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Iso-g(2) processes in the equilibrium regime concern density-dependent interactions that
identically cancel the usual density variation of many-body pair correlation functions. This
paper considers the formal density expansion for effective pair potentials with this iso-g(2)

property, showing how successive terms in that expansion can be determined iteratively. Explicit
results through second density order have been obtained for two types of ‘target’ pair
correlation functions: (a) a unit step function (hard core), and (b) unity augmented by an origin-
centred Gaussian profile with numerical multiplier A. For the unit step function and the
�14A<0Gaussian cases, realizability appears to be attainable up to a finite terminal density.
However, when the Gaussian A>0, the terminal density diverges to infinity while the effective
pair interaction series is non-convergent, though possibly valid as an asymptotic expansion.

1. Introduction

Particle distribution functions fulfil a basic role in the
statistical description of all phases of matter [1, 2].
Among these distribution functions of all orders, the
conceptually relatively simple pair distribution functions
�(2) possess special significance. This is partly due to
their experimental accessibility for real substances
through X-ray and neutron diffraction measurements
[3, 4], but it is also due to the relevance and popularity
of theoretical many-body models with interactions that
are pairwise additive [3, 5]. However, in spite of the long
scientific history of their use, some deep theoretical
problems regarding ‘realizability’ of all such particle
distribution functions still remain. It is the persistence
of those problems which supplies the underlying
motivation for the present paper.
For convenience, we concentrate on the direction-

averaged pair distribution, expressed in terms of the pair
correlation function gð2ÞðrÞ ¼ �ð2ÞðrÞ=�2 that is normal-
ized at any particle number density � so as to approach
unity at large pair separation. An implicit assumption
in the analysis to follow is that the infinite-system limit
applies. Two well-known necessary conditions must
be satisfied by any realizable pair correlation function
[6–8], specifically

gð2ÞðrÞ � 0 ðall rÞ, ð1:1Þ

and

SðkÞ � 0 ðall kÞ: ð1:2Þ

Here SðkÞ is the structure factor determined by gð2ÞðrÞ:

SðkÞ ¼ 1þ �

Z
expðik � rÞ gð2ÞðrÞ � 1

� �
dr: ð1:3Þ

No generally applicable sufficient condition or condi-
tions are known to assure that a given gð2ÞðrÞ actually
represents a many-body system. That is, given a ‘target’
function g0ðrÞ that satisfies necessary conditions (1.1)
and (1.2), the challenge is to determine the range of
number density � (if any) over which g0ðrÞ is the pair
correlation function for a many-body system. The
existence of this pair correlation function realizability
problem constitutes a fundamental and vexing gap
in the theory for continuum systems. Nevertheless, it
should be noted that for single-occupancy lattice models
Koralov has demonstrated that a non-vanishing realiz-
ability density interval always exists, and at each
realizable density corresponds to an equilibrium
ensemble with pairwise additive interactions [9].

Section 2 introduces and examines the apparent
division of realizable pair correlation functions into
two categories, those that are valid representatives for
all � � 0, and those that are valid only up to a finite
positive terminal density �t. In the course of illustrating*Corresponding author. Email: fhs@princeton.edu
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these two possibilities with specific examples, section 2
also alludes briefly to a third necessary condition due to
Yamada [10], which supplements those in equations
(1.1) and (1.2). Section 3 develops a density expansion
method for effective pair potentials that define many-
body ensembles for a given g0ðrÞ, at least for a small
density interval. The possibility of such an expansion
was briefly indicated in a prior publication, but without
full details [11]. Section 4 contains an application of the
formalism developed in section 3, specifically deriving
the first three density orders of the effective pair
potential, respectively for two elementary g0ðrÞ choices.
The final section 5 presents a discussion of our results,
and highlights some remaining theoretical problems.
An Appendix contains some relevant results from
previously published literature required for evaluation
of effective pair interactions.

2. Terminal densities

We shall now examine a specific, but contrasting, pair
of ‘target’ pair correlation functions. The first is just a
simple unit step function, with discontinuity located at
a positive pair separation a:

g0ðrÞ ¼ 0 ð0 � r � aÞ

¼ 1 ða < r <1Þ: ð2:1Þ

The corresponding structure factors in dimensions
D ¼ 1, 2, 3 are

SðkÞ ¼ 1� 2�a
sinðkaÞ

ka

� �
ðD ¼ 1Þ

¼ 1� 2p�a2
J1ðkaÞ

ka

� �
ðD ¼ 2Þ

¼ 1� 4p�a3
sinðkaÞ � ðkaÞ cosðkaÞ

ðkaÞ3

� �
ðD ¼ 3Þ:

ð2:2Þ

In the second of these expressions, J1 as usual is the
first-order Bessel function.
The step-function g0ðrÞ represents the zero-density

limiting form of the pair correlation function for
impenetrable rods, disks, or spheres with collision
diameter a. The corresponding dimensionless pair
interaction is very familiar (� ¼ 1=kBT ):

�v0ðrÞ ¼ þ1 ð0 � r < aÞ

¼ 0 ða � r <1Þ: ð2:3Þ

On account of the impenetrability, it is obvious that
with this step-function g0ðrÞ the number density �

cannot exceed its value at close-packing in 1, 2, or 3
dimensions, respectively. But in each of these three
cases the close-packed arrangements involve periodic
(i.e. crystalline) configurations, which produce pair
correlation functions with successive discrete coordina-
tion shells that present patterns far different from the
targeted unit step function. The non-negativity require-
ment for SðkÞ however requires that � not exceed a
rather smaller density bound, which we can tentatively
identify as the upper terminal density �t. This upper
bound is set by the criterion Sð0Þ ¼ 0, on account of
the fact that in each dimension the minimum value
of the structure factor for the unit-step g0ðrÞ occurs at
k¼ 0, and that this minimum decreases in value with
increasing �. The expressions (2.2) easily lead to the
following results for terminal densities:

�ta ¼ 1=2 ðD ¼ 1Þ,

�ta
2 ¼ 1=p ðD ¼ 2Þ,

�ta
3 ¼ 3=4p ðD ¼ 3Þ:

ð2:4Þ

The second ‘target’ pair correlation function has the
following assigned form:

g0ðrÞ ¼ A exp ��r2
� �

þ 1, ð2:5Þ

where A � �1, and � > 0. This assumed form corre-
sponds in the vanishing-density limit to a reduced pair
interaction:

�v0ðrÞ ¼ � ln A exp ��r2
� �

þ 1
� �

: ð2:6Þ

However it must be noted that when A > 0 this pair
interaction is everywhere negative, and if it were the
only interaction present at positive density in a many-
particle system, that system would collapse into a
single compact cluster with a non-extensive energy.
Nevertheless, it is conceivable that some neutralizing
mechanism could be present to maintain this second
g0ðrÞ into the positive density regime when A > 0. For
whatever A values it is possible to retain the target form
(2.5), the structure factor would be the following
(D¼ 3):

SðkÞ ¼ 1þ Aðp=�Þ3=2� expð�k2=4�Þ: ð2:7Þ

When A > 0, this SðkÞ remains positive for all k and
all positive densities. Consequently, in contrast to
the preceding example, no violation of necessary
condition (1.2) would arise to impose a finite terminal
density. But when �1 � A < 0 the structure factor has
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a minimum at k ¼ 0, thereby imposing a finite terminal
density:

�t ¼ ð�=pÞ
3=2
ð�AÞ�1: ð2:8Þ

Focusing on the A > 0 situation, the Fourier trans-
form CðkÞ of the direct correlation function [3]
corresponding to the target function in equation (2.5)
has the following form:

CðkÞ ¼
Aðp=�Þ3=2 expð�k2=4�Þ

1þ �Aðp=�Þ3=2 expð�k2=4�Þ
: ð2:9Þ

In the large-� asymptotic limit, the second denominator
term in this expression dominates the first for

jkj < k1ð�Þ, ð2:10Þ

where

k1ð�Þ ¼ 4� ln Aðp=�Þ3=2�
� �� �1=2

ð2:11Þ

is the k value at which both denominator terms are
equal. On account of the very rapid relative rate at
which the Gaussian function declines when its argument
is large, CðkÞ switches rapidly from one value to another
in the asymptotic large-� regime. In other words, it
essentially displays a discontinuity at k1:

CðkÞ ffi 1=� ðjkj < k1ð�ÞÞ

ffi 0 ðk1ð�Þ < jkjÞ:
ð2:12Þ

By carrying out the inverse transform, the correspond-
ing real-space form of the direct correlation function
in D ¼ 3 is found to be

cðrÞ ffi
sin½k1ð�Þr� � k1ð�Þr cos½k1ð�Þr�

2p2�r3
: ð2:13Þ

The noteworthy characteristics of this result are that
it is weak, that it decays algebraically with increasing
distance, and that it oscillates with a wavelength
approaching zero in the high-density limit. If indeed
this second example has no finite terminal density, then
the combination of effective interactions that must be
present to maintain the target g0ðrÞ, equation (2.5), must
also generate this unusual asymptotic cðrÞ.
It is worth remarking that the density range of

realizability will never consist of two (or more) distinct
intervals that are separated by a non-realizability gap
(or gaps). In the thermodynamic (large-system) limit,
random removal of particles from a distribution
exhibiting a given pair correlation function will not
alter that pair correlation function. However the

consequent density reduction can produce a distribution
within the alleged gap (or gaps). Of course this also
automatically leads to inclusion of arbitrarily small
densities. The reader should realize that this kind of
process is not reversible however. Random addition
of particles will not maintain a target pair correlation
function.

There still exists the possibility that other necessary
conditions beyond those in equations (1.1) and (1.2)
could require that the tentative finite terminal densities
in equations (2.4) and (2.8), and the unrestricted density
for the second Gaussian example with A > 0, be revised
downward. One type of additional constraint has been
advocated by Yamada [10]. This condition concerns
the particle number variance

�2 ¼ N� Nh i½ �
2

	 

w

ð2:14Þ

in a ‘window’ w. The fact that the number N of particles
inside w is an integer, and not a continuous variable,
sets a lower limit on the variance that is logically
independent of the basic necessary conditions (1.1)
and (1.2). However, for the two specific target functions
g0ðrÞ considered here, the Yamada condition poses
no additional restrictions on realizability.

3. Density expansion formalism

Suppose one has a pair correlation function that is
known to be realizable over a non-vanishing density
interval including � ¼ 0. It is natural to inquire,
within the context of thermal equilibrium, if a density-
dependent interaction exists which reproduces that pair
correlation function over at least a portion of the density
interval. In particular, we now examine the implications
of assuming that an effective pair potential suffices,
where that potential has a power series expansion:

vðr, �Þ ¼ v0ðrÞ þ
X1
n¼1

�nvnðrÞ: ð3:1Þ

The leading term in this series is fixed by the chosen
form of the target pair correlation function:

g0ðrÞ ¼ exp½��v0ðrÞ�: ð3:2Þ

The functions vnðrÞ appearing in the series (3.1) can be
sequentially determined by a procedure which starts
with the well-established formal density expansion of the
logarithm of the pair correlation function for systems
in which the potential involves only isotropic pair
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interactions [11]:

ln gð2Þðr, �Þ ¼ ��vðrÞ þ
X1
n¼1

�n�nðrÞ: ð3:3Þ

It should be stressed that under conventional circum-
stances the pair potential vðrÞ appearing in this series is
independent of density. Here the coefficient functions
�nðrÞ consist of sums of doubly-rooted cluster integrals
whose integrands involve products of Mayer f functions,

fðrÞ ¼ exp½��vðrÞ� � 1, ð3:4Þ

that are connected among themselves, and that contain
no articulation points [3]. The overall strategy required
is to insert the power series (3.1) representing the
effective pair potential in place of vðrÞ in the Mayer f
functions, then to use those f functions in the cluster
expansion (3.3), and finally to fully and consistently
expand equation (3.3) in ascending powers of density.
As a result, the vnðrÞ will be uniquely determined by the
requirement that each successive density order beyond
�0 in ln gð2Þðr, �Þ should vanish identically.
For the first stage of this strategy one has

[ f0 ¼ expð��v0Þ � 1]:

fðr, �Þ ¼ exp ��
X1
n¼0

�nvnðrÞ

" #
� 1

¼ f0ðrÞ � �v1ðrÞ exp½��v0ðrÞ��þ
�
� �v2ðrÞ

þ ð1=2Þ½�v1ðrÞ�
2
�
exp½��v0ðrÞ��

2 þ
�
� �v3ðrÞ

þ �2v1ðrÞv2ðrÞ � ð1=6Þ½�v1ðrÞ�
3
�
exp½��v0ðrÞ��

3

þ
�
� �v4ðrÞ þ ð1=2Þ½�v2ðrÞ�

2
þ �2v1ðrÞv3ðrÞ

� ð1=2Þ½�v1ðrÞ�
2�v2ðrÞ þ ð1=24Þ½�v1ðrÞ�

4
�

� exp½��v0ðrÞ��
4 þOð�5Þ: ð3:5Þ

When each of the f functions appearing in the cluster
integral sums �nðrÞ is replaced by this last series, and
then all terms of the same density order gathered, one
formally obtains expansions of the following sort:

�nðr, �Þ ¼
X1
l¼0

�l�n, lðrÞ: ð3:6Þ

As noted in an earlier publication [11], insertion of
this expanded form as well as equation (3.1) into
equation (3.3) produces the following relation:

ln g0ðrÞ ¼ ��v0ðrÞ þ
X1
n¼1

�n ��vnðrÞ þ
Xn�1
l¼0

�n�l, lðrÞ

( )
:

ð3:7Þ

Imposition of the iso-g(2)(r) condition requires that each
bracketed quantity within the n summation of the last
expression must vanish identically:

�vnðrÞ ¼
Xn�1
l¼0

�n�l, lðrÞ: ð3:8Þ

Owing to the fact that �n�l, lðrÞ can only depend on
v0ðrÞ � � � vlðrÞ, one sees that equations (3.8) uniquely
specify each vnðrÞ in terms of those of lower order, i.e. all
of the vnðrÞ in principle can be determined in sequence.

The two lowest-order �n have the following explicit
integral forms:

�1ðr12Þ ¼

Z
dr3 fðr13Þ fðr23Þ; ð3:9Þ

�2ðr12Þ ¼

Z
dr3

Z
dr4 fðr13Þ fðr34Þ fðr24Þ

þ 2

Z
dr3

Z
dr4 fðr13Þ fðr14Þ fðr34Þ fðr24Þ

þ ð1=2Þ

Z
dr3

Z
dr4 fðr13Þ fðr14Þ fðr34Þ fðr23Þ fðr24Þ

ð3:10Þ

The next order term �3ðr12Þ contains twelve distinct
cluster integrals. Notice that the �n, 0ðr12Þ have exactly
the same forms as the �nðr12Þ, except for replacement of
each integrand factor fðrijÞ with the corresponding f0ðrijÞ.

The coefficient function of the first-order term of the
effective pair potential, from equations (3.8) and (3.9), is

�v1ðr12Þ ¼ �1, 0ðrÞ ¼

Z
dr3 f0ðr13Þ f0ðr23Þ: ð3:11Þ

That this first density correction to the pair interaction
has the same spatial form as the conventional first density
contribution to the pair correlation is not surprising,
since they have opposing signs and thus have cancelling
effects. In the second order in density, one has

�v2ðr12Þ ¼ �2,0ðr12Þþ �1,1ðr12Þ

¼ �2,0ðr12Þ� 2

Z
dr3�v1ðr13Þexp½��v0ðr13Þ� f0ðr23Þ:

ð3:12Þ

Needless to say, succeeding orders become increasingly
complicated, but are fully determined by the procedure
just described.

4. Illustrative calculations

The leading order terms vnðrÞ will now be evaluated for
the two target pair correlation functions, equations (2.1)
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and (2.5). For brevity, the calculations will be confined
to D ¼ 3. The corresponding zero-density Mayer f
functions are very simple for these targets. The
step-function g0ðrÞ involves a step-function f0ðrÞ:

f0ðrÞ ¼ �1 ð0 � r < aÞ,

¼ 0 ða � rÞ:
ð4:1Þ

By contrast, the target function (2.5) has:

f0ðrÞ ¼ A expð��r2Þ: ð4:2Þ

This latter case possesses the feature that any cluster
integral involving just such Gaussian integrand factors,
however complicated the corresponding cluster topol-
ogy, can always be carried out explicitly by diagonal-
izing a quadratic form in the integrand exponent.
Upon inserting f0ðrÞ from equation (4.1) into

equation (3.11), one obtains the Oð�1Þ contribution to
the unit-step-g0ðrÞ effective pair potential (cf. [1], p. 211):

�v1ðrÞ ¼ pa3
4

3
�

r

a
þ

1

12

r

a

� �3� �
ðr � 2aÞ,

¼ 0 ð2a � rÞ: ð4:3Þ

By virtue of the fact that �v0ðrÞ, equation (2.3), is a hard-
sphere singular interaction, the polynomial form shown
in the first part of equation (4.3) actually has relevance
only for a � r. This establishes the initial density trend
for the effective pair potential that is charged with the
responsibility to hold the pair correlation function at its
simple step-function form.
Passing to the next density order �v2ðrÞ for the step-

function g0ðrÞ, one sees that equation (3.12) involves two
contributions. The first, �2, 0ðrÞ, is the Oð�2Þ component
of the conventional hard-sphere ln gð2ÞðrÞ. The required
cluster integrals have been evaluated by Nijboer and
Van Hove [12]. Their results and the implied explicit
form of �2, 0ðrÞ have been collected in the Appendix. The
other component requires the first-order result (4.3) as
an integrand factor. After performing the somewhat
tedious integration, one finds the following expression:

�v2ðrÞ ¼ �2, 0ðrÞ þ p2a6 �
11

30

r

a

� �
þ
17

18
�

9

35

a

r

� �� �
ða � r � 2aÞ,

¼ �2, 0ðrÞ þ p2a6
1

630

r

a

� �6
�

1

10

r

a

� �4
þ
1

3

r

a

� �3�

þ
1

2

r

a

� �2
�
18

5

r

a

� �
þ
9

2
�
27

35

a

r

� ��
ð2a � r � 3aÞ,

¼ 0 ð3a � rÞ: ð4:4Þ

With each increase in density order, the range of the
functions �vnðrÞ increases by one collision diameter a,
as a result of the same property exhibited by the bare
hard-sphere quantities �n, 0ðrÞ. Figures 1 and 2 show
graphs for the first and second order density contribu-
tions to the effective pair interaction for the unit-step
function g0ðrÞ.

The contrasting Gaussian target, equation (2.5),
formally has the following first-order density depen-
dence for its effective pair interaction:

�v1ðrÞ ¼ ðp=2�Þ
3=2A2 exp½�ð�=2Þr2�, ð4:5Þ

which interestingly is independent of the sign of A.
Because this is a Gaussian form, one should note that
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Figure 1. Plot of the first-order density contribution to the
effective pair interaction for the unit-step-function pair
correlation function.
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Figure 2. Plot of the second-order density contribution to
the effective pair interaction for the unit-step-function pair
correlation function.
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in the next order, both contributions indicated in
equation (3.12) above for �v2ðrÞ involve only integrands
that are products of Gaussian functions, and therefore
both contributions are amenable to closed-form evalua-
tions. And because the results themselves must always
be finite sums of Gaussian functions of the pair distance
r, this characteristic must formally persist in all density
orders.
Upon carrying out the required integrals, one finally

obtains an explicit form for �v2ðrÞ:

�v2ðrÞ ¼ ðp=�Þ
3
�3�3=2A3 exp �ð�=3Þr2

� ��
þ 2�ð11=2ÞA5 exp ��r2

� ��
: ð4:6Þ

In contrast to the first-order result, equation (4.5), this
second-order contribution to the effective interaction is
an odd function of the Gaussian amplitude A. However,
there is currently no reason to believe that in higher
orders the �vnðrÞ terms will display either pure even
or pure odd parity in A. As was observed above for
the step-function target pair correlation function, the
range of the effective interaction increases with increasing
order, a trend expected to continue in all higher orders.

5. Discussion

The family of ‘iso-gð2ÞðrÞ’ processes within the regime of
thermal equilibrium requires identification of a density-
dependent effective interaction with the property that it
cancels what would otherwise be a natural density
variation of the pair correlation function gð2ÞðrÞ.
Consequently that correlation function remains invari-
ant over some density range 0 � � � �t, where the upper
terminal density limit �t in some cases may be infinite.
These iso-gð2ÞðrÞ processes have been introduced as a
component of the theoretical study of correlation
function realizability [7, 11, 13, 14].
The present analysis assumes that the effective

interaction that is charged with the task of maintaining
gð2ÞðrÞ invariance is pairwise additive. In fact it is
presently unknown whether this is always possible, or
if it is, whether such an assumption reduces the terminal
density �t below what it might be for a more general
type of many-particle effective interaction. This question
is certainly a candidate for future investigation.
However, upon introducing the assumption of pairwise
additivity for the effective potential, a formal procedure
becomes available for developing that effective pair
interaction in a density series, the terms of which can be
successively and uniquely determined. This procedure
has been explicitly carried out through second order in
density for two distinct target pair correlation functions,
the unit step function for hard-core particles, and the

pair correlation function possessing a simple Gaussian
distance variation at small separations. Calculation of
higher density order terms rapidly becomes increasingly
difficult for the step function target. Similar terms for
the Gaussian target are relatively much simpler to eva-
luate, though eventually become impractically difficult.

Naturally the radius of convergence of the density
series for the effective pair interaction, equation (3.1),
has fundamental significance. Evidently it cannot exceed
the terminal density �t, and in some cases might be
substantially less as a result of singularities lying
elsewhere in the complex � plane rather than on the
positive axis at �t. The example of the Gaussian target
function, equation (2.5), is especially interesting in this
regard when A > 0, a situation that has no useful
analogue in the single-occupancy lattice scenario
analysed by Koralov [9]. As remarked earlier, this is a
case where absence of repulsive cores in the particles
makes the extended many-particle system immediately
susceptible to collapse into a single massive cluster with
tiny linear dimension whenever density rises above zero.
This can only be countered by immediate switching on
of repulsive interactions, not with a magnitude propor-
tional to density, but essentially discontinuously. The
inference seems to be that the formal density expansion
for �vðr, �Þ in the infinite system limit has a vanishing
radius of convergence. This must be true in spite of the
fact that the structure factor positivity condition,
equation (1.2), indicates that the terminal density for
this A > 0 circumstance is unbounded. It is worth
keeping in mind that although the convergence radius
of the series might be zero, the series nevertheless may be
Borel-summable [15, 16].

Even in circumstances for which the �vðr, �Þ series
has a small convergence radius, or indeed is only an
asymptotic non-convergent series, the character of the
first few terms in that series could provide important
guidance for numerical simulation studies. Such studies
in principle could search iteratively for effective inter-
actions in finite, but reasonably large systems that yield
a desired target pair correlation function.

It is obvious that the gð2ÞðrÞ realizability problem in
general, and the iso-gð2ÞðrÞ problem in particular, cur-
rently retain many theoretical loose ends. It is our hope
that the remarks and results contained in this paper will
help to highlight those gaps in understanding, and
so will encourage further investigations in this subject.
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Appendix

The hard-sphere quantity �2, 0ðrÞ consists of three
cluster-integral parts, shown generically in
equation (3.10) of the main text. Following the notation
of Nijboer and Van Hove [12], that equation (3.10)
would be rewritten:

�2, 0ðrÞ ¼ a6½’ðr=aÞ þ 2 ðr=aÞ þ ð1=2Þ�ðr=aÞ�: ðA:1Þ

For the readers’ convenience, we repeat the explicit
results derived in [12] for ’, , and �:

’ðsÞ ¼ p2 �
s6

1260
þ

s4

20
�
s3

6
�
s2

4
þ
9s

5
�
9

4
þ

27

70s

� �
ð1 � s � 3Þ,

¼ 0 ð3 � sÞ; ðA:2Þ

 ðsÞ ¼ p2
s6

1260
�

s4

20
þ
s3

6
þ
s2

4
�
97s

60
þ
16

9
�

9

35s

� �
ð1 � s � 2Þ,

¼ 0 ð2 � sÞ; ðA:3Þ

�ðsÞ ¼�½g1ðsÞ�
2
þp �

3s4

280
þ
41s2

420

� �
ð3� s2Þ1=2

þp �
23s

15
þ

36

35s

� �
arccos

s

½3ð4� s2Þ�1=2


 �

þp
3s6

560
�

s4

15
þ
s2

2
þ
2s

15
�

9

35s

� �
arccos

s2þ s�3

½3ð4� s2Þ�1=2


 �

þp
3s6

560
�

s4

15
þ
s2

2
�
2s

15
þ

9

35s

� �
arccos

�s2þ sþ3

½3ð4� s2Þ�1=2


 �
ð1� s� 31=2Þ,

¼�½g1ðsÞ�
2
ð31=2 � s� 2Þ,

¼ 0 ð2� sÞ: ðA:4Þ

This last function incorporates the definition:

g1ðsÞ ¼ p ð4=3Þ � sþ s3=12
� �� �

ð1 � s � 2Þ,

¼ 0 ð2 � sÞ,
ðA:5Þ

which is recognizable as merely a scaled version of the
hard-sphere �v1ðrÞ, equation (4.3).
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