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Self-diffusion constants,D, and the atomic-level processes that produce them have been investigated numerically
for the binary-mixture Lennard-Jones (BMLJ) model and for liquid silica as described by the Van Beest-
Kramer-Van Santen interaction model. The primary conceptual tool for this study is the joint probability
distribution for single particles as a function of initial velocity and positional displacement at a given later
instant. Self-diffusion constants can be expressed exactly in terms of this probability function. The numerical
simulations for the BMLJ case reveal an unusual temperature effect; in contrast to the high-temperature
behavior, particles with high initial velocities experience disproportionate retardation in forward displacement.
In the silica modeling simulations, diffusive processes have been compared at constant-temperature
“isodiffusive” pairs of states, demonstrating a significant role played by the amount of local tetrahedral order
that is present in the medium.

I. Introduction

The diffusion of particles within many-body systems, whether
gas, liquid, or solid, constitutes one of the most basic kinetic
properties of extended matter. This process reveals the capacity
of those systems to explore energetically available particle
configurations at the prevailing temperature and pressure, and
its rate is a sensitive indicator of atomic and/or molecular
interactions that are present. Experimental determinations of
diffusion constants, and various attempts to supply those
measurements with insightful theoretical explanations, have a
long and venerable history.1 But the richness and diversity of
the experimental observations, including their considerable
variation from one substance to another, have continued to prove
to be conceptually challenging to the interested scientific
community. In particular, the behavior of diffusion in super-
cooled liquids, and its connection to shear viscosity through
the well-known Stokes-Einstein relation, have provided the
focus of numerous publications appearing since the early 1990s.2

The primary purpose of this presentation arises from the
desirability, if not the necessity, to employ alternative ways of
analyzing diffusive particle motions. A previous publication has
indicated some tactics of this sort,3 elements of which are
revisited for completeness in the following Section, II. Because
the intent is to use these alternatives to analyze results from
molecular dynamics computer simulations, Section III outlines
two specific models that we have used to study diffusive
processes in the liquid state. Results for those models and their
interpretation have been collected in Section IV. Several
conclusions and suggestions for subsequent study appear in the
final Section, V.

II. Formal Relations

The self-diffusion constant,D, measures the rate at which
particles wander from an initial position as time advances. Let

r i(t) denote the position of particlei at timet in an equilibrated
many-particle system. ThenD is determined as follows4

Here the angular brackets denote an ensemble average. Expres-
sion II.1 can be converted readily to a velocity autocorrelation
function format4

These two expressions forD are standard statistical mechanical
representations for this quantity.

An alternative approach considers the mean displacement that
a particle,i, exhibits at timet > 0, having initially possessed
velocity,vi(0), att ) 0. This vector conditional probability will
be denoted by the symbol〈∆r i(t)|vi(0)〉. It reflects the dynamic
interaction of the given particle with its surrounding medium,
including dissipation of the initial kinetic energy, and it is an
odd function ofvi(0). The self-diffusion constant can then be
obtained as the following integral3

where particle labeli has been suppressed for typographical
simplicity, and v stands fort ) 0 velocity. The Maxwell-
Boltzmann velocity distribution at thermal equilibrium has been
denoted by

III. Simulation Procedures

For one portion of our molecular dynamics simulations, we
analyzed the binary mixture of Lennard-Jones (BMLJ) particles
developed by Kob and Andersen,5 which extended a previous
model of an Ni80P20 alloy introduced by Weber and Stillinger.6
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D ) lim
tf∞

〈[∆r i (t)]2〉/6t (II.1)

∆r i (t) ) r i (t) - r i (0)

D ) (1/3)∫0

∞
〈vi(0)‚vi(t)〉 dt (II.2)

D ) (1/3)lim
tf∞

∫Peq(v)[v‚〈∆r (t)|v〉] dv (II.3)

Peq(v) ) (m/2πkBT)3/2 exp(-mV2/2kBT) (II.4)
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On account of the asymmetry in size and interaction energy
between its two components, this system is relatively easy to
supercool in simulation and has been studied extensively as a
model glass-former.7-9 In particular, the BMLJ has been found
to exhibit pronounced caging and spatially heterogeneous
dynamics near its mode-coupling temperature,TMCT ≈ 0.435.7,9

This temperature corresponds to that obtained from a power-
law fit of measured diffusion constants, although recent analyti-
cal calculations suggest an alternative mode-coupling temper-
ature aroundT ) 0.9.10 The mixture consists of two types of
particles, A and B, in mole fractions ofxA ) 0.8 andxB ) 0.2.
The generic form of the pairwise interaction potential is

where the subscriptsR and â indicate the species identity of
the particles, and the associated parameters areεAA ) 1.0,
εAB ) 1.5, εBB ) 0.5, σAA ) 1.0, σAB ) 0.8, andσBB ) 0.88.
The particle masses are unity for both species. In the present
work, all quantities are reported as dimensionless in terms of
the AA interactions.

Our molecular dynamics simulations were performed for a
total of N ) 250 particles subjected to cubic periodic boundary
conditions. Calculations of dynamic quantities were performed
in the microcanonical ensemble; however, equilibration at each
temperature was attained by first using a Nose-Hoover
thermostat11-13 over the course of a long trajectory, with a brief
subsequent microcanonical equilibration. The equations of
motion were integrated using the velocity Verlet algorithm with
a time step of 0.003 units. We truncated and shifted each pair
potential at 2.5σAA.

Of central interest in this study has been the time dependence
of the particle-averaged function defined by

which is related directly to the convergence of the integral in
eq II.3 as the limit of infinite time taken. Equivalently, this
expression converges to the self-diffusion constant according
to

In our simulations, we computed the right-hand side of eq III.2
separately for each of the A and B particles. In the results
discussed below, we report calculations only for the more
populous A species. In addition to this quantity, we also
measured the joint distribution of∆r andv0 for a given fixed
offset in time. That is, we measured the continuous probability
distributionP[∆x(t), Vx(0)] where∆x is the displacement in one
of the components of∆r after a time,t, and Vx is the initial
velocity of the particle att ) 0 along the same axis. Because
the liquid is isotropic, results for each of the three components
are combined to provide estimates forP. For notational
convenience, we will write this distribution in shorthand as
P[∆x, V0] with the implicit assumption that∆x andV0 correspond
to the same components of the final displacement and initial
velocity vectors. The diffusion constant is related to the long-
time behavior of the following moment of this distribution

As explained above, we measured the distribution separately

for the two species and report the results for the A particles.
Algorithmically, both〈v0‚∆r 〉 andP[∆x, V0] were determined
by periodically measuring the positions relative to multiple time
origins in the molecular dynamics trajectory. These quantities
were typically averaged using approximately 1000-10 000 time
origins, each separated by 0.1-0.01 time units. This somewhat
large number of initial positions was necessary to reduce the
large amount of statistical uncertainty in eq III.2 at long times
due to the decorrelation ofv0 with growing ∆r .

We also used this type of analysis to investigate self-diffusion
in molten silica, SiO2. Liquid silica possesses an isothermal
diffusivity maximum, which renders possible the study of paired
isodiffusive points, that is, a pair of densities at the same
temperature for which the diffusion constant is the same. A
previous study involving two of us has investigated the SiO2

diffusivity maximum in detail.14 On the basis of that work, we
chose two isodiffusive pairs for the current investigation: at
T ) 4000 K, F1 ) 3800 kg/m3, andF2 ) 3000 kg/m3; and at
T ) 2500 K, F1 ) 3880 kg/m3, and F2 ) 3000 kg/m3. We
performed molecular dynamics simulations using the pairwise
additive potential developed by Van Beest, Kramer, and Van
Santen (BKS).15 This potential treats silica as a mixture of silicon
and oxygen ions and includes Coulombic interactions plus an
exponential-6 repulsive-dispersive term. Details of the treatment
of the potential and simulation methods appear in ref 13.
Analogous to the BMLJ calculations, we determined〈v0‚∆r 〉
andP[∆x, V0] for the oxygen ions in liquid silica using multiple
time origins every 10 fs.

IV. Numerical Results

The formalism outlined in Section II provides a recipe for
determination of the self-diffusion coefficient in simulations,
in terms of velocity-displacement correlations in the liquid.
Naturally, the first aspect of this new approach we sought to
characterize was its convergence properties, namely, the time
dependence of the quantity〈v0‚∆r 〉. Figure 1 shows the results
for this quantity measured at temperatures ranging from
moderately hot (T ) 0.8) to deeply supercooled (T ) 0.44) in
the BMLJ system. The general form of the〈v0‚∆r 〉 versust
curve in each case is the following. Starting at a value of zero
at t ) 0, there exists a rapid, initially linear increase in this
quantity triggered by the short-time ballistic motion of particles.
The initial slope of this region is related to the temperature
because

VRâ(r) ) 4εRâ[(σRâ/r)
12 - (σRâ/r)

6] (III.1)

〈v0‚∆r 〉(t) )
1

N
∑
i)1

N

vi (0)‚∆r i (t) (III.2)

D ) lim
tf∞

1
3
〈v0‚∆r 〉(t) (III.3)

D ) lim
tf∞

∫ dV0 ∫ d∆x{P[∆x, V0] ∆x V0} (III.4)

Figure 1. Time evolution of the state average〈v0‚∆r 〉 for A particles
in the Lennard-Jones binary mixture, reported for the temperatures
T ) 0.44, 0.50, 0.60, and 0.80. The quantityv0 is the initial velocity
vector of a particle at timet ) 0 and∆r is the displacement of the
same particle after a timet ) ∆t has elapsed. Many time origins, each
separated by 0.1 time units, are used over the course of the molecular
dynamics trajectories to reduce statistical noise in these calculations.

〈v0‚∆r 〉 ≈ 〈v0‚v0δt〉 ) (kBT/m)δt (IV.1)
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However, eventually this ballistic motion ceases, owing to the
inevitable collisions a particle will experience when it travels a
sufficient distance to probe the repulsive core of its neighbors.
Thus at longer times,<v0‚∆r> reaches a pronounced maximum
with a subsequent decay to a constant asymptotic value, the
final value being related to the diffusion coefficient (see eq III.3).
Figure 1 shows that the location of this maximum in time is
relatively insensitive to the temperature; this is a particularly
interesting feature given that the diffusion constant spans over
2 orders of magnitude for the temperatures reported. One might
hypothesize that the maximum is related to the time it takes a
single particle to encounter substantial resistance along its travel
direction from its neighbors, and thus is somewhat analogous
to the mean-free path picture in gases. An alternative analogy
might invoke the Einstein model of solids in which short-time
particle displacements are described as harmonic oscillations
about local potential energy wells. Notably, the frequency of
such harmonic oscillators is insensitive to temperature, instead
depending only on the particle masses and the curvature around
the potential energy minima.

At the lowest temperature studied,T ) 0.44, which is only
slightly above the mode-coupling temperature,〈v0‚∆r 〉 in Figure
1 briefly becomes negative before finally reaching its long-time
positive value. This intermediate excursion into negative values
of 〈v0‚∆r 〉, corresponding to an anticorrelation between dis-
placement and initial velocity, appears to be a signature of
caging phenomena in the liquid. Physically, these negative
values indicate a “rebound” effect of a particle encountering
an effective wall or cage formed by its environment. The
possibility exists that this effect persists in several additional
“rebounding” motions which yield a subtle, damped oscillatory
behavior in the〈v0‚∆r 〉 calculations, which are almost evident
in our measurements but are obscured by statistical noise.

The logistical aspects of the calculations presented in Figure
1 require some commentary. This set of data required very large
numbers of time origins in order to reduce statistical errors due
to the effects of fluctuations. That occurs because as the elapsed
time increases, the displacement of a particle from its initial

position in any given realization continues to grow, despite the
fact that〈v0‚∆r 〉 reaches an asymptotic value. To illustrate the
difficulty, we consider the following simplified scenario in
which the displacement can be strictly broken into correlated
and uncorrelated portions. After a very long time, many
multiples of the relaxation time of the system, we might write
this quantity as

whereτ is the correlation time,∆r1 is the portion of the overall
∆r which is correlated withv(0), and ∆r2 is the strictly
uncorrelated portion. Thus, in principle, the last term on the
right-hand side of this expression should vanish because of the
average over∆r2 in the isotropic liquid. In numerical simula-
tions, however, this term represents an average over quantities
that are growing with time, and at very long times, the
fluctuations in the displacement vectors tend to introduce
substantial noise in the calculation. In the present study, this
required on the order of 104 time origins to gain reasonably
converged data.

The fluctuations themselves, however, are also of great
interest to this work. If one considers a particular offset in time,
the relevant measure of these fluctuations is the distribution of
particles as a function both of their initial velocity att ) 0 and
their final displacement att ) ∆t. This is a quantity we have
also measured for the BMLJ system, and representative calcula-
tions at two temperatures are shown in Figure 2. As one would
expect, each distribution is peaked around the origin because,
in the isotropic liquid, no particular initial velocity or final
displacement is favored. There is, however, an extremely subtle
skew to the data, which reflects the correlation of∆r with v0

as given by the expression in eq III.4. The faintness of this skew
underscores the need for extremely high-resolution measure-
ments with multiple time origins for determining the quantities
in Figure 1. Beyond the value of the self-diffusion constant,
these joint distributions contain important information about
mechanisms of molecular motions in the liquid. For example,

Figure 2. Contour plot representation of the joint distributionP[∆x, V0] for A particles in the binary system at two different temperatures. This
continuous probability function gives the fraction of particlesP dv0 d∆x with initial momentumV0 ( dV0 in the direction ofx and with an eventual
displacement∆x ( d∆x along the same axis. The shadings yield different values of the height ofP. The time at which the particle displacements
are analyzed,t*, corresponds to that at which the average distance traveled by all particles is equal to the mean particle diameter:t* ) 24 for
T ) 0.8 andt* ) 627 for T ) 0.5. At lower temperatures, the contours develop a pronounced distortion that shifts their shape from circular to
diamond.

〈v0‚∆r 〉 ≈ 〈v(0)〉‚〈∆r1(τ)〉 + 〈v(0)〉‚〈∆r2(t - τ)〉 (IV.2)

Novel Computational Probes of Diffusive Motion J. Phys. Chem. B, Vol. 109, No. 45, 200521331



one can calculate the non-Gaussian parameter16 for the distribu-
tion of particle displacements by integrating over the velocity
component. This parameter has been identified as a signature
of supercooled dynamics and has been studied previously for
the BMLJ model in ref 9. Although we will leave this kind of
analysis for future work, the present formalism allows one to
understand the combined role of particle velocity and displace-
ment in the emergence of non-Gaussian behavior.

The results in Figure 2 stem from two of the temperatures
studied,T ) 0.8 andT ) 0.5 in the left and right panels,
respectively. Each of these sets of data corresponds to the joint
distribution of displacement and initial velocity after a fixed
time offset, t*, which depends on the temperature. We have
selectedt* to be the time displacement at which the average
distance traveled by a particle is equivalent to an average particle
diameter (calculated using the conformal relationσj3 )
xA

2σAA
3 + xAxBσAB

3 + xB
2σBB

3). Figure 2 shows that, as the
temperature is decreased toward the mode-coupling temperature,
the qualitative shape of the velocity-displacement distribution
changes from nearly symmetric with circular contours to an
unusual diamond-like shape. The persistence of this behavior
even with nontrivial particle motion (each particle traveling one
diameter on average) makes it an effective signature of
qualitatively distinct dynamical processes occurring in the
supercooled liquid. The diamond shape implies that at low
temperatures, particles with extreme initial velocities are not
able to travel as far as their counterparts in the hot liquid. That
is, the effects of these rare velocities are more readily dampened
by interactions with their surrounding neighbors. We are
currently investigating the diffusive mechanisms that give rise
to the diamond shape.

To make a more drastic illustration of the mechanistic insight
that the current formalism provides, we have performed similar
calculations on a model of liquid silica. Specifically, we have
determined the joint velocity-displacement distributions at state
points in the liquid that have the same temperature and diffusion
constant but differ in densities by roughly 25%; these are the
isodiffusive state pairs discussed in the preceding Section, III.
One expects the mechanism of diffusion to be distinct for the
two densities; at the lower one, silica readily forms local
tetrahedrally arranged structures using Si-O-Si links, whereas
repulsive interactions disrupt this tetrahedrality at higher densi-

ties.14 This distinction in structural ordering is generally more
pronounced at lower temperatures, where the propensity for
adopting local tetrahedral arrangements at low bulk densities
becomes stronger. In the present work, we fix the temperature
and examine the difference in the velocity-displacement distri-
bution between the two densities. Figure 3 shows the results of
this exercise at high (T ) 4000 K, left panel) and at low (T )
2500 K, right panel) temperatures. The results indicate the
emergence of significant differences in diffusive motion as the
temperature is lowered, marked by the development of peaks
and valleys in this graph. It appears that the high-density
mechanism leads to an increased number of particles with near-
zero initial velocity that are able to travel farther. At the lower
density, the tendency of these particles to travel shorter distances
may be some indication of the constraining effects of the
tetrahedral network.

V. Conclusions and Discussion

The macroscopic manifestation of diffusion that is described
by Fick’s law at large time and length scales is deceptively
simple. But hidden within that law’s phenomenological self-
diffusion constant,D, are extraordinarily complex many-body
dynamical processes. Details of this complexity control the
dependence ofD on the substance involved and on the
thermodynamic state of that substance through the local
interparticle interactions that are present, and through the local
order of those particles as they respond to their interactions.
The result of this interplay is thatD can vary over many orders
of magnitude even for a single substance, an observation that
is especially noticeable for liquids that can be supercooled
toward a glass transition.

Both laboratory experiments and computer simulations have
historically offered a variety of probes for the microscopic
details of diffusive motions in fluids, but in some respects the
conceptual picture remains incomplete. The project reported in
this paper has been directed toward filling the knowledge gap
at least to a modest extent. Attention here has focused on the
probability distribution for the displacement of a particle during
a time interval, t, provided that its velocity vector at the
beginning of the interval was given. Equation II.3 above
indicates how this conditional probability yieldsD, an expression

Figure 3. Contour plot of the differenceP1[∆x, V0] - P2[∆x, V0] for oxygen motions in liquid silica at two densities that possess the same diffusion
constant (i.e., two isodiffusive points). The plot to the left corresponds toT ) 4000 K, for whichF1 ) 3800 kg/m3 andF2 ) 3000 kg/m3, and the
one to the right is forT ) 2500 K, with F1 ) 3880 kg/m3 andF2 ) 3000 kg/m3.
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trivially related to the usual statistical mechanical expressions
for that quantity.4 The advantage of the present formulation is
that it can appeal to the intuitive notion of local mean viscous
dissipation of initial particle velocity, a connection originally
embodied in the approximate but appealing Stokes-Einstein
relation.

By numerically examining the form of the joint probability
distribution for initial particle velocity and the position displace-
ment at a later time, we have uncovered nontrivial and perhaps
unexpected aspects of the diffusion process complexity for the
binary-mixture Lennard-Jones (BMLJ) model, and the Van
Beest-Kramer-Van Santen model for molten silica. For the
former model, the comparison of results displayed in Figure 2
indicates that lowering the temperature has the effect of
substantially changing the local viscoelastic response of the
surrounding liquid medium to the disturbing initial motion of a
test particle. In particular, at low temperature, rapid initial
velocity is “counterproductive” because the surroundings sta-
tistically cannot move quickly enough to get out of the way to
permit substantial forward displacement to occur. The silica
model permits numerical comparisons for isodiffusive pairs of
states, for which the oxygenD is the same at distinctly different
densities (but the same temperature). The probability difference
plots presented in Figure 3 illustrate the role of local tetrahedral
order in the diffusive process and how isodiffusive compression
alters that role. These examples appear to support the notion
that the approach advocated in this paper, centered on the joint
distribution of initial particle velocity and time-lagged mean
particle displacement, is a useful computational strategy.

The results reported in this paper appear to be sufficiently
encouraging to justify application to other types of models, and
perhaps even to diffusion in other phases (crystals, surface films,
etc.). In addition, some other details of the approach would
probably be useful to examine. One is to explore the joint
velocity-displacement probability in the large initial velocity
limit. Of course the Maxwell-Boltzmann velocity distribution,
eq II.4, assigns very low probability to such circumstances at
thermal equilibrium. However, experimental techniques con-
ceivably could be designed to produce anomalously high particle
velocity in an otherwise normal equilibrated liquid. It would
be a significant contribution to the theory to understand how
the surrounding medium reacts to the large perturbation

produced by an extreme single-particle velocity, a circumstance
easy to arrange in a numerical simulation. Another direction
for extension would be the “isotope effect”: how does the joint
velocity-displacement distribution depend on the mass of the
particle involved?17 Once again, it is straightforward to
investigate this effect in numerical simulation, and even to vary
the “tagged” particle mass over a much wider range than real
isotopes would permit in experiments.
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