for a
jammed 106-particle packing. The uncertainty in the variance
(shown with error bars) is estimated to be �2=

�����
M

p
, where M �

104 is the number of windows used for a given window size.
Also shown is the theoretically predicted dependence of the form
AX3 
 CX2 lnX
 B0X

2, along with just the surface term B0X
2,

which dominates the density fluctuations.
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relationship [13] well fitted by S�K� � 6:1� 10�4

3:4� 10�3K over the whole range K=2�< 0:4. By con-
trast, analytic quadratic behavior is observed for a liquid
sample at � � 0:49, as shown in the figure. Theoretical
finite-size corrections to the small-k behavior of S�k� have
only been considered for relatively low-density liquid sys-
tems with relatively smallN [11], and are not useful for our
purposes. Although estimating the corrections to the DFT
data analytically is certainly desirable, such corrections
appear to be rather small at least for the well-understood
liquid at � � 0:49. Comparison among the different N �
106 samples shows that statistical fluctuations in S�k� near
the origin are very small.

Equation (2) shows that if h is truly short ranged, the
structure factor must be analytic (i.e., an even power of k,
usually quadratic) near the origin. Our numerical observa-
tions point strongly to a linear S�K� for small K. This
observation S�K� � jKj implies a negative algebraic
power-law tail h�x� � �x�4 uncharacteristic of liquid
states and typically only seen in systems with long-range
interactions. Such nonanalytic behavior is assumed in the
so-called Harrison-Zeldovich power spectrum of the den-
sity fluctuations in the early Universe [2] and is also seen in
the ground state of liquid helium [8]. A long-ranged tail
must appear in the direct correlation function c�r� for a
strictly hyperuniform system due to the divergence of ~c�0�,
in a kind of ‘‘inverted critical phenomenon’’ [1]. Such a tail
is uncharacteristic of liquids where the range of c�r� is
substantially limited to the range of the interaction poten-
tial. The direct correlation function can numerically be
obtained from its Fourier transform via the Ornstein-
Zernike (OZ) equation, ~c�k� � ��=6���S�k� � 1�=S�k�,
and we have shown it in the inset in Fig. 2, along with
the corresponding Percus-Yevick (PY) ansatz [14] for c�r�
at � � 0:49 which makes the approximation that c�r�
vanishes outside the core. Two unusual features relative
to the liquid are observed for our jammed packing. First,
there is a positive � function at contact corresponding to
the �Z � 6 average touching neighbors around each
jammed particle [9]. Second, there is a relatively long
tail outside the core, the exact form of which depends on
the behavior of S�k� around the origin [15].

The numerical coefficient in the power-law tail in h�x� is
very small, �Z�x� � 4:4� 10�3x�1, and cannot be di-
rectly observed, as we will show shortly. It is, however,
possible to observe its effect on large-scale density fluctu-
ations. For monodisperse hard-sphere systems it suffices to
focus only on the positions of the sphere centers and
consider density fluctuations in point patterns. Following
Ref. [1], consider moving a spherical window of radius
R � XD through a point pattern and recording the number
of points inside the window N�X�. The number variance is
exactly [1]

�2�X� � hN2�X�i � hN�X�i2

�
3�
2

��2X�2�Z0�2X� ��Z2�2X��;
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where �Zn�x� �
R
x
0w

n�Z�w�dw denotes a running mo-
ment of �Z. Asymptotically, for large windows, in
an infinite system with analytic S�k�, �2�X� � AX3 

BX2, where A � 8��1
 24�hx2i� � 8�S�0� is the
volume fluctuation coefficient, and B � �144�2hx3i �
6��Z0�x! 1� is the surface fluctuation coefficient.
When a nonintegrable power-law tail exists in �Z�x�,
asymptotically the ‘‘surface’’ fluctuation coefficient con-
tains an additional logarithmic term, B�X� � B0 
 C lnX.
Such a logarithmic correction does not appear for any of
the examples studied in Ref. [1]. Explicit finite-size effects
for nonhyperuniform systems yield a correction A�X� �
8�S�0��1� 8�X3=N� [16]. Figure 3 shows numerical
results for the number variance as a function of window
size, along with the predicted asymptotic dependence,
including both the logarithmic and N�1 corrections [17].
Both corrections need to be included in order to observe
this close a match between the data and theory. The con-
stants S�0� and C were obtained from the linear fit to S�k�,
while B0 � 1:02 was obtained by numerically integrating
�Z�x�, as explained shortly [18].

We now turn our attention to real space to observe
directly the large-distance behavior of h or equivalently
�Z. For equilibrium liquids with short-ranged potentials, it
is expected that the asymptotic behavior of h�x� is expo-
nentially damped oscillatory [19,20], of the form

h�x� �
C
x
exp��x="� cos�K0�x� x0��: (3)

However, it is not clear whether the decay is still expo-
nential for glasslike nonequilibrium jammed systems.
Previous studies have looked at much smaller systems,
where explicit finite-size effects dominate, and also fo-
cused on the liquid phase [11]. Figure 4 shows the numeri-
cal �Z�x� along with a relatively good exponentially
4-3
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FIG. 4 (color online). Excess coordination for a jammed
106-particle packing, along with the best fit of the form (3) for
the tail, and the estimated uncertainty. Statistical fluctuations
overcome the actual correlations after x � 15. Averaging over 9
samples only reduces the fluctuations by a factor of 3, without
revealing additional information. The top inset uses a logarith-
mic scale, and the bottom inset shows the zeroth and first running
moments along with their asymptotic values as estimated from
the tail fit. For the range of x shown, explicit finite-size correc-
tions are small (less than 5%).
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damped oscillatory fit [21] �Z�x��5:47xexp��x=1:83��
cos�7:56x�2:86� over the range 5< x< 15. It would be
desirable to look at larger x and, in particular, directly
observe the long-range inverse power tail predicted from
the linear behavior of S�k�. The use of cubic periodic
boundary conditions implies that pair distances up to
xmax �

�������������������
�N=24�3

p
� 50 can be studied. However, it is

not possible to measure the pair correlations for x > 15
due to statistical variations among finite systems, estimated
to lead to an uncertainty of the order �Z�x� � ��x�=

����
N

p
.

In fact, within the range of validity of the observed �Z�x�
the damped oscillatory fit is perfectly appropriate. We
smoothly combined the actual numerical data for x < 10
with the fitted decaying tail for x > 10, and numerical inte-
gration of this smoothed �Z�x� gives B0 � 1:02� 0:02, as
used in producing Fig. 3. This smoothed �Z�x� was used to
obtain S�k� via Eq. (1) when producing Fig. 2.

We have given computational results for million-particle
jammed disordered hard-sphere packings and demon-
strated that they are saturated and hyperuniform. We found
that S�k� is nonanalytic at the origin in striking contrast to
liquid behavior. There are many open fascinating ques-
tions. Can a geometrical significance be attached to the
period of oscillations K0 in the jamming limit, or to the
cutoff of F���? We believe that the strict jamming and
saturation conditions demand hyperuniformity of our
packings. We argue that the observed nonanalytic behavior
of S�k� � kp with p � 1 for k! 0 is a direct consequence
of the condition of maximal disorder on the jammed pack-
ing. The exponent p for hyperuniform systems appears to
09060
increase with increasing order: it approaches infinity for
ordered lattices, is two for perturbed lattices, and is one
for MRJ. In this sense, the MRJ packings are markedly
more disordered: they have macroscopic density fluctua-
tions which are much larger than crystalline packings.
Quantitative understanding of this aspect of disorder and
its relation to local density fluctuations remains an intrigu-
ing open problem.
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