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The pair correlation function g2ðrÞ provides a basic geometric descriptor for man

systems. It must obey two necessary conditions: (i) non-negativity for all distances

non-negativity of its associated structure factor SðkÞ for all k. Here we utilize an

stochastic construction algorithm for particle configurations to establish conditions

(i) and (ii) are also sufficient, i.e., g2ðrÞ is in fact realizable. Two types of target pair co

functions have been investigated in one, two, and three dimensions for hard-core

specifically a unit step function, and a contact d plus step pair correlation function

indicate that the former target function is realizable up to a terminal density set by

condition (ii), at which the particle core packing fraction equals 2�d in d dim

Furthermore, results are consistent with the proposition that for d41 the contact d
function is realizable up to a terminal density due to condition (ii) at which the

fraction of cores is ðd þ 2Þ=2dþ1 [Torquato and Stillinger, J. Phys. Chem. B 106 (20

11406].
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The generation of particle configurations consistent with a limited am
microstructural information (lower-order correlation functions) constit
example of an inverse problem. Computer simulations that accomplish t
utilize reconstruction algorithms [1–4]. Such reconstructions can potentially
the appropriate correlation functions that effectively characterize a class of
structures [4]. An intriguing extension of the reconstruction algorithm is the
of particle configurations conforming to a model or hypothetical s
correlation function [2,3,5]. In this instance, the numerical protocol is t
construction algorithm. This paper investigates the realizability of cert
correlation functions by d-dimensional particle systems using the cons
algorithm.

Applications of our methodology include the construction of three-dim
structures using information obtained from two-dimensional images [2]. Th
has high value in a wide variety of fields, such as petroleum engineering, biol
medicine, where often only two-dimensional images are available for analys
addition, our techniques can be used for construction of spatial point
based on correlation functions employed by ecological and cosm
models. An attractive fundamental problem would entail probing th
uniqueness of configurations specifically constructed for a determin
correlation function [4].

In order for a given pair correlation function g2ðrÞ to be realizable by a sta
homogeneous many-particle system, it must obey certain conditions [6]. F
g2ðrÞ represents the probability of locating particles separated by the radial
r, it cannot be negative

g2ðrÞX0 .

The structure factor SðkÞ is related to the Fourier transform of the total co
function hðrÞ ¼ g2ðrÞ � 1 as follows [4]:

SðkÞ ¼ 1þ r
Z

e�ik�rhðrÞdr ,

where k is the wave vector, k is its magnitude, and r is the number densit
particle system. Secondly, this structure factor is constrained to nonnegativ
for all values of k

SðkÞX0

on account of its relation to mean-square fluctuations of collective density v
A third condition forces a lower bound on the variance associated w

number of particles within a d-dimensional spherical window of radius R [

s2ðRÞXyð1� yÞ ,

where y is the fractional (non-integer) part of the average number of particl
contained within the window hNðRÞi ¼ ru1ðRÞ, u1ðRÞ is the volume of the s



window given by [4]
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u1ðRÞ ¼
pd=2

Gð1þ d=2Þ
Rd

and GðxÞ is the gamma function. For a statistically homogeneous and i
system, the number variance s2ðRÞ is given by [8]

s2ðRÞ ¼ hNðRÞi 1þ r
Z

hðrÞaðr;RÞdr

� �
,

where aðr;RÞ is a scaled intersection volume of two identical d-dimensional
of radius R whose centers are separated by a distance r, and dr is a d-dim
volume element. It should be noted that Eq. (1.4) is a condition that
progressively weaker for higher dimensions because the variance grows at
rapidly as Rd�1 for sufficiently large R [8]. However, the three inequalities (1.
and (1.4) necessarily must be satisfied for realizability of any hypothet
correlation function [6]. Nonetheless, the above conditions constitute a sma
of the infinite number of conditions that may be necessary for correlation
realizability [9].

In this paper, we investigate the realizability of two distinct types
correlation functions, namely the unit step function, and the contact d p
function. Both investigated target functions are defined for statistically
geneous and isotropic systems of identical d-dimensional hard particles of d
D. The unit step function case [5,10] is defined as

g2ðrÞ ¼ Yðr�DÞ ,

where YðxÞ is the Heaviside step function,

YðxÞ ¼
0; xo0 ;

1; xX0 :

(

The contact d plus step function [6] is defined as the following:

g2ðrÞ ¼ Yðr�DÞ þ
Z

rs1ðDÞ
dðr�DÞ ,

Z is the mean number of contacts experienced by particles, dðxÞ is the Dir
function, and s1ðRÞ is the surface area of a d-dimensional sphere

s1ðRÞ ¼
du1ðRÞ
dR

¼
2pd=2Rd�1

Gðd=2Þ
.

Fig. 1 shows graphical representations of the above target functions. The u
pair correlation function was examined by Stillinger et al. [10] duri
investigation of ‘‘iso-g2’’ processes. One of our goals is to determine
the unit step pair correlation function, Eq. (1.7), is realizable for hard



configurations with packing fraction f in the range 0pfpfc, where the packing
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Fig. 1. Graphical representations of the target functions in Eqs. (1.7) and (1.9). Left panel: unit step pair

correlation function. Right panel: contact d plus step pair correlation function.
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fraction is defined by [4]

f ¼ ru1ðD=2Þ .

Note that the provisional terminal density for the unit step function fc ¼

The provisional terminal density has been defined as the highest possible
fraction that can be achieved without violating the non-negativity condition
Condition (1.4) is satisfied for this choice of pair correlation functi
realizability of the unit step pair correlation function in one and two dimens
been investigated by Crawford et al. [5]. In this paper, one of the problems
explore is the realizability of the unit step function g2 for three-dimension
particle systems. Our approach involves making use of a construction algo
generate configurations in finite systems that provide the best estimate to
step pair correlation function.

The realizability of the contact d plus step pair correlation function w
studied by Torquato and Stillinger [6]. We attempt construction of d-dim
hard-particle configurations with packing fractions up to and beyond a pro
terminal density fc. For Eq. (1.9), a provisional terminal density for dim
d41 is given by the formula [6]

fc ¼
d þ 2

2dþ1
.

For this case, we have identified the provisional terminal density as the
possible density subject to optimization with respect to Z such that t
negativity condition on SðkÞ is observed. It should be noted that Eq.
obtained for d-dimensional systems with coordination number Z ¼ d/2 [6
the provisional terminal density fc ¼ 0:5 in two dimensions and fc ¼ 0:3125
dimensions. Application of Eq. (1.12) to one-dimensional systems formally
terminal density of 0.75. However, it should be noted that one-dimensional
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Z ¼ 1=2, the terminal density fc ¼ 0:7185 is the highest possible attained
fraction for one-dimensional hard-particle systems. We stress that this redu
terminal density below the provisional terminal density in Eq. (1.12) does n
for dX2.

The rest of this article is organized as follows. In Section 2, we pre
construction algorithm for generation of particle configurations for the inve
target correlation functions. In addition, we introduce a bin width
procedure for use in calculating the pair correlation function of finite-siz
particle systems. In Section 3, we discuss results in three dimensions for the
pair correlation function and results in one, two, and three dimensions
contact d plus step pair correlation function. Concluding remarks and discu
future work are contained in Section 4.
2. Numerical procedures
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In Section 2.1, we present a construction algorithm for the investigatio
realizability of a given target function. The construction algorithm will be
modified for the second investigated pair correlation function, Eq. (1.9). In
2.2, we discuss the procedure for calculation of the pair correlation f
including a bin width selection algorithm for hard-particle systems. Fin
Section 2.3 we discuss our approach to data analysis.

2.1. Construction algorithm

In all of our simulations, all N system particles are contained with
dimensional cube of length L ¼ 1 subject to periodic boundary conditions
the method of simulated annealing [11] to construct configurations of partic
given target function. It should be noted that the pair correlation function
termed the radial distribution function (RDF) for the statistically homogene
isotropic systems that are explored in our study. We require that our resul
the target RDF within the maximum radial distance selected in the
procedure discussed below.

We begin our simulation by initializing a random configuration of particl
packing fraction of interest as defined by Eq. (1.11). A fictitious energy is int
as follows:

E ¼
X

ri

½g2ðriÞ � g0
2ðriÞ�

2 ,

where g0
2ðriÞ is the target RDF, defined by Eq. (1.7) or (1.9), g2ðriÞ is the ca

RDF at any time step in the simulation, and the sum operates over all bin dis
up to a specified limit termed the sampling distance. The energy is calculated
initial configuration of particles, then a new configuration is generated by a
to the set of rules outlined below.
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particle. In contrast, we will employ a collective movement of particles to
new configurations. In particular, sets of particles (previously defined fractio
number of particles in the system [12]) are moved by displacement along each
amounts randomly and uniformly distributed in the interval ½�t; t�, where
maximum step size. The energy is computed for each new configuration
energy associated with the previous configuration is saved for comparison. I
be noted that the system RDF g2ðriÞ must only be partially recomputed af
collective movement. This time-saving measure is implemented as the system
not significantly altered for each new configuration. In other words, as the
number of particles varies for a selected number of bins after each c
movement, the binned particles and hence, the system RDF remains uncha
the remaining bins. The bins affected by the collective movement involve th
that have lost or gained particle pairs of separation distance that fall wi
specified bin distance. The collective movement is accepted or reject
probability PðDEÞ according to the Metropolis acceptance rule [4]

PðDEÞ ¼
1; DEp0 ;

expð�DE=TÞ; DE40 ;

(

where DE is the energy difference between the present and most recent
configuration and T is a fictitious temperature [4]. Modifying the si
annealing algorithm to include the collective movement of particles and th
recalculation of the system RDF reduces the running time by a fa
approximately 10.

At each temperature T, the system is thermalized until the particl
experienced multiple displacements ð� 15NÞ from their previous positio
acceptance of uphill moves with a Boltzmann factor probability enables the
configuration to navigate the energy landscape without inevitably getting c
local minima for which E40. Repeated application of the collective move
particles allows the configuration RDF the opportunity to converge to th
RDF. A cooling schedule, which governs the value and the rate of change
chosen to allow the system to evolve to the desired state as quickly as possibl
simulations, we adopt a cooling schedule in which the temperature is redu
factor of 0.9 for each temperature cycle. Eventually, we approach th
minimum of the energy E, Eq. (2.1). At any stage of the calculat
configuration energy E can be viewed as a least-squares error.

The construction algorithm can be applied to an investigation of the rea
of the unit step RDF without any modifications. However, the algorithm
adapted for construction of particle systems that match the contact d plus ste
In particular, we begin with a random configuration of contact n-m
monomers, dimers, trimers, etc. at a fixed mean contact value Z. In order to
the contact between particles in an n-mer, we ensure that all particles in th
simultaneously participate in the same collective movement and thus are m
the same displacement and direction. In essence, the clusters move as an in
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contacting n-mers were not included in the initial conditions but formed as a
the subsequent optimization procedure. Inclusion of n-mers at the outse
algorithm makes the task of achieving the target pair correlation
appreciably quicker. The calculated system RDF will involve contributions
particles in different n-mers and contributions from particles that are within
n-mer. It should be noted that particle pairs that are in direct contact within t
n-mer contribute to the Dirac delta function in Eq. (1.9), whereas all other
pairs provide binned contributions to the Heaviside function term in the c
plus step pair correlation function.

At the onset of our simulations, we employ a variety of system sizes N,
fractions f, and particle coordination numbers Z to obtain desired d-dim
configurations. In particular, our system sizes have varied from 100 to 500
while investigated packing fractions have ranged from 0.05 to densities ab
calculated terminal density. Likewise, for simulations concerning the conta
step pair correlation function, the selected particle contact values have falle
range 0:10pZp0:5 in one dimension, 0:10pZp1:0 in two dimensio
0:10pZp1:5 in three dimensions. Note that there exists an infinite va
cluster distributions consistent with a given Z value. This point will be disc
greater detail in the upcoming sections.

2.2. Bin width selection algorithm
from a
ncentric
particle
r radius
s the bin
for the

airs are
hen

(2.3)

g set of

(2.4)

(2.5)

(2.6)
After each collective movement, the RDF is partially recalculated
histogram of the average number of particle centers nðrÞ contained in a co
shell of finite thickness Dr at radial distance r from an arbitrary reference
center [4]. The radial distance r is defined as halfway between the inne
ðr� Dr=2Þ and the outer radius ðrþ Dr=2Þ of each shell. The shell thickness i
width. Let nkðrÞ represent the accumulated count of particles placed in bin k

entire system corresponding to a radial distance r. Consequently, all p
enumerated twice and by virtue of its definition, nkðrÞ is an even integer. T

nðrÞ ¼
nkðrÞ

N
,

and the RDF in one, two, and three dimensions is given by the followin
equations in which we have fixed L ¼ 1:

g2ðrÞ ¼
nkðrÞ

2N2Dr
ðd ¼ 1Þ ,

g2ðrÞ ¼
nkðrÞ

2pN2rDr
ðd ¼ 2Þ ,

g2ðrÞ ¼
nkðrÞ

pN2Drð4r2 þ ðDrÞ2=3Þ
; ðd ¼ 3Þ .
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target number of pairs in each bin is an even integer such that g2ðrÞ ¼ 1 fo
Considering all possible particle configurations consistent with Eq. (1.7)

we sum over all particles to obtain the expected number of particle centers th
the annular region r� Dr=2prorþ Dr=2 around any chosen particle as fo

Bðr� Dr=2; rþ Dr=2Þ ¼
NðN � 1Þ

Ld � u1ðDÞ
½u1ðrþ Dr=2Þ � u1ðr� Dr=2Þ� ,

where u1ðxÞ is as defined in Eq. (1.5). Using Eq. (1.11), we rewrite Eq. (2.7
following expression:

Bðr� Dr=2; rþ Dr=2Þ ¼
ðN � 1ÞDd ½u1ððrþ Dr=2Þ=DÞ � u1ððr� Dr=2Þ=D

u1ðDÞ½ð1=ð2dfÞÞ � ð1=NÞ�

Using an approximate bin width Dr ¼ 0:1D, we calculate BðD; 1:1DÞ from E
In general, BðD; 1:1DÞ is not an even integer, thus, the function ne½BðD; 1:1D

its closest even integer

ne½BðD; 1:1DÞ� ¼ 2 int
BðD; 1:1DÞ þ 1

2

� �
,

Q� ¼ ne½BðD; 1:1DÞ� .

Here, Q� is the number of pairs required to fall in the bin of interest. We ca
the outer radius by application of Eq. (2.8). For example, in two dimensi
outer radius is given by

rþ Dr=2 ¼ D 1þ
½ð1=4fÞ � ð1=NÞ�Q�

N � 1

� �1=2
.

Then, the bin width Dr and radius r are easily obtained as

Dr ¼ ðrþ Dr=2�DÞ ,

r ¼
ðrþ Dr=2Þ þD

2
.

The above procedure is repeated for each successive bin until the radial di
greater than the chosen sampling distance for the investigated particle config
Our bin width selection algorithm is consistent with g2ðrÞ ¼ 1 for r4D in th
system limit. It should be noted that the particle pairs binned by the
algorithm excludes contact pairs in a given n-mer.

2.3. Ensemble averaging of data

In the analysis of the collected data, we depart from the approach
Crawford et al. [5] which required that a single configuration match the targ
within the sampling distance. Such a requirement is both unrealistic an
stringent. As we intend to equal the target RDF in the thermodynamic l
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ensemble is equivalent to averaging over the volume for one realization
infinite-volume limit [4]. This approach enables us to replace volume averagi
limit that the volume tends to infinity with ensemble averaging. Thus, we
system RDFs of constructed configurations (of fixed f) to obtain a match
target RDF.
3. Results

r three-
:125. In
stems in
pported
o large,
hat both
r for the
number

ractions
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56 were
e noted
systems

up to a
structed
for the
Our results indicate that the unit step function is indeed realizable fo
dimensional hard-particle configurations below the terminal density fc ¼ 0
addition, the realizability of the contact d plus step RDF for hard-particle sy
one, two, and three dimensions below the provisional terminal density is su
by the results of our investigation. Provided that the system density is not to
satisfying the non-negativity conditions on g2ðrÞ and SðkÞ suffices to ensure t
target RDFs are realizable by hard-particle configurations. However, in orde
contact d plus step RDF to be realizable at the terminal density fc, the mean
of contacts Z must be equal to d=2 where d is the system dimension.

3.1. Unit step function—three dimensions

Simulations were run for three-dimensional particle systems of packing f
up to and beyond the terminal density. In particular, simulations of packing
f ¼ 0:05, 0.1, 0.125, 0.15, 0.2, and 0.3 and system size N ¼ 100 and 2
executed by application of the algorithms discussed in Section 2. It should b
that multiple cases were executed for each investigated packing fraction for
of N ¼ 100.

For systems of fp0:15, we obtained a perfect match to the unit step RDF
sampling distance of 3 particle diameters. Fig. 2 and Table 1 display a con
particle configuration at the terminal density and associated parameters
Fig. 2. A three-dimensional configuration of 256 particles that has been constructed for the unit step pair

correlation function at the terminal density fc ¼ 0:125.
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Table 1

Inner radius ðr� Dr=2Þ=D, outer radius ðrþ Dr=2Þ=D, and the number of particles nkðrÞ in each bin k for

r4D for construction of the unit step function for a three-dimensional hard-particle system displayed in

Fig. 2

k ðr� Dr=2Þ=D ðrþ Dr=2Þ=D nkðrÞ k ðr� Dr=2Þ=D ðrþ Dr=2Þ=D nkðrÞ

1 1 1.09952 84 11 2.00069 2.10072 322

2 1.09552 1.20024 102 12 2.10072 2.20069 354

3 1.20024 1.30048 120 13 2.20069 2.30075 388

4 1.30048 1.40071 140 14 2.30075 2.40097 424

5 1.40071 1.50121 162 15 2.40097 2.501 460

6 1.50121 1.60109 184 16 2.501 2.60098 498

7 1.60109 1.70077 208 17 2.60098 2.70099 538

8 1.70077 1.8005 234 18 2.70099 2.8011 580

9 1.8005 1.90044 262 19 2.8011 2.90107 622

10 1.90044 2.00069 292 20 2.90107 3.00098 666

0 2 3
r/D

0

0.5

1

1.5

2

2.5

3

g 2
(r

)

Constructed System
Equilibrium System

φ = 0.3

1

Fig. 3. Radial distribution functions for constructed particle configurations for the unit step function, and

for the equilibrium configurations. All sampled configurations have packing fraction f ¼ 0:3 in three

dimensions. The constructed RDF is averaged over ten hard-particle configurations.
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bin widths Dr used in all simulations of the unit step RDF were of order 0
Based on an earlier investigation on one- and two-dimensional systems

realizability of the unit step function for fpfc ¼ 0:125 was not une
However, we were surprised to achieve the target RDF for a system of
fraction f ¼ 0:15. We hypothesize that the particles are able to conform to
step RDF for the investigated sampling distance but with some deviation
that distance. In fact, it should be noted that the RDF deviates unifor
randomly from unity beyond the sampling distance for all systems that
perfect matches to the unit step function. Upon averaging the RDFs
constructed realizations, these deviations are greatly diminished beyo
sampling distance.
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unable to construct perfect matches to the unit step RDF. At a density of
the constructed RDF has an initial peak at r ¼ D that is followed by a tro
Fig. 3). A comparison of the RDFs for constructed and equilibrium sy
f ¼ 0:3 (above the terminal density) is displayed in Fig. 3. Note that the RD
at contact g2ðD

þÞ � 1:5 differs considerably from the contact value
corresponding equilibrium system RDF, g2ðD

þÞ � 2:3. In addition, for in
r, the fluctuations in the constructed RDF appear damped relative to the fluc
in the equilibrium RDF indicating the efforts of the construction algorithm t
the RDFs of generated systems.

3.2. Contact d plus step function—one dimension

For d ¼ 1, simulations were run for packing fraction f ¼ 0:1, 0.2, 0.3, 0.4,
0.7, 0.71, and 0.75 at different average contact values Z ¼ 0:1, 0.34, and 0.5
dimension, the denominator of Eq. (2.4) is independent of r but dependent on
width Dr. As a result, we are able to bypass application of the bin width
algorithm and simply select appropriate bin widths of order 0:1D. Our con
hard-particle systems included configurations in which half the number of
were present as dimers ðZ ¼ 0:5Þ and others in which 34% of the particles o
as dimers ðZ ¼ 0:34Þ.

For systems with fp0:7, we obtained particle configurations of varied mean
numbers with RDFs that matched the contact d plus step pair correlation functi
a sampling distance of 3.5 particle diameters. It should be noted that for fo
derived perfect matches to the target function for an extended sampling dista
particle diameters. Beyond the sampling distance, these constructed RDFs u
and randomly deviate from unity. An ensemble average of the constructe
reveals that the deviations are greatly diminished relative to a single construct
for distances greater than the sampling distance (see Fig. 4).

3 2.5
0 1 2 3 4 5 6 7
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Z = 0.1
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r/D
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g 2
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φ = 0.1
Z = 0.1

Fig. 4. An illustration of the effect of ensemble averaging of constructed RDFs beyond the sampling

distance. Left panel: A single constructed RDF. Right panel: An ensemble averaged RDF for 400 one-

dimensional constructed configurations. All sampled configurations have been generated for the contact d
plus step pair correlation function with packing fraction f ¼ 0:1 and mean contact value Z ¼ 0:1.
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contact values other than Z ¼ 0:5. Furthermore, particle configurations of
fraction f ¼ 0:75 were unrealizable for the contact d plus step pair co
function for any mean particle contact number. This is due to the fact
f ¼ 0:75 the one-dimensional system violates Eq. (1.4). Indeed, the lower b
the number variance s2ðRÞ is obeyed over the range 0ofp0:7185 for Z ¼

lack of success in realizing the investigated RDF for f ¼ 0:7185 may be attri
a violation of a yet undiscovered necessary condition. Fig. 5 comp
constructed RDFs for systems of packing fraction f ¼ 0:71 and 0.75. We n
the attempted construction of the hard-particle system of f ¼ 0:75 indi
inherent robustness in our construction algorithm.

3.3. Contact d plus step function—two dimensions

Simulations were run for packing fraction f ¼ 0:05, 0.1, 0.15, 0.2, 0.25,
and 0.5. For each investigated packing fraction, we varied our system size (N
200, and 500) and the average contact value (Z ¼ 0:1, 0.25, 0.5, 0.6, and 1.0)
each simulation, the bin width selection algorithm was employed to select bi
of order 0:1D. The constructed configurations consisted of a distribu
monomers, dimers, and trimers. Trimers occurred in both extended (line
contracted (triangular) forms. The distribution of monomers, dimers, and t
dependent on the desired mean contact number. For example, for N ¼

Z ¼ 1:0, two possible configurations are one in which all particles appear a
and another in which 7.5% of the particles occur as trimers, 90% occur as
and the remaining particles are monomers. As indicated, a specific distribut
mers need not be used in simulations to obtain agreement with the investiga
correlation function.
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Fig. 5. RDFs for one-dimensional configurations that have been constructed for the contact d plus step

pair correlation function. Left panel: Sampled configuration at packing fraction f ¼ 0:71. It should be

noted that we succeeded in obtaining a perfect match to the target RDF prior to ensemble-averaging our

results. Right panel: Sampled configuration at packing fraction f ¼ 0:75. Both sampled configurations

have mean contact value Z ¼ 0:5.
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Fig. 6. A two-dimensional configuration of 500 particles that has been constructed for the contact d plus

step pair correlation function. The configuration consists of only dimers at the terminal density fc ¼ 0:5
with an average contact value Z ¼ 1:0.
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RDF up to a sampling distance of 5 particle diameters. These perfect resu
achieved for all tested values of Z. Similarly, we achieved perfect results for sy
f ¼ 0:25, 0.3, and 0.4 up to a sampling distance of 3 diameters for varying mean
values. At the terminal density fc ¼ 0:5, we achieve a perfect match to the c
plus step function up to a sampling distance of 3 diameters for Z ¼ 1:0. Fig. 6 d
constructed particle configuration at the terminal density. It should be noted
RDF uniformly and randomly deviates from unity beyond the sampling distan
systems that result in perfect matches to the contact d plus step function.

3.4. Contact d plus step function—three dimensions

Simulations were run for packing fraction f ¼ 0:05, 0.1, 0.125, 0.15,
0.3125. For each investigated packing fraction, we varied our system size (
and 256) and the mean contact value (Z ¼ 0:1, 0.3, 0.6, 0.7, and 1.5). Dur
simulation, the bin width selection algorithm was employed to select bin w
order 0:1D. Initial configurations for the construction algorithm consist
distribution of monomers, dimers, trimers, and tetramers. As before, the dist
of contact n-mers was dependent on the desired mean particle contact valu
trimers and tetramers were initialized as combinations of extended (line
compact forms. For example, a configuration in which all particles ap
extended tetramers (two particles per tetramer have two contacts and the o
particles have a single contact) has a mean contact value of Z ¼ 1:5. Th
configuration was used in our investigation of systems of Z ¼ 1:5 below an
terminal density.
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Fig. 7. A three-dimensional configuration of 256 particles that has been constructed for the contact d plus

step pair correlation function at the terminal density fc ¼ 0:3125 and mean contact value Z ¼ 1:5. All

particles in the configuration appear as tetramers (yellow).
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the target RDF up to a sampling distance of 3 particle diameters. These
results were achieved for all tested values of Z. At the terminal density fc ¼

we achieve a perfect match to the contact d plus step function up to a s
distance of 2.75 diameters for an average contact value Z ¼ 1:5. Fig. 7 di
constructed configuration at the terminal density. Beyond the sampling dista
constructed system RDF randomly deviates from unity in a uniform fashio
systems that result in perfect matches to the contact d plus step function.
4. Discussion and conclusions
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During the course of our investigation, we have modified the gen
simulated annealing algorithm [11] to include two algorithm-speeding m
the collective movement of particles and the partial recalculation of the syste
Both time-saving implementations have added a substantial utility
construction algorithm on account of increased likelihood of obtaining co
results within a reasonable time. This added utility is also evident in our inve
of the near approach of the pair correlation function to realizability for
above the terminal density. In particular, the algorithm finds a close com
when an exact solution is not realizable. The right panel of Fig. 5 displays th
RDF for a configuration above the terminal density. Clearly, the program
to match the contact d plus step RDF as closely as possible. In addition, we n
the results obtained for all investigated systems are consistent with the n
Yamada condition defined in Eq. (1.4) indicating the inherent robustnes
construction algorithm.

The unit step RDF was achieved for three-dimensional systems below o
terminal density fc ¼ 0:125. This is consistent with previous results in one
dimensions [5] for systems below the terminal density. In contrast, no sim
studies had previously been executed for the contact d plus step pair co
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RDF for one-dimensional systems with packing fractions fo0:7185. How
should be noted that at densities close to the terminal density, only system
mean particle contact value Z ¼ 0:5 yielded matches to the target RDF. S
the contact d plus step function was achieved for all investigated values of
the provisional terminal density defined in Eq. (1.12) for two- and three-dim
hard-particle systems. At the terminal density, matches to the target RDF w
obtained for systems in two and three dimensions with Z ¼ 1:0 and 1.5, resp

It is useful to remark on the choice of the cluster distribution for rea
simulations of the contact d plus step pair correlation function at the
density. Our results indicate that matches to the target RDF are only achiev
dimensional systems with mean contact value Z ¼ d=2 at densities clos
terminal density. However, there are an infinite number of different
distributions that would be consistent with Z ¼ d=2. It is remarkable t
selected cluster distributions result in perfect matches to the pair co
function, and thus indicates an insensitivity or non-uniqueness to the
distribution.

We note that it has been shown that the two- and three-dimensional
constructed for the contact d plus step RDF as well as the three-dimensional
generated by the unit step RDF are hyperuniform systems at the terminal de
Hyperuniformity is concerned with behavior of density fluctuations at larg
scales. For a very large class of particle systems, the number variance
specified window (see Eq. (1.6)), asymptotically approaches proportionalit
window volume for large window size. In contrast, for hyperuniform syst
number variance grows asymptotically as the surface area of the d-dim
window. Thus, infinite-wavelength density fluctuations vanish for hyper
systems.

More elaborate sets of target functions defined for amorphous sphere p
qualify for an analysis such as presented in this paper. Particularly, the devia
the target functions from unity for distances beyond contact are evidently im
in determining associated properties i.e., jamming density. Applications
methods proposed in this paper cannot fail to produce a deeper under
of the statistical geometry involved in jammed sphere packings. It should b
that the hyperuniformity of such sphere packings is dependent on the cons
protocol [6].

As a final subject, we note that pair correlation functions are of central imp
in the thermodynamics of polymer melts, solutions, and glasses because
only contain information on the global effects of intermolecular (polymer–p
interaction but also give detailed information on the consequences
intermolecular potential of interaction. In addition, calculation of the interm
RDF for polymeric liquids assists in the analysis of polymer equilibrium s
and provides a direct route to the calculation of all thermodynamic pr
including an equation of state improving upon those of the solid-like lattic
models [13]. The reference interaction site model (RISM) pioneered by Chand
[14] in their investigation of the local structure of molecular liquids has serv



underlying framework in investigations on polymer systems. In particular, variations
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on the RISM integral equation approach have been used in the ana
equilibrium theory of polymer liquids in several studies of linear polyme
[15,16].

A desirable expansion of our present analysis involves investigation
constraints concerning pair correlation function realizability for polyme
under very general circumstances. In the intended investigation, one would e
hypothetical polymer model of chains of contacting monomers in either bran
unbranched forms. We stress that such an implementation is a mode
venerable tradition of simplifying details of chemical bonding structure. In
we note that an extension to the study of the realizability of the thr
distribution function g3 presents an attractive opportunity for future wo
example, one could study the realizability of g3’s that satisfy the K
superposition approximation [17].
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