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Previous Monte Carlo investigations by Wojciechowski et al. have found two unusual phases in two-
dimensional systems of anisotropic hard particles: a tetratic phase of fourfold symmetry for hard squares
�Comput. Methods Sci. Tech. 10, 235 �2004��, and a nonperiodic degenerate solid phase for hard-disk dimers
�Phys. Rev. Lett. 66, 3168 �1991��. In this work, we study a system of hard rectangles of aspect ratio two, i.e.,
hard-square dimers �or dominos�, and demonstrate that it exhibits phases with both of these unusual properties.
The liquid shows quasi-long-range tetratic order, with no nematic order. The solid phase we observe is a
nonperiodic tetratic phase having the structure of a random tiling of the square lattice with dominos with the
well-known degeneracy entropy 1.79kB per particle. Our simulations do not conclusively establish the thermo-
dynamic stability of this orientationally disordered solid; however, there are strong indications that this phase
is glassy. Our observations are consistent with a two-stage phase transition scenario developed by Kosterlitz
and co-workers with two continuous phase transitions, the first from isotropic to tetratic liquid, and the second
from tetratic liquid to solid. We obtain similar results with both a classical Monte Carlo method using true
rectangles and a novel molecular dynamics algorithm employing rectangles with rounded corners.
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I. INTRODUCTION

Hard-particle systems have provided a simple and rich
model for investigating phase behavior and transport in
atomic and molecular materials. It is long-known that a pure
hard-core exclusion potential can lead to a variety of behav-
iors depending on the degree of anisotropy of the particles,
including the occurrence of isotropic and nematic liquids,
layered smectic, and ordered solid phases.1 Through com-
puter investigations of various particle shapes, other phases
have been found, such as the biaxial2 �recently synthesized in
the laboratory3� and cubatic phases in three dimensions, in
which the axes of symmetry of the individual particles align
along two or three perpendicular axes �directors�. One only
need look at simple shapes in two dimensions to discover
interesting phases. In recent work, Wojciechowski et al. stud-
ied hard squares and found the first example of a tetratic
liquid phase at intermediate densities.4 In a tetratic liquid,
there is �quasi�-long-range orientational ordering along two
perpendicular axes, but only short-range translational order-
ing. The solid phase is the expected square lattice, with
quasi-long-range periodic ordering. On the other hand, by
studying hard-disk dimers �two disks fused at a point on their
boundary�, they have identified the first example of a nonpe-
riodic solid phase at high densities.5 In this phase, the cen-
troids of the particles are ordered on the sites of a triangular
lattice. However, the orientations of the dimers are disor-
dered, leading to a high degeneracy entropy of the nonperi-
odic solid and a lower free energy as compared to periodic
solids. An experimental study of orientational ordering in
nonequilibrium �quasi�-two-dimensional systems was re-
cently performed using vibrated granular monolayers.6 It was
found that the exact particle shape impacts the nature of the
orientational ordering substantially, with tetratic ordering ap-

pearing for rectangles �monolayers of cylinders� even for
high aspect ratios, and nematic ordering appearing for more
rounded particles.

In this paper, we look at systems of rectangles of aspect
ratio �=a /b=2, where a and b are the semiaxes of the rect-
angle, i.e., hard-square dimers �or dominos�. Since the aspect
ratio is far from unity, it is not clear a priori whether nematic
or tetratic orientational ordering �or both� will appear. Theo-
retical investigations of tetratic ordering, similar to Onsag-
er’s studies of nematic ordering, were performed by Zwanzig
for a restricted-orientation model of a system of hard rods.7

Zwanzig found a phase transition into a nematic phase at
sufficiently high densities for very elongated rods. The
theory was, however, focused on three-dimensional systems
of very elongated rods. Furthermore, restricted-orientation
models have been shown to be misleading.8 Recent density
functional theory calculations,9 extending previous work
based on scaled-particle theory,10 have predicted that for �
=2 the tetratic phase is only metastable with respect to the
ordered solid phase in which all particles are aligned. How-
ever, these calculations are only approximate and the authors
point out that tetratic order is still possible in spatially or-
dered phases. An obvious candidate for forming a stable tet-
ratic phase are dominos: two dominos paired along their long
edges form a square, and these squares can then form a
square lattice assuming one of two random orientations, thus
forming a tetratic phase with degeneracy entropy of ln��2�.
In fact, one does not need to pair up the rectangles but rather
simply tile a square lattice with dominos which randomly
assume one of the two preferred perpendicular directions.
The degeneracy entropy of this domino tiling has been cal-
culated exactly to be �2G /��kB�0.58313kB,11,12 where G
=�n=0

� �−1�n�2n+1�−2�0.91597 is Catalan’s constant. At
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high densities, free-volume theory1 predicts that the configu-
rational entropy �per particle� diverges as

SFV � f ln�1 − �/�c� + Sconf,

where f is the �effective� number of degrees of freedom per
particle, �c is the volume fraction �density� at close packing,
and Sconf is an additive constant due to collective exclusion-
volume effects. Therefore, the densest solid is thermody-
namically favored, but if several solids have the same den-
sity the additive factor matters. Therefore, for hard
rectangles, for which the maximal density is �c=1 and is
achieved by a variety of packings, the degeneracy entropy
can dominate Sconf and thus the nonperiodic random tiling
can be thermodynamically favored. Indeed, our simulations
of the hard-domino system produce high-density phases with
structures very similar to that of a random covering of the
square lattice with dimers. However, additional free-energy
calculations and more sophisticated Monte Carlo simulations
of the solid phase are necessary for definite answers.

The phase transitions in two-dimensional systems
are of interest to the search for continuous Kosterlitz-
Thouless-Halperin-Nelson-Young13–15 �KTHNY� transitions
between the disordered liquid and the ordered solid phase. At
present there is no agreement on the nature of the transition
even for the hard-disk system. A previous study of the melt-
ing of a square-lattice crystal, stabilized by the addition of
three-body interactions, found evidence of a �direct� first-
order melting.16 Our observations for the domino system are
relatively consistent with a KTHNY-like two-stage transi-
tion: a continuous phase transition from an isotropic to a
tetratic liquid with long-range tetratic order around ��0.7,
and then another continuous transition from tetratic liquid to
tetratic solid with quasi-long-range translational order at �
�0.8. However, we cannot rule out the possibility of a weak
first-order phase transition between the two phases without
more detailed simulations.

This paper is organized as follows. In Sec. II, we present
the simulation techniques used to generate equilibrated sys-
tems at various densities. In Sec. III, we analyze the proper-
ties of the various states, focusing on the orientational and
translational ordering in the high-density phases. We con-
clude with a summary of the results and suggestions for fu-
ture work in Sec. IV.

II. SIMULATION TECHNIQUES

In this section, we provide additional details on the MC
and MD algorithms we implemented. It is important to point
out that it is essential to implement techniques for speeding
up the near-neighbor search, in both MC and MD. For rect-
angles with a small aspect ratio, we employ the well-known
technique of splitting the domain of simulation into cells
�bins� larger than a particle diameter D=2�a2+b2, and con-
sider as neighbors only particles whose centroids belong to
neighboring cells. Additional special techniques more suit-
able for very aspherical particles or systems near jamming
are described in Ref. 17.

A. Monte Carlo

We have implemented a standard MC algorithm in the
NVT ensemble, with the additional provision of changing the
density by growing or shrinking the particles in small incre-
ments. Each rectangle is described by the location of its cen-
troid �x ,y� and orientation �. For increased computational
speed the pair �sin � , cos �� may be used to represent the
orientation. In a trial MC step, a rectangle is chosen at ran-
dom and its coordinates are changed slightly, either transla-
tionally ��x ,�y� or orientationally ����. Every move has an
equal chance of being translational or orientational. The rect-
angle’s new position is then compared against nearby rect-
angles for overlap; if there is no overlap, the trial move is
accepted. We call a sequence of N trials a cycle. The simu-
lation evolves through stages, defined by a speed ncycles/stage.
At the end of a cycle, pressure data are collected by the
virtual-scaling method of Eppenga and Frenkel.18 Namely,
p= PV /NkT=1+�� /2, where � is the rate at which growing
the particles causes overlaps. At the end of a stage, order
parameters and other statistics are collected, and then the
packing fraction � is changed by a small value ��; it may
be increased, decreased, or not changed at all. If ���0,
then � cannot necessarily change by �� every stage, be-
cause the increase could create overlaps. We scale down the
increase by factors of 2 until a ��eff is found that does not
cause any overlaps when applied. Typical values for runs are
ncycles/stage=1000 and ��= ±1	10−5. Since there is a limit
on how fast one can increase the density in such a Monte
Carlo simulation, especially at very high densities, we use
molecular dynamics to compress systems to close packing.

The overlap test is by far the largest computational bottle-
neck in the MC program. The overlap test for two rectangles
is based on the following fact: Two rectangles R1 and R2 do
not overlap if and only if a separating line l can be drawn
such that all four corners of R1 lie on one side of the line and
all four corners of R2 lie on the other side.19 The corners of
both rectangles are allowed to coincide with l. Without loss
of generality, we may assume l is drawn parallel to one of the
rectangles’ semiaxes and runs exactly along that rectangle’s
side. The problem of testing all possible lines l thus reduces
to testing the eight lines that coincide with the edges of R1
and R2. The test can be optimized somewhat further, as illus-
trated in Fig. 1. An axis ā of R1 is chosen. The distance from
the center of R2 to ā is found. Then the distance d0 of closest
approach of R2 to a is found by subtracting a sine and a
cosine; this distance corresponds to the corner of R2 that is
closest to ā. By comparing d0 with the length b of the other
semiaxis of R1, two possible lines l, corresponding to two
opposite sides of R1, can be tested at once. If d0
b, there is
an overlap. In this way, four different values of d0 are calcu-
lated; one for each axis of each rectangle. If no comparison
finds an overlap, there is no overlap.

B. Molecular dynamics

MC simulations are typically the most efficient when one
is only interested in stable equilibrium properties. We have
previously developed a molecular dynamics �MD� algorithm
aimed at studying hard nonspherical particles and applied it
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to systems of hard ellipses and ellipsoids.17 We have since
generalized the implementation to also handle “superel-
lipses” and “superellipsoids,” which are generalized smooth
convex shapes capable of approximating centrally symmetric
shapes with sharp corners such as rectangles. A superellipse
with semiaxes a and b is given by the equation

	
 x

a

2�

+ 
 y

b

2��1/�

� 1,

where �
1 is an exponent. We add an exponent 1 /� above
in order to properly normalize the convex function defining
the particle shape, even though it is not strictly necessary.
When �=1 we get the simple ellipse, and when �→� we
obtain a rectangle with sides 2a and 2b. The higher the ex-
ponent the sharper the corners become. The smoothing of the
corners of the rectangle enables us to apply our collision-
driven MD algorithm,17 with few changes from the case of
ellipses. Details of this implementation will be given else-

where. The floating-point cost of the algorithm increases as
the exponent increases, while the numerical stability de-
creases. We have used an exponent �=7.5 for the studies
presented here �for this exponent the ratio of the areas of the
superellipse and the true rectangle is 0.9934�. Figure 2 gives
an illustration of the particle shape.

There are some advantages of the MD simulation over
MC. The shapes of the particles can change arbitrarily fast in
an easily controlled manner by simply adding a dynamic
growth rate �=da /dt=�db /dt. If ��0, i.e., the density is
increasing, two colliding particles simply get an extra repul-
sive boost that ensures no overlaps are created. The veloci-
ties are periodically rescaled to T=1 to compensate for the
induced heating or cooling due to the particle growth.17 In
general, �common� MC methods do not work well near close
packing, while MD methods, especially event-driven ones,
can successfully be used to study the neighborhood of jam-
ming points. Additionally, pressure measurement is more
natural in the MD method, as the pressure can be directly
obtained from time averages of the momentum exchange in
binary collisions between particles. We have found this pres-
sure measurement to be much more precise than using virtual
particle scaling in MC simulations.

III. RESULTS

By using either the MC or the MD algorithm with small
particle growth rate ��� or ��, we have traced the �quasi�-
equilibrium phase behavior of systems of dominos over a
range of densities. In this section, we present several tech-
niques for measuring orientational and translational order for
a given configuration of particles, as well as the results of
such measurements for the generated states. We have tested
our codes by first applying them to hard squares and com-
paring the results to those in Ref. 4, and we have observed
good quantitative agreement throughout. Our MC pressure
measurement systematically slightly underestimates the pres-
sure compared to the NPT ensemble used in Ref. 4 and to
our MD simulations. We present some of the results for the
MC, and others for the MD simulations, marking any quan-

FIG. 1. Illustration of the optimized overlap test for two rect-

angles. The axes are ā and b̄, with semiaxes a and b, and the length
from ā to the closest corner of R2 is d0. �Left� If d0
b, then the
rectangles do not overlap. �Right� If d0
b, then the rectangles
overlap.

FIG. 2. An snapshot of a few superellipses �exponent �=7.5�
used in the MD simulations. It can be seen that the particle shape is
very close to a rectangle.
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titative differences. The two techniques always produced
qualitatively identical results.

Describing the statistical properties of the observed states
would require specifying all of the n-particle correlation
functions. The most important is the pair correlation function
g2�r ,� ,���. Given a particle, g2�r ,� ,��� is the probability
density of finding another particle whose centroid is a dis-
tance r away �from the centroid of the particle�, at a displace-
ment angle of � �relative to the first particle’s coordinate
axes�, and with a orientation of �� �relative to the particle’s
orientation�. The normalization of g2 is such that it is iden-
tically unity for an ideal gas. We will use an equivalent rep-
resentation where we fix a particle at the origin such that the
longer rectangle axis is along the x axes, and represent pair
correlations with g2��x ,�y ,���, giving the probability den-
sity that there is another particle whose centroid is at position
��x ,�y� and whose major axis is at a relative angle of ��.
Since a three-dimensional function is rather difficult to cal-
culate accurately and visualize, we can separate the transla-
tional and orientational components and average over some
of the dimensions to reduce it to a one- or two-dimensional
function.

The symmetry and nature of ordering in condensed phases
is most easily accessed by using order parameters; specifi-
cally these would be scalar order metrics, which are typically
averaged forms of local order parameters. Several types of
order metrics are commonly applied in studies of two-
dimensional hard-particle systems: orientational, bond-
orientational, and translational order metrics, or combina-
tions of orientational and bond-orientational order metrics.20

We will present results for each of these types of ordering for
the domino system. It would be useful to construct bond-
orientational and translational order metrics that do not de-
pend on splitting each domino into two squares in the future.

A. Equation of state

The pressure as a function of density can be most accu-
rately measured in the MD simulations. There is no exact
theory that can predict the entire equation of state �EOS� for
a given many-particle system. However, there are two simple
theories that produce remarkably good predictions for a va-
riety of systems studied in the literature. For the isotropic
fluid �gas� phase of a system of hard dominos, scaled-particle
theory21 �SPT� predicts

p =
1

1 − �
+

9

2�

�

�1 − ��2 , �1�

and modifications to account for possible orientational order-
ing are discussed in Refs. 9 and 10. For the solid phase, the
free-volume �FV� theory predicts a divergence of the pres-
sure near close packing of the form

p =
3

1 − �/�c
, �2�

and �liquid-state� density functional theory can be used to
make quantitative predictions at intermediate densities.9 For
superellipses with exponent �=7.5 the maximal density is

somewhat less than 1 and we take it to be equal to the ratio
of the areas of the particle and a true rectangle �c�0.9934.

The numerical EOS from the NVT MD simulation are
shown in Fig. 3 for both a slow compression starting from an
isotropic liquid and a decompression starting from a perfect
random domino tiling generated with the help of random
spanning trees, as explained in Ref. 22. We note that the
random domino tiling used was generated inside a square
box �see Fig. 11� even though periodic boundary conditions
were used in the actual simulation. We expect this to have a
very small effect.23 It is clearly seen from the figure that
there is a transition from the liquid to the solid branch in the
region ��0.7 and ��0.8, although no clear discontinuities
or a hysteresis loop are seen �which would be indicative of a
first-order phase transition�. Compressing an isotropic liquid
invariably freezes some defects and thus the jamming den-
sity is smaller �and the pressure is thus higher� than in the
perfect crystal.

B. Orientational order

Orientational order can be measured via the orientational
correlation function of order m

Gm�r� = �cos�m���
r, �3�

where m is an integer and the average is taken over all pairs
of particles that are at a distance between r and r+dr apart

FIG. 3. �Color online� Reduced pressure p= PV /NkT in a sys-
tem of N=5000 superellipses with exponent �=7.5 during MD runs
with �= ±2.5	10−5. The predictions of simple versions of SPT and
FV theory are also shown for comparison. The agreement with FV
predictions is not perfect; a numerical fit produces a coefficient 2.9
instead of 3 in the numerator of Eq. �2�. Particularly noticeable are
the change in slope around ��0.72 and also the transition onto a
solid branch well described by free-volume approximation around
��0.8. Starting the decompression from an ordered tiling in which
all rectangles are aligned produces identical pressure to within the
accuracy available. Systems of N=1250 and N=10 000 particles, as
well as a wide range of particle growth rates, were investigated to
ensure that there were no strong finite-size or hysteresis effects. In
faster compressions of an isotropic liquid one gets smaller final
densities due to the occurrence of defects such as vacancies or grain
boundaries.
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from each other. The one-dimensional function Gm�r� can be
thought of as giving normalized Fourier components of the
distribution of relative orientations vs interparticle distance.
When m=2, it measures the degree of nematic ordering �par-
allel alignment of the particles’ major axes�, and when m
=4 it measures the degree of tetratic ordering �parallel align-
ment of the particles’ axes�. The infinite-distance value
limr→�Gm�r�=Sm gives a scalar measure of the tendency of
the particles to align with a global coordinate system, S2 is
the usual nematic order parameter, and S4 is the tetratic order
parameter. They can be very easily calculated from an alter-
native definition

Sm = max
�0

�cos�m�� − �0��
 , �4�

which can be converted into an eigenvalue problem �in any
dimension� for the case m=2.24 When m=4, we can rewrite
it in the same form as m=2 by replacing � with 2�. The
vector nm= �cos �0 , sin �0� determines a natural coordinate
system for orientationally ordered phases. It is commonly
called the director for nematic phases �m=2�, and we will
refer to it as a bidirector for tetratic phases �m=4�.

In two-dimensional liquid-crystalline phases, it is ex-
pected that there can be no long-range orientational ordering,
but rather only quasi-long-range orientational ordering.25

Based on elasticity theory with a single renormalized Frank’s

constant K̃=�K / �8kBT�, it is predicted26 that there will be a
power-law decay of the correlations at large distances,
Gm�r��r−�, where

� = m2/16K . �5�

This would imply that Sm vanishes with increasing system
size,

Sm � N−�/4. �6�

We note that this prediction is based on literature for the
nematic phase. We are not aware of any theoretical work
explicitly for a tetratic phase.

The KTHNY theories predict that the isotropic liquid first
undergoes a defect-mediated second-order transition into an
orientationally quasi-ordered but translationally disordered

state when K̃=1 by disclination pair binding. At higher den-
sities there is another second-order phase transition into a
solid that has long-range orientational order and quasi-long-
range translational order, mediated by dislocation pair bind-
ing. The validity of this theory is still contested even for hard
disks,27 and its applicability to systems where there is strong
coupling between orientational and translational molecular
degrees of freedom is questionable. Additionally, the basic
theory needs to be modified to include three independent
elastic moduli as opposed to only two in the case of six-fold
rotational symmetry.

The observed change in S4 as an isotropic liquid is slowly
compressed is shown in Fig. 4 for both MD and MC runs. It
is clearly seen that tetratic order appears in the system
around ��0.7 and increases sharply as the density is in-
creased, approaching perfect order �S4=1� at close packing.
Throughout this run S2 remains close to zero and thus no

spontaneous nematic ordering is observed. It is important to
note that superellipsoids are not perfect rectangles and have
rounded sides. It is therefore not unexpected that they show
less of a tendency toward tetratic �right-angle� ordering, and
have the isotropic-tetratic �IT� transition at slightly higher
densities. Additionally, the MD runs show more �correlated�
variability due to the strong correlations between successive
states �snapshots�, and MD compressions lead to states with
more pronounced defects. Therefore, we prefer to consider
the MC results, other than at very high densities when we
have to resort to MD studies. We have also performed runs
decreasing the density of a random domino tiling, which has
no nematic but has perfect tetratic order, and the resulting S4
is also shown in the figure. Only a mild hysteresis is seen,
especially for the MC runs, which would be indicative of a
continuous IT transition, or at least a weakly discontinuous
one. We note that we have never observed a phase boundary
between a crystallized region and a disordered liquid, which
would be indicative of a first-order phase transition.

Figure 5 shows G4�r� for a collection of states in the
vicinity of the IT transition, thoroughly equilibrated using
MC, on both a log-linear �lower densities� and a log-log
�higher densities� scale. It is seen that there is a clear change
in the long-range behavior of G4�r� as the density crosses
above �c�0.70, from an exponential decay typical of an
isotropic liquid, to a slower-than exponential decay at higher
densities. The decay tails at higher densities are rather con-
sistent with a power-law decay, and the fitted exponents �
are shown in Fig. 6. It can be seen that � crosses the value
�c=1 predicted by KTHNY theory when ��0.71, which is
very consistent with the estimates of the location of the IT
transition through the other methods above. It is not clear to
us why the authors of Ref. 4 used the value of the exponent
predicted by KTHNY theory for the bond-bond orientational

FIG. 4. �Color online� Values of the order metrics S4 �see Eq.
�4��, Tk �see Eq. �9��, and �4 �see Eq. �7�� for snapshot configura-
tions along compression �marked with a plus sign in the legend� and
decompression �marked with a minus sign� MC and MD runs. A
transition in S4 is visible around ��0.7, and a transition in Tk is
indicated around ��0.8. The hysteresis between compression and
decompression runs is stronger the larger the system size and the
larger the expansion rate �, especially in MD runs.
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order in the hard-disk system, �c=1/4, instead of �c=1. The
somewhat higher values for S4 for the system with N
=1250 relative to the system with N=5000 particles are
quantitatively well-explained by Eq.�6� using the values of �
from Fig. 6. However, in order to unambiguously determine
whether the decay in G4�r� is of a power-law form, larger
systems should be studied and the scaling with system size
determined carefully. Such studies are numerically very chal-
lenging and conflicting observations have been made even
for the simplest case of hard disks. Unfortunately, for rect-
angles and superellipses, computational limitations presently
prevent us from thoroughly equilibrating samples of more
than 10 000 particles.

C. Bond-orientational order

It is geometrically intuitive that orientational ordering is
related to translational ordering, especially for elongated par-

ticles which need to coordinate orientational and transla-
tional degrees of freedom in order to avoid overlap at higher
densities. From the observations above, we are motivated to
look for translational order of the kind present in a random
domino tiling. Looking at the centroids of the dominos them-
selves does not reveal a simple pattern. However, if we split
each rectangle into two squares and look at the centroids of
the 2N squares, translational order will be manifested
through the appearance of an underlying square lattice.

From studies of other two-dimensional hard-particle sys-
tems, it has become clear that correlations between the ori-
entations of the bonds connecting nearby particles can be
�quasi� long ranged. We have measured the fourfold bond-
orientational order in the system of 2N half-domino squares
via the scalar order metric �4 defined by

�4 exp�i�� =
1

2N
�
i=1

2N
1

Nneigh
�
j=1

Nneigh

exp�4i�ij� , �7�

where �ij is the orientation of the line connecting the cen-
troids of nearby squares, and the sum for each particle is over
the 4 particles whose centroids are closest, i.e., Nneigh=4.
Here � is an angle giving the orientation of the global axes
of fourfold alignment of the bonds. Other definitions of
neighbors are possible. For example, Delaunay neighbors in
the Voronoi tesselation of the point pattern formed by the
centroids;20 however, ambiguity is always present and the
results are not very sensitive on the exact definition of neigh-
bors so long as the average number of neighbors is close to
4. We find that for dominos, �4 qualitatively follows the
behavior of S4 very closely, as illustrated in Fig. 4, i.e., ori-
entational ordering and bond-orientational ordering appear
simultaneously, just as for the hard-square system.4

D. Translational order

Measuring �quasi�-long-range translational order is more
difficult than measuring orientational or bond-orientational
ordering. Translational order is typically manifested via the
appearance of a long-ranged periodic pattern for the cen-

FIG. 5. �Color online� Top: Log-linear plot of G4�x� for thor-
oughly equilibrated samples of N=10 000 particles, showing the
decay of orientational ordering with distance x=r /D. The isotropic-
tetratic transition occurs between �=0.69 and 0.70, when the tail
behavior of G4�r� changes from exponential �short-ranged� to
slower than exponential. Bottom: Log-log plot of G4�x� for equili-
brated systems of N=5000 particles, showing power-law decay in-
dicative of quasi-long-range tetratic order. The fitted values of the
power-law exponent are shown in Fig. 6.

FIG. 6. Log-linear plot of 1 /�, where � is the exponent of decay
of G4�r� found by fitting the G4�x� data in Fig. 5 to a power-law
curve G4�x�=Cx−�.
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troids of the particles, in our case, the centroids of the half-
dominos. Such periodicity is most easily quantified by the
Fourier transform of the square �half-domino� centroids, i.e.,
the structure factor

S�k� =
1

N

�

j=1

N

exp�ik · r j�
2

. �8�

In a translationally disordered state, S�k� is of order 1 and
decays to unity for large k. For long-ranged periodic systems,
S�k� shows sharp Bragg peaks at the reciprocal lattice vec-
tors, while for quasi-long-range order the peaks have power-
law wings. It is, however, difficult to exactly determine when
true peaks replace the finite humps that exist due to short-
range translational ordering in the liquid state.

It would be convenient to have a scalar metric of transla-
tional order similar to S4 for tetratic order. We use the aver-
aged value of S�k�� over the first four Bragg peaks

Tk =
1

2N
	S�2�

ã
n�� + S�2�

ã
n��� , �9�

where ã=a /�� is the expected spacing of the underlying
square lattice and n� and n� are two perpendicular unit vec-
tors determining the orientation of the square lattice. For a
liquid Tk�0, and in the tiling limit Tk=1 �however, defects
can disrupt periodicity and significantly reduce the value of
Tk below unity�. When decompressing a prepared tiling, we
already know n� = �1,0� and it is best to use this known
value. However, when compressing a liquid, we have no way
of knowing the final orientation of the lattice. We have tried
using the bidirector n� =n4, as determined during the mea-
surement of S4. This method does not appear to work well
because even small fluctuations in the director cause large
fluctuations in Tk. Better results were obtained by using n�

= �cos � , sin �� as determined from Eq. �7�, as was done in
Ref. 20; however, the large fluctuations remained. We there-
fore chose to do a brute-force search for the unit vector n�

that maximizes Tk, i.e., we rotate the presumed square lattice
in small increments and find the optimal orientation.

A fundamental problem with Tk measured in this way is
that it is smaller than unity away from the tiling limit even in
a perfectly periodic domino system, since the two squares
forming the domino are always closer than they would be if
they were not glued together. In Fig. 4, we show the values
of Tk along with S4. It is seen that for the decompression run,
Tk starts at unity and decays continuously until it apparently
goes to zero around ��0.8. We are therefore led to believe
that there is a second transition from tetratic liquid to tetratic
solid at ��0.8. However, the transition is not sharp and the
value of Tk is already too small to confidently distinguish it
from zero. It is therefore possible that translational ordering
appears as soon as tetratic ordering does, around ��0.7, as
would be the case if a �mild� first-order phase transition ex-
isted around this density.

In addition to reciprocal space S�k�, one can also look at
the center-to-center-distance distribution function g2�r� for
the squares �half-dominos�. However, quantitative analysis
of g2�r� is made difficult because of oscillations due to ex-

clusion effects and also due to the coupling to orientation.
Instead of presenting such a one-dimensional pair correlation
function, we present g2��x ,�y�, which is simply the orien-
tationally averaged g2��x ,�y ,���. In Figs. 7–9 we show a
snapshot of a system of N=5000 dominos, along with the

FIG. 7. �Color online� A snapshot configuration of a system of
N=5000 dominos at �=0.7 �top� with inset with threefold magni-
fication showing local packing structure, along with g2��x ,�y�
overlayed over the underlying square lattice �middle� and S�k� �bot-
tom�, obtained after splitting each domino into two squares. It is
clear that the system is isotropic from the rotational symmetry of
S�k�. Only short-range order is visible in g2��x ,�y�, confirming
that this is an isotropic liquid.
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corresponding g2��x ,�y� and S�k�, for three densities, cor-
responding to an isotropic liquid, a tetratic liquid �i.e., a state
with �quasi�-long-range tetratic but only short-range transla-
tional order�, and a tetratic solid �i.e., a state with �quasi�-

long-range tetratic and translational order�. For the
g2��x ,�y� plots, we have drawn the expected underlying
square lattice at that density. Note that g2��x ,�y� always has
two sharp peaks corresponding to the square glued to the one
under consideration in the dimer �domino�.

FIG. 8. �Color online� A system of N=5000 dominos as in Fig.
7 but at �=0.750, which shows a tetratic liquid phase. Fourfold
broken symmetry is seen in S�k�, but without pronounced sharp
peaks. The range of ordering in g2�r� has increased, but still appears
of much shorter range than the size of the system, as seen clearly in
the plot of the actual domino configuration. It is interesting that
g2��x ,�y� is very anisotropic, being much stronger to the side of a
square relative to its diagonals. No phase boundary characteristic of
first-order transitions is visible.

FIG. 9. �Color online� A system of N=5000 dominos as in Figs.
7 and 8 but at �=0.825. The structure factor shows sharp peaks
�maximum value is above 10� on the sites of a �reciprocal� square
lattice, and g2�r� shows longer-ranged translational ordering, indi-
cating a solid phase. Visual inspection of the configuration confirms
that the translational ordering spans the system size and shows
some vacancies consisting of only a single square �half a particle�.

DONEV et al. PHYSICAL REVIEW B 73, 054109 �2006�

054109-8



E. Solid phase

The investigations of ordering presented so far suggest
that the domino system is very similar to the hard-square
system4 when dominos are split into two squares. Essentially,
around ��0.7 the centroids of the squares form a disordered
square lattice and their orientations align with the orientation
of the square lattice, and the lattice itself orders over large
distances at higher densities, leading to a tetratic solid. How-
ever, a fundamental question remains concerning the way in
which the squares are joined to form the dominos in the
thermodynamically stable solid phase. There are two likely
possibilities: The tiling shows �translational� ordering itself,
or the tiling is “random.” In the context of a discrete system
such as domino tilings, the concept of a random tiling is
mathematically well defined in terms of maximizing
entropy.23,28 This random tiling has a positive degeneracy
entropy 0.58313kB, unlike ordered tilings such as the nematic
tiling �in which all dominos are aligned�.

Our compressions of isotropic liquids have invariably led
to apparently disordered domino tilings upon spontaneous
“freezing,” albeit with some frozen defects. This suggests
that the disordered tiling has lower free energy than ordered
tilings. However, it is also possible that the disorder is sim-
ply dynamically trapped when the tetratic liquid freezes. In
fact, starting a decompression run from an aligned nematic
tiling shows that the tiling configuration is preserved until
melting into a tetratic liquid occurs somewhat below �
�0.8. This is demonstrated in Fig. 10, where both S4 and S2
as well as Tk are shown along a decompression run starting
with both a disordered and an ordered tiling. It is seen that S2
drops sharply around ��0.8 while S4 remains positive until
��0.7, clearly demonstrating the thermodynamic stability
of the tetratic liquid phase in the intermediate density range.
Subsequent compression of this liquid would lead to a disor-
dered tiling without any trace of the initial nematic ordering.

It is intuitive to expect that the free-volume contribution
to the free energy is minimized for ordered tilings at high
densities. However, we also expect that solid phase is er-
godic in the sense that transitions between alternative tiling
configurations will occur in long runs of very large systems,
so that in the thermodynamic limit the space of all tilings
will be explored. This amounts to a positive contribution to
the entropy of the disordered tiling due to its degeneracy, and
it is this entropy that can thermodynamically stabilize the
disordered tiling even in the close-packed limit. A closer
analysis similar to that carried for hard-disk dimers in Refs. 5
and 29 is necessary. In particular, including collective Monte
Carlo trial moves that transition between different tiling con-
figurations, as well as relaxation of the dimensions of the
unit cell �important for smaller solid systems�, is important.
Furthermore, only free-energy calculations can determine the
free-volume entropies of various tiling patterns.

We conjecture that, just like the hard-disk dimer system,
the hard-square dimer system has a thermodynamically
stable nonperiodic solid phase. Even if this conjecture is
false and the nematic phase is thermodynamically favored at
sufficiently high densities, our simulations indicate that the
dynamics is glassy; that is to say, the system gets trapped in
disordered tilings even for very long runs, unlike the hard-
disk system, where crystallization occurs easily. As in the
hard dumbbell �fused hard-disk dimers� system, we expect
that for aspect ratios close to, but not exactly, two, the non-
periodic solid will be replaced by a nematic �and possibly
periodic� phase at the highest densities.29,30 This is because
reaching the maximal density �=1 seems to require aligning
the rectangles. It is interesting, however, that at least for
rational, and certainly for integer aspect ratios such as �=3,
there is the possibility of disordered solid phases being stable
even in the close-packed limit. On physical grounds we ex-
pect the phase diagram to vary smoothly with aspect ratio,
rather than depending sensitively on the exact value of �,
and the determination of the phase diagram around �=1 and
�=2, even if only qualitatively, is an important challenge for
future research.

Accepting for a moment the existence of a nonperiodic
solid phase, it remains to verify that the compressed systems
we obtain in our simulations are indeed similar to �maximal
entropy� random tilings of the plane with dimers. This is
hard to do rigorously, as it requires comparing all correlation
functions between a random tiling and our compressed sys-
tems. Figure 11 shows a visual comparison of a random til-
ing of a large square, generated using random spanning trees
by a program provided to us by the authors of Ref. 22, and a
system of superellipses compressed to �=0.95 �close to the
achievable maximum for our MD program for such high
superellipse exponents�. While the translational ordering in
the compressed solid is clearly not perfect as it is for the true
tiling, visual inspection suggests close similarity between the
local tiling patterns of the two systems. Note that the primary
type of defect that we observe are single-square vacancies,
i.e., half-dominos missing from the true tiling of the plane.
The number of vacancies observed during slow compres-
sions is small and we do not expect it to affect thermody-
namic properties significantly. In Fig. 12, we show
g2��x ,�y� for the true tiling, along with the difference in g2

FIG. 10. �Color online� Nematic-, tetratic-, and translational-
order metrics as a domino tiling in which all rectangles are aligned
is slowly decompressed from close packing. The nematic crystal
spontaneously realigned to a different orientation of the director
from the starting one at around ��0.84, causing some fluctuations
and a drop in Tk which are likely just a finite-size �boundary� effect.
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between the true tiling and the compressed solid. Here we do
not split the rectangles into two squares, i.e., the figure
shows the probability density of observing a centroid of an-
other rectangle at ��x ,�y� given a rectangle at the origin
oriented with the long side along the x axis. It can be seen
that there is a close match between the random tiling and the
compressed solid, at least at the two-body correlation level.

IV. CONCLUSIONS AND FUTURE DIRECTIONS

The results presented in this paper highlight the unusual
properties of the simple hard-rectangle system when the as-
pect ratio is �=2, hopefully stimulating further research into

the hard-rectangle system. For square dimers �dominos�, in
addition to the expected low-density isotropic liquid phase, a
stable tetratic liquid phase is clearly observed, in which there
is fourfold orientational ordering but no translational order-
ing. A tetratic solid phase closely connected to random
domino tilings is observed and we conjecture that it is ther-
modynamically stabilized by its positive degeneracy entropy.
The transitions between the phases are consistent with a
KTHNY-like sequence of two continuous transitions. If this
is indeed the case, then the hard dimer system provides an
excellent model for the study of continuous transitions, with
a rather large gap in density between the two presumed tran-
sitions ���0.1, unlike the hard-disk system. Random

FIG. 11. A comparison between a true random tiling of a square
with dominos �Ref. 22� �top�, and the unit cell of a system of N
=5000 superellipses with exponent �=7.5 slowly compressed from
isotropic liquid to �=0.95 �bottom�. The compressed system is not
a perfect tiling due its lower density and frozen defects, as well as
the rounding of the superellipses relative to true rectangles. There-
fore at large scales the two systems look different. However a closer
local examination reveals similar tiling patterns in the two systems,
typical of “random” tilings.

FIG. 12. �Color online� Top: Center-center pair correlation func-
tion g2��x ,�y� for the perfect random tiling in Fig. 11. This g2 is a
collection of �-functions whose heights can also be calculated ex-
actly �Ref. 31� �the calculation is nontrivial and we have not per-
formed it�. We have normalized g2 so that the highest peaks have a
value of one. Bottom: The absolute value of the difference between
g2��x ,�y� for the two systems shown in Fig. 11, shown on a
coarse-enough scale so that the broadening of the peaks due to
thermal motion is not visible. The color table used in this figure is
discrete in order to highlight the symmetry and hide small fluctua-
tions due to finite system size. The difference in g2 is almost en-
tirely within the smallest interval of the color table �less than 0.1,
gray�, with only some peaks showing differences up to 0.25.
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jammed packings of rectangles seem to be translationally
ordered, similar to the behavior for disks32 but unlike spheres
which can jam in disordered configurations.33 However, un-
like disks, the systems of rectangles show orientational dis-
order, once again illustrating the geometric richness of even
the simplest hard-particle models.

Further investigations are needed for the domino system
to conclusively determine its phase behavior. Improved MC
with collective moves that explore multiple tilings, as well as
allow for relaxation of the boundary conditions, should be
implemented. Additionally, the free energies of the different
phases should be computed so that the exact locations of the
phase transitions could be identified. The final goal is to
completely characterize the phase diagram of the hard rect-

angle system in the �-� plane, as has been done, for ex-
ample, for diskorectangles26 and ellipses.34 In addition to
nematic and smectic phases, novel liquid crystal phases with
tetratic order may be discovered.
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