
C4 journal of experimental and theoretical physics established by E. f. Nichols in 1S99

SECOND SERIES, VOL. 118, NO. 2 APRIL 15, 1960

Quantum Statistics of Nonideal Systems*
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A new cluster development for the logarithm of the grand partition function of a system of interacting
particles is derived. The leading term in this expansion is the pressure exerted by an ideal Bose or Fermi gas
at the same temperature and absolute activity Z as the actual system. Succeeding terms involve quantum
cluster integrals which themselves depend upon Z, unlike their classical analogs. The definition of these
cluster integrals follows in a natural fashion using techniques illustrated by construction (in closed form)
of the successive Z derivatives of the Bose and Fermi ideal gas grand partition functions. It is not possible
(except in the classical limit) to eHminate Z explicitly between the pressure and density series, so that the
equation of state must remain in parametric form.

I. INTRODUCTION

gCENTLV there has been considerable interest
in the quantum-mechanical behavior of large
~

~ ~ ~

~

~

~

~

systems of interacting particles. For the most part,
the approach of these many-body theories has limited
the analysis to properties of the ground state or low-

lying excited states. ' ~ Of equal intrinsic interest for
equilibrium statistical mechanics are details of the
system's properties during the entire passage from the
high-temperature classical realm to absolute zero,
requiring knowledge of the complete energy spectrum.
It is the purpose of the present note to clarify this
transition from the standpoint of the cluster theory of
the equation of state in a form which need make no
special appeal to the usual quantum mechanical
perturbation theory; our formalism is valid for arbi-
trarily strong interactions. In this respect primarily,
the present quantum cluster development di6'ers from
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that of both Green' and of Montroll and Ward. ~ As in
the corresponding classical treatment, we 6nd it
convenient to employ the powerful techniques of the
grand ensemble to derive expressions for the funda-
mental thermodynamic quantities. In the following,
it will be supposed that the reader is familiar with
classical cluster theory. '

The next section reviews, very brieQy, the funda-
mental properties of the canonical (CPF) and grand
partition functions (GPF). In particular, the effects of
quantum statistics (wave-function symmetry condi-
tions) are separated from the interparticle force contri-
butions by introducing a modified Hamiltonian
operator. Section III develops further the basis of our
cluster approach in the ideal gas case, obtaining directly
the successive activity derivatives of the Fermi and
Bose GPF's. In IV, . the quantum mechanical cluster
integrals are introduced in a way which retains the
same formal structure of the activity expansion of the
GPF as in classical statistics; now, however, the
quantum analogs of the singly and doubly connected
cluster integrals themselves depend upon the activity,
reQecting statistical degeneracy. It must be pointed out
that the quantum clusters as dedned below are by no
means unique, even if the usual classical forms are

s H. S. Green, J.Chem. Phys. 20, 1274 (1952).
I E. W. Montroll and J.C. Ward, Phys. Fluids 1, 55 (1958).

A comprehensive account may be found in: J. E. Mayer and
M. G. Mayer, Stat~stica/ Mechanics (John Wiley R Sons, Inc. ,
New York, &1940), Chap. 13.
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regarded as proper high-temperature limits. Our
purpose has been to emphasize the role played by
particle indistinguishability, insofar as it determines a
degenerate momentum distribution.

Section V examines the cluster equation of state,
which must remain in parametric form except in .the
classical realm. In a Anal section certain integral
equation relations satisfied by the exponential of the
modi6ed Hamiltonian are derived, and this function is
expressed in terms of the wave functions for the actual
(unmodifmd) Hamiltonian.

II. CANONICAL AND GRAND PARTITION
FUNCTIONS

For the purposes of the present article it will be
sufficient to suppose that the particles (of mass ttz)

comprising our single-component, nonideal system are
spinless, and interact through central forces. Generali-
zation to include more complicated interactions, as
well as particle structure, will not require fundamental
revision of our procedure. The N-particle Hamiltonian
is therefore written

$2 N N

Hts HN(s)+Vs'——— g V——,s+ P t&(r,s). (1)
2m i j j&~&

The eigenfunctions of HN are presumed to constitute
an orthonormal set over the system volume V.

The CPF for quantum assemblies is the trace of the
density matrix'

QN= exp( pAN) —=Tr Lexp( —pH&v) j, p=1/hT; (2)

AN is the Helmholtz free energy. The value of the trace
in (2) is independent of the representation chosen.
Kirkwood"" has shown that for certain purposes,
plane waves are a particularly convenient basis.
Specifically, it is important to choose only those linear
combinations, q ~"~&, of plane-wave functions which
possess the same symmetry properties as the wave
functions of our interacting system. Consequently, set

q(~)(r,y)= P (&1)~~& exp —P r;.Py;, (3)
(lit l)t ~ k j=&

where the upper sign refers to Bosons, the lower to
Fermions. P is the permutation operator (of parity
IPI) for the X momenta, and the summation in (3)
is over all E! possible permutations. Equation (10)
of reference 10 provides the starting point for our
analysis,

1
Q~=, "z( "(rp)

J)f(hsN J
)(exp( PPf~) ~(&v&(r y)dsNrdsNp (4)

'J. von Neumann, Mattteraatteat Foandattotts of Qaaltara
Meettanios (Princeton University Press, Princeton, 1955), Chap. V.

ro J. G. Kirkwood, Phys. Rev. 44, 31 (1933)."J.G. Kirkwood, Phys. Rev. 45, 116 (1934).

by expressing the trace, (2), in the plane-wave represen-
tation. One of the permutation summations in the
(o(~) in (4) is redundant, "and may be eliminated

r
QN= (t

( '(r,p) em( P—JJ~)
(Ã!)Ihs~&

(i N

xexpl —p r;.p; Ids~r&p"p. (5)
&a;=,

' 'i

The exponential of the Hamiltonian HN appearing in

(5) is to be interpreted as its expanded form,

(6)

We therefore make use of the identity (for an arbitrary
function g of the position and momentum coordinates)

(z sr

&&v expl —g rt ys Ig(r, y)
(t)t t-t )

(z
=expl - Z r; p; l&~'g(r, y),

&ft t=t

JfN'=Kr(s'+ Vtv

N

Z (p; z~&;—)s+ Z v(r;.),
25$ j~l j&k 1

to move the plane wave on the right of exp( —pH&v) in

(5) to the left:

Q~ (1/+ &hsN) i o (&v) (r p)P(N) (r p)dsNrdsNy

(z &v q (8)
o~(~)(r,p)= Q (+1)&~' expl —Q r; (y;—Py;) I)

P hi r=
P(N)(r, y) =exp( —PH&v') 1.

The exponential of the modiied Hamiltonian operator
is now left to operate just on unity, dehning thereby
the fltzctioN F&N&.

The result (8) has simplif(ed the statistical problem
to this extent: the detailed quantum dynamics of the
E-body Schrodinger equation, with the latter s compli-
cated wave mechanical diGraction properties, are
contained entirely in F(~)(r,p), which is the same for
both Fermi and Bose systems. We note in passing, from
the last of Eq. (8), that F(~) satisies a Bloch differential
equation involving the modiied Hamiltonian

r)p(N)/()p= Q 'p(s&) (9)

In addition, Ii &N') is particularly simple in the classical
limit (obtained by setting &st=0), where obviously

(P.t(N&(r, y) =m —pl E P s+~N
I

~

42m i r) . =
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Equations (9) and (10) are shown to be equivalent to a
single integral equation in VI, which in principle may be
employed to find F&N&.

Statistical degeneracy, on the other hand, affects QN

only through 0.~&N&. Even if there were no pair forces
acting in our system, the exchange function 0~&N' in

(8) would provide coupling between the particles; the
eGect is to create nonvanishing virial coeKcients for
degenerate ideal gases.

The GPF yields the pressure directly in terms of the
chemical potential p,

&P~&
G(Z)=exp( ~= P Q Z~,

($2 j NM

Qp=1, Z= exp(P!s). (11)

one of these contributions may be expressed as a product
of l factors, one for each cycle of the permutation to
which that term corresponds. If P has E& one-cycles, E2

two-cycles, ~ ~, then

I= Ql;,

and since the total number of particles is N,

N

N=Q jl;,

Now Q&"' may be exhibited as a sum over such sets
of integers {l;)subject to the restriction (16),

The granti ensemble average number of particles, N,
and energy, E, are obtained by differentiating G(Z),

N= (8 1 .Gn/8 lnZ) p, r, (12)

E=—(8 inG/r)P) z, v (13)
I;= exp Q — +-r (y —y, )

2m

(17).

The expression (8) for the CPF's of various orders will

presently be shown particularly useful for computing
lnG in a cluster series; relations (11), (12), and (13) in
turn allow evaluation of all thermodynamic properties.

III. THE IDEAL GAS

Before investigating the general interacting system
in quantum statistics, we examine the degenerate ideal

gas, for which the particle pair potential p(r) vanishes.
The ideal N particle CPF then is

Q~"'= & (~1) '
NthaN z

N
-

PPP
eV Z — +-r" (y —&y~)I;-. 2m a'

)&gsNrgsrry (14).
the zero superscipt refers to this noninteracting case.

Every permutation P'of the N momenta y; may be
factored. into disjoint "cycles,""each of which permutes
a subset of the p s cyclically. "One may show easily by
induction that if P factors into l cycles, the parity
of this permutation (even or odd) is the same as the
parity of N —l. Consequently we set

(15)

The ideal gas CPF, therefore, consists of a sumef Nt
contributions, one for each distinct permutation. Every

n G. Ilirkhoif and S. MacLane, A Srsreey of Moderts Algebra
(Macmillan Company, New York, 1941), p. 136.

"Thus, for example, if X=7 and if P permutes the momenta
plpmp3p4psp6p7 to pep4plp2p6p7p3 So that Ppl=p8y Pp6=@y Pp7=p3y
Pps pi; Pys=y4, PpL=ys, Pys=ys, then P is factored '(y&ps@ps)
(ysy4) (ps); i.e..a four-cycle, a two-cycle, and a one-cyc!e

po= Pj~

Xd'jrd'jy,

N

C{I,) =N! g E, !(~)~.
j 1

To develop a technique useful in construction of the
quantum cluster integrals for imperfect systems, we
now obtain ci'G&'&/8Z' (for any integral s) by a simple
approach. In Eq. (17), defer for the moment the
position and momentum integrations for a set of s
particles, 1 s. A particular permutation P of all N
particles will have these s particles combined with
n —'s others to provide the "s-containing" cycles. It
should. be realized there may be from 1 to s such cycles,
depending on P. The e—s particles may be chosen in

!rN—s) (N—s)!

(I—s J (ss—s)!(N—I)!
distinct ways. Taking proper account of the essentially
di6'erent ways in which the s-containing cycles may be
formed from a given set of e particles, and s~~~ming
the non-s-containing cycles to obtain a lower order
CPF, (17) leads to a difference equation satisfmd by

where the summation over {I;) is subject to the re-
striction P j/;=N. The combinatorial factor C{l;) is
the number 6f distinct permutations which conform
to the set {I,) of cycles of different orders. This is

precisely the number of essentially diGerent ways of
arranging N objects (particles) on oriented loops
(cycles) such that lr loops contain one object, Is loops
contain two objects, By straightforward
computation,
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the ideal CPF's of various orders

h-38

E QN--"&(~1)" '
X(X—1) ~ (E s+—1) ~=~

)(d'p -d3r .
J

where the summation over {&s;) is subject to the
restriction

PN;=n
1

&&'G&o) (Z)
ZN sk ss P Q

—(0)—(~1)n—s

z N=8

We now pass to the grand ensemble by multiplying
both sides of (19) by ZN, and summing. The factor
[X(X—1) ~ ~ (X—s+ 1)$ ' occurring in (19) may
subsequently be eliminated by an s-fold Z differentiation

F(~) is no longer a simple function of just the momenta
as it is for the ideal gas. Since the modified Hamiltonian
HN' is a differential operator, the last of Eq. (8) shows

that F&~) involves not only v(r), but its derivatives as
well, the latter being interpreted as the result of
quantum diGraction sects.

The quantum cluster development is introduced by
the set of relations (1V=2, 3, )

N N N
P(N)(1. ..g)= IIP«)(j)+ P 4,&s)(jk) II Po)(i)

j=l j(k=.l l=i
gj, k

+ ~ 4 (j») II p ( )
g&k&i=1 m=1

&j, k, l

+ ~ ~ +4&~) (1 ~ E) (23)

The first term, a product of E free particle factors F&'&,

is precisely the ideal gas F(~). The following members of
the sum, through the C&'), C(3& ~ ~ ~, correct for inter-
actions of pairs of particles, triplets, . By successive
reversion of the expressions (23), the 4&~) may be
related to sums of products of the F&~'). The general
term is found to be

(~~)
(Zng =m)

~+&)(r,p) II exp—
N,pp

215

8=2
( 1)n—s

fI(. ~ gta=i
F&'& (i& i,)

Xd'p;&I'r; . (20)

Qs& ~&o) (with the appropriate factor ZN—") on the
right-hand side of (20) sums separately to give a factor
G&o) (Z), upon suitable change of summation variables.
The remaining terms may be put into closed form

1 &3sG(o) (Z)

G(o& (Z) c&Zs

e d peed rg'
=k "~' ~ "(r,l&) II (21)

expfj9P,s/2mjWZ I

For s= 1, the relation (21) may be integrated to yield
G&'&(Z) in closed form (since the classical partition
function must be obtained for sufficiently small Z)

V -
I pp'q

G&'&(Z)=exp a— ln iaZexpl
I

d'I& ' (22)
i 2m'

Clearly it is much simpler to find high order deriva-
tives of G&'& (Z) from (21) rather than by tedious differ-
entiation of (22).

IV. QUANTUM MECHANICAL CLUSTER INTEGRALS

For the more realistic case in which the particles of
our quantum mechanical system interact via non-
vanishing potentials v(r), the fundamental quantity

gf I ~ ~ ~ gg

which may be verified by substitution in (23). The first
members of this sequence are readily seen to be

4'"'(jk) =F")(jk)—P"'(j)P"'(k)
4 &'& (jkl) =F&'& (jkl) —F"&(jk)F &'& (l)

—p(s) (jl)po) (k) —p(s) (»)p&&) (j)
+2F&') (j)F&"(k)F&') (l), etc (25).

When the positions of particles j. .e are such that
they are separated into two sets (1 .k and k+1 r&,

for example) such that every member of the first set is

significantly farther from all members of the
second set than the range of v(r), then F&"&(1 ~ .ts)
reduces to the product of E's for each subset
[F(")(1. k)F&" s)(k+1 e)]. So far as Eq. (24) is
concerned, this factorization property of the E's
implies that if none of the particles 1 ~ .e are close
enough to interact through the v(r), then 4 &"& vanishes
identically. lt must be realized, however, that C (") does
not necessarily vanish if 1 . e separates into subsets
each of more than just a single particle. "

The expansion (23) is now inserted for F&~) in the

'4 C &4& (1234) for example reduces to C &'&(12)C &s& (34) when the
only particle pair distances which are small are r& and rq4.
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(m;)
(Z~;-+)

s
' L"(r p) II exp—

n~Ppt'
26

2m

Xd'p;d'r;,

L"(r,P) = +"(r,P)c"'(r,p)/P'"'(I) "~"'(s)j.
The quantity L(') represents the coupling between the
momenta and positions of an s-particle set induced
both by forces and by exchange effects.

The techniques used to construct G&'&(Z) and its
derivatives previously are likewise applicable to this
interacting case. When (26) is multiplied on both
sides by Z~, and summed over E, each term on the
right gives rise to a factor G&"(Z), so that finally

G(z) =1+ Q B&'&(Z)Z',
G(s) (Z) s=s

h—"
rB"(Z) = ' L"«,p)

st
(27)

d'y;d'r;

exp[j9Pts/2m jWZ

A significant feature of the integrals B&'&(Z) is their
momentum denominators, which exhibit clearly the
quantum degeneracy. induced by the Fermi or Bose
statistics. These denominators are, in fact, the mo-
mentum distribution in an ideal gas at activity Z and
temperature T= I/kP. In rough terms, the form (27) for
the cluster integrals B(') shows that the interactions
among the members of an s-particle set act in a highly
degenerate (though ideal) bath of other particles; this
bath affects the s particles by establishing a charac-
teristic nonclassical momentum distribution.

Finally, our quantum analogs, »(Z), of the classical
singly connected cluster integrals are introduced as the
Thiele semi-invaria'nts" of the B('(Z),

isH. Crsmer, Matheetaticat M'ethods of Statistics (Princeton
University Press, Princeton, 1946), p. 185.

CPF (8). The first member of the resulting sum is
Q&v('). Since the C" are complicated functions of both
the position and momentum coordinates of a set of s
particles, it is advantageous to separate the integrations
over these 6s coordinates in the terms containing a
C('). The remaining integrations are treated in the
manner of Sec. III. When it is remembered that exactly
lL&(E—1) ~ ~ (1V—s+1)/s! terms contain a C&'&, one
has 6nally the counterpart of the difference equation
(19)

N' h 3s N

Q =Q "'+ Z Z Q --"'(~1)" '
s=2 s! +=e

1 1
I

d'p

A'(Z) k'" exp Dip'/2m5+Z

(s= 2, 3, ~ ), (28)

which is equivalent to "
A3

I&;(Z) =

" I:B")(Z)3"'xg (29)

ls(jk) =L(s) (jk),
ls(jkl) =L(s)(jkl),

l4( jklm) =L&"(jklm) —is(L&'& (jk)L&'& (lm) ),

ls( jklmn) =L&s& (jklmn) (L "&(jkl)L&'& (m—n) ), etc.

(32)

The angular brackets, ( ), denote in (32) the sym-
metrical function obtained by averaging over all ways
of interchanging arguments between the functions
contained in the brackets; for example:

(L(s) (jk)L(s) (lm))
=-'sLL&'& (jk)L(') (lm)+L(s) (jl)L&'& (km)

+L('& (jm)L&'& (kl) j. (33)

The properties of the semi-invariant relations (28)
and (29) lead now to the major result of this section

G(z)
ln =&9V(p—p«)) —— p»(Z)zt, (34)

G(&&) (z) As(Z);=s

B&'& (Z)=—0.

The "degenerate" mean de Broglie wavelength A(Z) .is
introduced to nondimensionalize the»(z); it reduces
to the usual value k/(2smkT)I for small Z (vanishing
degeneracy). It will be recognized that since the
momentum and position integrations in (27) commute
with the summation and product operations in (28)
and (29), »(Z) may be written

A'(Z) ( t d'Psdsrs
»(Z) = . . l"'(r,p)II, . (30)

Vks&j !" 's=i exp[j9ps'/2mjaz

As regards the relation between the L's in the inte-
grands of the B's, (27), and the l's in the l&'s, (30),
Eqs. (29), the first members of which are

bs(z) =B('& (Z),

bs(z) =B&'&(Z),

k (Z) =B"'(Z)—KALB"'(Z) j' (31)

bs(Z) =B&'& (Z) —B(s)(Z)B&') (Z). etc. ,

lead directly to the results
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%e hasten to emphasize that coupling of momentum
and position coordinates in the cluster integral inte-
grands in the nonclassical region means that generally
the 8(') and b; are much more complicated than the
special cases (35) might indicate.

For X=2, 3, , Eq. (23) may be rewritten (in the
classical limit)

P &
(&r) (1.. .JI!')

Po) (1).. .P(&) (l&)T)

=exp —P P t)(; )
j&k=1

=1+ P L.,&»(jb)+ P L.,&»(jbi)
j&k=l j&k&l=1

+ "+L„&»(1"X). (36)

Equation (36), which determines the L,&&' uniquely,
may be compared now with the Mayer f expansion

N

which is the desired expansion of the logarithm of the
GPF.

At this point, it is instructive to examine the behavior
of the quantum cluster integrals 8&')(Z) and b;(Z) in
the classical region. Here it is necessary to consider only
the identity permutation in 0.+('. On account of the
simple form of P,)&"), (10), L&'& becomes independent
of the momentum coordinates, so that one is left with
just

B.&&') = (A "/s!) L,&&') (r)d"r,

(35)

b.
&

——(h. '&r—')/V!))I l.t&)')(r)d'rr.

ment to the Mayer theory. Specifically, one may use
the f-product interpretation of L,&&' to assign cluster
diagrams to the corresponding contributions to 8,1('.
Subsequently, l,1(&~ is identified in the usual fashion as
the reducible (singly connected) cluster sum for j
particles; in contrast to C('), 1,&(&' vanishes if any pair
of its arguments are separated by a distance large
compared with the range of intermolecular forces.

In a later paper we shall examine at some length the
utilization of cluster diagrams in the quantum mechani-
cal case. In particular, it is possible to employ the
classical identity (37) to re-establish, in a unique
fashion, the previously obtained expressions for our
quantum mechanical functions 4, L, and l.

V. THE CLUSTER EQUATION OF STATE

The activity series (34) may be rewritten

A'(Z)p h.'(Z)p&'&

kr
—Z+ Q b;(Z)Z'& bg(z) —=1. (38)

j=l

This expansion is superficially similar to the corre-
sponding classical expression involving singly connected
classical cluster integrals as coefEcients. The quantum
statistical situation, however, is complicated by the fact
that the b;(Z) are, themselves, dependent on Z. There-
fore, we find it no longer possible to undergo the usual
elimination of Z between (38) and the expression (12)
for the density p=N/V, to obtain a virial expansion
of the pressure. Ke shall, nevertheless, examine to
what extent Kahn's classical approach" may be modified
to cope with the quantum mechanical problem.

The, qua~turn statistical relatives of the irreducible
(doubly connected) cluster integrals are implicitly
defined by the same relations encountered in the
classical theory (j=2, 3, ~ ~ )

e~E—P Z e(rs)j
j&k 1 j'b;(z) =

(Zkwg =j-1) Ãk,
(39)

= II L1+f(r')j
j&k=1 The inversion of Eq. (39) is found to be'r

N
=1+ Z (f(r'))

j&k 1

+ P (f(res) f(rs&)+ }+. +f . .),
j&k&/ 1

(37)
p, (z) =

{mg}
(Z(j—1)mg =A)

(k—1+Ps'+' r&s )!-
( 1)zm&—I

~~ 5jb;(Z)j"
X II

'
. (40)

j=2

f(r s) =expL —Pe(r s)j—1.

It will be recalled that the curly brackets in (37)
collect successively distinct products of f functions
involving the position coordinates of two, three, - ~ ~

different particles. Examining both (36) and (37) for
each E)1 in turn, one finds that L,&&')(ir i,) must.
be precisely the curly bracket for arguments i1 ~ ~ .i„
thereby establishing the relation of the present develop-

In particular, one 6nds

Pi(Z) =2bs(Z)

&(4(Z) =3bs(Z) —6Lbs (Z)$',

Ps(z)=4b4(z) —24bs(Z)bs(Z)

+ (8o/3)l. bs(z)j', «'
's B.Kahn, dissertation, Utrecht, 1938 (unpublished).
'~ J. E. Mayer, J. Chem. Phys. 10, 629 (1942).

(41)
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Although it is true that in the classical realm our Ps(Z)
(the "irreducible" cluster integrals) are proportional
to the virial coeS.cients for the nonideal system, they
are, on the other haad, very complicated functions of
the mean density p when quantum degeneracy appears.
It is for this reason that they include many-body
e8ects determined by the thermodynamic state of the
entire interacting system.

An auxiliary variable y is introduced by setting

If we replace Z by &r in (42), (44) is seen to be

XRy( ) e yl:—6( ))3&

y(&)-

40 Qy

Z=y expL —r(3)3 r(y) = Z P&3' ~

k 1
(42) Ps(Z)y"'

~i k+1
(45)

On account of the definitions (39),Lagrange's theorem"
allows (42) to be inverted

~(Z) = Z Jb;Z; (43)
i &

The sum occurring in (38) may be rewritten as an
integral, making use of (42)

As(Z)p As(Z)p«& k—Z+y —Q Pz(Z)y +'. (46)
s=i k+1.

where reference has been made to the deinition of r,
(42). The pressure is therefore

' x(~)
tAx.Qb;Z&=

~

j=& ~ 0 e

Referring to (11) and (12), the mean density p is

(44) the p derivative of p at constant temperature and
volume,

~&ip(P,Is) q 3(p—p&o&) (BA(Z) ~ kT (&yy
p(P, I )=]

'
I

=p"'(P,~)— I I +,
ap i p r A(Z) & &ip, ) p, v A'(Z) I.&ipJ p, v kT

y (&IPs(Z) & (~rl
+Ps(Z) I

—
) (47)

k+1 ( Bpt ) p, r ~8@) p, r

obtained by diGerentiating (46).
As already remarked, the equation of state must

remain in parametric form. Having chosen values for
the chemical potential is and P=1/kT, the quantities
Z and )by (43)g y are numerically determined. Substi-
tution of these values into (46) and (47) yield the
simultaneous values of p and p.

VI. THE MODIFIED HAMILTONIAN

Determination of the quantum cluster integrals
b, (Z) and P&(Z) requires knowledge of the F&"' of
various orders. The behavior of these functions may
be displayed in a number of ways. One can, for example,
easily obtain a series development of E~"' in ascending
orders in Planck's constant k (the general term of which
would be given recursively); alternatively P"' would
admit of a perturbation expansion in the interaction
potentials. In the present section, though, we shall
illustrate properties of the E~"~ in a manner appropriate
to all temperatures (not merely the near classical
region) as well as all interaction strengths.

We have already seen that E&"& satisies a Bloch
equation, (9). Without significant loss of generality,

's E. T. Whittaker and G. N. Watson, A CoNrse of 3Eodere
Analysis (Cambridge University Press, ¹wYork, 1942), p. 133.

E&")(r,p; P) =exp[ Pp'/2sN3— (48)

E&"~ is completely determined by this boundary
condition in conjunction with the Bloch differential
equation. Consequently, (9) and (48) may be combined
to give a single integral equation

F&"'(r,y; P) =exp/ —Pp'/2sng

K(P' P)&.""j~—.( )~'"'( p P')&P', (49')
0

from which (9) may be recovered by differentiation.
That part of the integrand of (49) containing H„&'&'

may be transformed

- (P'-P)
(iy+AV)' =- —

i &P"k
2sN

~P
—P'~ '

Xexp —k' —2k (ip+AV)
~ ~

. (50)

it may be assumed that the pair potentials v(r) are
bounded, though possibly very large in magnitude. At
suKciently high temperatures, then, Ii~" is asymptotic
to the classical ideal gas form
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r ~ r'= r—2tsL(P —P')/2m)&k. (51)

The exponential gradient operator on the right side of
(50) is the Taylor's operator; when operating on
functions of the 8e-dimensional configuration vector
r, it makes the replacement

peratures and particle con6gurations

~'"'(rs p. Ps) = d'"riE'"'(2
I
1)~'"'(ri,y; Pi),

(P.&P); (55)

The integral equation (49) is consequently modified
to read

E&"&(2I1)=0 (P &Ps);

E&"&(2I1)=—E&"&(r„p;P, I ri,y; P,).

(56)

E&"&(r,p; P) =exp—
PP' 1

~dP I'd"k
2m

It is possible to show" that E&") satis6es the difkrential
equation

L(~/~Ps)+&-'(2) jE'"'(2I 1)=~(rs—ri)~(Ps —Pi) (57)rP P'i—'
Xexp —k' —2iI I

k p V„(r')
&2m) subject to the boundary condition (56). This latter

implies
X~'"'(r' y' P') (52)

lim E&"&(rs~;Pi+ e
I ri,y; Pi) =5(rs—ri), (58)

The variables of integration are now changed from
k, P' to r', x, where so that (55) reduces, as it must, to an identity when.=P/(P-P') (53) Ps=Pi

It is known that (56) and (57) are equivalent to the
after the correct transformation Jacobian is computed, integral equation
(52) leads to the result

&'"&(r,y; P)
E'"'(211)=Eo'"'(2 I1)—

Pps- ( m ) se/2 ~ ~ao

=exp — —
PI dssr& alx xsa/2 —2

2m ( 2srI/t'P)
X dps Es&"&(2

I 3)V„(3)E&"&(3
I 1), (59)

~p,

Xexp—
m r' —r'x i

+-p (r'-r) V„(r')
2&&'P

XF&"&[r',p; P(1—1/x)]. (54)

where Eo&") is the free particle transformation function
defined by

I (8/r}P )+H„&'&'(2)]Eo " (2 I 1)
= 8 (rs —ri)8 (Ps—Pi), (60)

Thus an integral equation for F&") has been derived
whose solution, in principle at least, should represent
this function over the entire temperature range from
absolute zero to the classical region.

The formal similarlity of the Bloch equation (9)
to the time-dependent Schrodinger equation, upon
replacing P by it/fi (t is the time variable), has long
been recognized. In consequence, the well-developed
formalism of time-dependent perturbation theory in
quantum mechanics is applicable to determination of
the F&"& as an alternate method of analysis, by consider-

ing temperature differences to be equivalent to imagi-
nary time intervals. It is our purpose only to use the
structure of perturbation theory to re-establish the
general result (54). This viewpoint is in contrast to that
of Montroll and Ward~ who evaluate their quantum
cluster integrals in perturbation series.

In order to examine the relation between the Bloch
and Schrodinger equations, we 6rst de6ne a trans-
formation function E&"~ which, as an integral kernel,
serves to connect the values of E&"& at diferent tem-

and the boundary condition (56). If p, (r) are the
orthonormal eigenfunctions of the modiled Hamil-
tonian H„', with associated eigenvalues E ', then
(Ps&pi) the solution to (59) may be expressed in the
form

E'"'(2I1)= 2 I-(rs)/ '(ri) expI:—(Ps Pl)~ 1 (61)

This result (61) leads to an immediate evaluation of
Eo& ~ since the eigenfunctions of II„& )' are plane waves

1 i i
(y—iAV')' exp —q r =E,' exp —q r,

2m A ~. &t (62)

E,'= (p+q)'/2m.

Replacing as usual the n sununation (61) by an inte-

' See S. S. Schweber, H. A. Bethe, and F. de Hoffmann, Mesons
aid Fields (Row, Peterson and Company, Evanston, 1956}, pp.
54—58, for a review of perturbation theory in this form, including
jusiification of the results concerning E&» which are quote here
without proof.
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gration over q, we see that

It, &-&(2~ I)

]V~" I

(h') V"~

Xexp—
(p2 —p~)

(p+q)'+-(r. —r ) a
2m

- an/2

F&"&(r2,p; P2)=exp[ —PP'/2m7 —~~d "r3

pgS

X ' dP ~. -(2I3)V.(3)F-(",p P.). (64)
6 p

Now if (63) is inserted in (64) for the free particle
transformation function Eo&"), and if we make the
substitutions

pa= p',

p-p'=p/*,
(65)

the integral equation (54) is exactly reproduced,
demonstrating thereby the relation between the two
approaches outlined in this section.

2~h'(p, —p,)

m(r2 —r&)' i
Xexp — ——p (r2 —r&) . (63)

2h'(p, —p,) h

Upon multiplying both sides of (59) by

F&"&(r~,p; Pi=o)

and integrating with respect to r~ over V, we obtain

Finally, it is a simple matter to express J'&"~ in
terms of the eigenfunctions P '"'(r) of the unmodified
Hamiltonian H„. By making use of the identity (7),
one has that

F&"&(r,p; P) =exp[—(i/h)p r7
X(exp(—pH„) exp[(i/h)p r7). (66)

If E &"& denotes the energy eigenvalue corresponding
to the wave function f '"'(r), then it is easy to see that

(F&"&(r,p; p)=exp~ —-p r
Ii

when the completeness property of the entire set of
II &"& is utilized in expansion of the plane-wave in (66)

(i
exp~ -p r

I
= Z && '"'(p)f '"'(r),

(68)

x &"&(p)=, t f &"'*(r') exp[(i/h)p r'7d'"r'.

At sufficiently low temperatures, only the lowest
eigenvalues E &"& (i.e., the ground state and low-lying
excited states) contribute appreciably to the sum (67),
and in certain cases it may be convenient to establish
the properties of J'("~ from known behavior of the
wave functions II &"'. For intermediate temperatures,
where a large number of energy levels in (67) are
involved, it will undoubtedly be necessary to solve the
integral equation (54) in detail. A later communication
will deal with application of known solutions of the
quantum mechanical two-body problem to computation
of thermodynamic properties of systems in interaction.


