
Mechanics of Materials 38 (2006) 958–968

www.elsevier.com/locate/mechmat
Expanded solid matter: Two-dimensional LJ modeling

F.H. Stillinger *, D.K. Stillinger

Department of Chemistry, Princeton University, Princeton, NJ 08544, USA

Received 10 December 2004
Abstract

The existence and technological importance of expanded solid forms of matter such as aerogels indicate the need for
related theoretical and simulational modeling. As an elementary step in this direction, we have examined a concurrent
(as opposed to sequential) aggregation process for Lennard-Jones particles in two dimensions, starting from dilute initial
conditions. Steepest-descent mapping on the multi-particle potential energy surface to mechanically stable minima (‘‘inher-
ent structures’’) is the basic tool involved. The results obtained for N = 400 particles display a wide diversity of extended,
branched, and void-enclosing patterns that typically include frozen-in strains. Not surprisingly, the energies of these inher-
ent structures tend to lie toward the high end of the full range of available inherent structure energies for 400 Lennard-
Jones particles. Furthermore, the geometric characteristics observed for these low-density aggregates support theoretical
arguments indicating that the number of distinct inherent structures in free space rises faster than exponentially with par-
ticle number N.
� 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

As a result of specialized formation circum-
stances, a wide variety of normally dense solid mate-
rials can be rendered into highly expanded, but still
solid forms. Geometrically this involves spatial
inhomogeneity by virtue of incorporated regions
of empty space, with length scales ranging from
nanometers upward into the macroscopic regime.
Perhaps the most spectacular example of expanded
solid matter is provided by the family of silica-based
aerogels (‘‘solid smoke’’) that can have mass densi-
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ties less than 1% of conventional fused silica (Frick,
1988; Pekala and Hrubesh, 1995). Other examples
include solidified polymer foams such as styrofoam
(Brydson, 1989), spongy metals created by radiation
damage (Sheely, 1967; Engh, 1992), and carbon
allotropes containing ‘‘buckyballs’’ (Krätschmer
et al., 1990) or single-walled nanotubes (Kong
et al., 1998). Mesoporous solids can also be formed
by low-temperature deposition of simple materials
such as nitrogen and krypton on suitable substrates
(Kiryukhin et al., 1997). The existence of these
expanded solid materials obviously raises a group
of intriguing scientific and technical questions, such
as those concerning the distribution of local geome-
tries within their interiors, the sensitivity of local
structure to formation conditions, the mechanical
.

mailto:fhs@princeton.edu


F.H. Stillinger, D.K. Stillinger / Mechanics of Materials 38 (2006) 958–968 959
and thermodynamic properties of the expanded sol-
ids, and how those expanded solids interact with
various forms of radiation and with invading fluids.
And coupled to each of these questions is how their
answers depend upon details of the specific inter-
action potentials that operate among the particles
constituting the materials of interest.

While far from attempting to address all of these
questions, the present paper presents a simple mod-
eling approach that reveals some aspects of the com-
plexity at the atomic/molecular length scale that
expanded solid materials can exhibit. In the interests
of conceptual simplicity and ease of visualization,
the results reported below are restricted to two spa-
tial dimensions. However, complex many-particle
cooperative effects arise even in this simple circum-
stance, and manage to create a rich panoply of geo-
metric patterns. As will become apparent to the
reader, the approach described below is amenable
to extension in several significant directions, and
eventually deserves some attention beyond what
we are able to describe here.

Section 2 outlines features of the Lennard-Jones
interaction model that are relevant to our calcula-
tions. Section 3 describes the formation process
employed to create mechanically stable expanded
structures. This process is a configurational mapping
operation, using a multi-dimensional steepest-des-
cent procedure that has had beneficial applications
previously in various condensed-phase theoretical
and simulational studies. Section 4 specifies the tech-
nical details involved in setting up and carrying out
the numerical aspects of this project, while Section
5 presents and analyzes results. A final Section 6 dis-
cusses several issues raised by those results, and
offers suggestions for the most useful directions for
future study in this area.

2. LJ model

We consider a collection of N structureless parti-
cles confined to a plane of infinite extent in all direc-
tions. The N particles interact with one another
according to a potential energy function U that
comprises a sum of particle-pair contributions:

Uðr1 . . . rN Þ ¼
X
i<j

vðrijÞ. ð2:1Þ

Here ri denotes the position of particle i in the infi-
nite plane, and rij is the scalar distance between par-
ticles i and j. The pair interaction function will be
assigned the Lennard-Jones (LJ) form (Jones, 1924):
vðrÞ ¼ 4e½ðr=rÞ12 � ðr=rÞ6�. ð2:2Þ
This choice involves repulsion at very short dis-
tance, but attraction at intermediate distance that
rapidly dies away with increasing pair separation,
though remaining non-vanishing at all finite dis-
tances. The energy (e) and distance (r) units in v
have been set equal to unity for the purposes of this
study, and as a result v has a unit-depth minimum at
pair separation

rmin ¼ 21=6 ffi 1:12246. ð2:3Þ
When a large number N of these LJ particles have
the opportunity to seek and adopt the most favor-
able (i.e. lowest U) arrangement in the plane, they
produce the compact triangular lattice, with each
particle surrounded by six nearest neighbors. This
periodic structure with vanishing pressure repre-
sents a compromise between the repulsive cores of
the particles which by themselves force those parti-
cles apart, and the attractive forces that draw them
as closely together as possible. A straightforward
calculation for the triangular lattice shows that the
final result of this compromise U minimization pro-
duces a nearest-neighbor separation rnn somewhat
less than rmin shown above:

rnn ffi 1:11142 ð2:4Þ
and at this nearest-neighbor separation the triangu-
lar lattice has the following value of the interaction
potential per particle:

lim
N!1

U=N ¼ �3:38342. ð2:5Þ

All other spatial arrangements of the LJ particles
exhibit higher values of U/N.

Because the collection of N particles resides in the
infinite plane, U possesses several elementary invari-
ances owing to symmetry. Clearly it is unchanged by
translation of all particle positions r1. . .rN by a com-
mon arbitrary vector displacement. It is also
unchanged by arbitrary rotation of the set of posi-
tions. Inversion or mirror-imaging of the particle
configuration also leaves U unchanged. Finally, U
is invariant to all N! permutations of the identical
particles.
3. Mapping to potential minima

Present interest concerns mechanically stable
arrangements of N particles in the plane, where
the interactions have the LJ form specified by Eqs.
(2.1) and (2.2). These arrangements are all local
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minima of the full N-body potential U, and have no
net force on any particle. All of the minima can in
principle be accessed in the 2N-dimensional config-
uration space of particle coordinates by a steepest
descent trajectory on the ‘‘rugged U landscape’’,
starting from some suitable particle arrangement,
until the multi-dimensional gradient of U vanishes.
The set of all starting configurations that map to
the same minimum constitutes a ‘‘basin of attrac-
tion’’ for that minimum under the steepest descent
process. The collection of all basins exhaustively
covers the entire configuration space. Following
the tradition established by frequent use of this
procedure in various condensed matter physics
and chemistry applications, the U minima will be
called ‘‘inherent structures’’ (Giovambattista et al.,
2002; Della Valle et al., 2003; Sheng and Ma,
2004).

Steepest descent trajectories can be parameter-
ized by means of a virtual ‘‘time’’ parameter
0 6 s <1, where s = 0 corresponds to the initial
configuration, and s! +1 represents convergence
to the relevant inherent structure. The set of particle
positions r1(s). . .rN(s) during this mapping opera-
tion obey the following set of coupled differential
equations:

driðsÞ=dt ¼ �riU½r1ðsÞ . . . rN ðsÞ� ð1 6 i 6 NÞ.
ð3:1Þ

Here the differential operator $i denotes the gradi-
ent with respect to the coordinates of particle i. This
set of Eq. (3.1) simply states that particles displace
by rates proportional to the respective forces that
they experience, until all forces simultaneously
vanish.

Enumerating all inherent structures, either ana-
lytically or numerically, for any given potential
function largely remains an open problem, except
for rather small N. However some general results
are available. If the N particles are confined to a
finite region so that the overall number density is
q > 0, then as N!1 at fixed q, the number X of
distinct inherent structures (i.e. not counting parti-
cle permutations) rises essentially exponentially with
N (Stillinger and Weber, 1983):
Fig. 1. Representative example of a mechanically stable n
ln XðN ; qÞ � aðqÞN ðq > 0; a > 0Þ. ð3:2Þ

Beside its indicated density dependence, the positive
quantity a(q) depends as well on the specific interac-
tion function involved.

The present study in principle concerns a finite
number N of particles in the infinite plane, so the
number density q = 0. Several arguments are avail-
able to indicate that a(q) diverges to infinity as
q! 0, implying that the extra space available for
placing particles in mechanically stable arrange-
ments permits the existence of a very large number
of spatially extended inherent structures. Those
arguments (Stillinger, 2001) indicate that asymp-
totic estimate (3.2) above needs to be replaced by
the alternative form:

ln XðN ; q ¼ 0Þ � cN ln N ðc > 0Þ. ð3:3Þ

One of the objectives of the present study has
been to verify the assumed existence of a large and
diverse class of extended inherent structures for sub-
stantial collections of LJ particles. In this connec-
tion it is worth noting that the spatially most
extended inherent structure for N particles with LJ
interactions, and probably the inherent structure
with the highest value of U/N, consists of a straight
double row of particles. Fig. 1 illustrates this ‘‘nee-
dle’’ pattern. Numerical analysis readily verifies that
indeed this arrangement is mechanically stable.
Except near the ends where some dilation occurs,
the near-neighbor distances are found to be
1.11452 (in the direction parallel to the needle axis)
and 1.12011 (diagonally across the needle), both
somewhat larger than the compact triangular crystal
rnn in Eq. (2.4) above. In the infinitely long needle
limit, the binding energy per particle has the
value:

lim
N!1
½U=N �needle ¼ �2:11628. ð3:4Þ

The three-dimensional analog of this needle
arrangement for LJ particles involves a stack of tri-
angles whose planes are perpendicular to the needle
axis, and which have a 60� twist from one layer to
the next (Stillinger and Stillinger, 1990).
eedle cluster, in this case containing 30 LJ particles.
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4. Numerical simulation

In order to investigate the kinds of inherent
structures that the LJ model is capable of producing
under low density conditions, we have applied a
numerical implementation of the steepest descent
mapping to a random initial configuration of
N = 400 particles (following preliminary feasibility
investigations with both N = 100 and 400). These
particles were initially placed at random within the
interior of a circle with radius 52.504 (in reduced
units). The corresponding formal reduced density
for this starting point is q = 0.046188, less than
one-twentieth of the zero-temperature, zero-pres-
sure value for the triangular crystal, qtri = 0.93479.
Fig. 2 presents an example of such a starting config-
uration. Subsequently, all N particles in principle
are free to move throughout the entire infinite plane.

Steepest descent trajectories, moving all 400 par-
ticles simultaneously toward an inherent structure,
were generated by numerically approximating solu-
tions to the basic equation set (3.1). This requires a
lengthy sequence of direct incremental displace-
ments for each particle by an amount proportional
to the net force experienced by that particle:
Fig. 2. Typical random starting configuration of 400 LJ partic
Driðsþ dsÞ ffi �dsriU½r1ðsÞ . . . rN ðsÞ�. ð4:1Þ

At the beginning of a simulation of the type just de-
scribed, it is almost always the case that at least one
pair of the LJ particles has been randomly placed at
very small separation, so that the members of such a
pair exert very strong repulsive forces on one an-
other. This is so even though the overall number
density is small. Consequently, the earliest stage of
numerical integration requires use of very small ds.
After these close pairs move apart during this early
stage (while other particles are virtually stationary),
it then becomes possible to increase ds monotoni-
cally. However, experience has shown that an effec-
tive upper limit ds = 4 · 10�3 must be observed.
Any substantial increase above this value leads to
numerical instability, causing an explosive destruc-
tion of the clustering aggregate of particles.

Some insight into the operation of the steepest
descent process emerges by considering its simplest
application, namely the relative motion of a pair
of LJ particles isolated from the remaining 398,
and initially far enough from one another that only
the attractive r�6 portion of their interaction is rel-
evant. In this circumstance, their pair separation r
les confined to the interior of a circle with radius 52.504.
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as a function of virtual time s will be described by
the following differential equation:

drðsÞ=ds ¼ �48r�7ðsÞ ð4:2Þ
with solution:

rðsÞ ¼ ½r8ð0Þ � 384s�1=8. ð4:3Þ
This result predicts that the amount of time s1 that
would have to elapse for pair distance r to decline to
unity (when the repulsive part of the pair potential
has become important) is:

s1 ffi 2:1r8ð0Þ. ð4:4Þ

If r(0) is large, most of the elapsed time for the pair
is spent with extremely slow drift toward one
another, and only near the end of this interval does
sudden acceleration occur to produce cluster
coalescence.

As virtual time s increases, the steepest descent
process in the full 400-particle system first causes
particle pairs to form, which then to grow into lar-
ger clusters as they combine with monomers and
previously formed dimers, trimers, etc. These aggre-
gation processes amount to a local scavenging phe-
nomenon, creating larger and larger empty zones
around already-formed clusters. The time-scale
expansion indicated in Eq. (4.4) above for dimeriza-
tion can be adapted to larger clusters, with qualita-
tively the same result. Growth of distances between
neighboring clusters implies greater and greater
chronological separation between distinct cluster
in-fall and aggregation events. Consequently,
numerical integration of the steepest descent equa-
tions evolves into an intermediate stage consisting
of long intervals during which little cluster move-
ment and little change in U occurs, separated by
sudden events in which pairs of clusters combine
and U drops quickly to a lower value. In the later
stages of the numerical integration, on account of
this time dilation effect, sequences of lengthy runs
were executed, each comprising 3 · 106 steps.

Owing to the extreme slowness of the later stages
of steepest descent for dilute systems such as that
under study here, it has proved impractical to utilize
that procedure alone to identify the final inherent
structure. Instead, while following the steepest
descent operation as it produces a collection of
relatively large isolated clusters, the numerical
procedure switched repeatedly to a much more effi-
cient variant, the quasi-Newton MINOP method
for locating minima (Kaufman, 1999). It needs to
be stressed that the MINOP procedure does not
interrupt the steepest descent process, but only uti-
lizes its instantaneous particle configurations as its
own input. An alternative procedure that might have
served about as well as MINOP is the standard con-
jugate gradient method (Press et al., 1986). Neither
of these alternative procedures strictly follow the
multi-dimensional gradient direction, but in the
low density regime both have the capacity to hop
over low ridges on the U hypersurface that for dilute
systems apparently are present in great profusion.
This is actually a substantial advantage for the pres-
ent investigation, because it creates access to a wide
collection of inherent structures. In principle, the
collection of MINOP outputs is essentially equiva-
lent to strict application of the steepest descent map-
ping, but from a distribution of distinct starting
configurations. Results presented in Section 5 show
system configurations both before and after imple-
mentation of this minimizing scheme.
5. Results

As empty scavenged zones develop around parti-
cle clusters, counting those clusters and classifying
them by numbers of included particles becomes
essentially unambiguous. The only uncertainties
occur during those short time intervals during which
cluster aggregation processes are underway. In any
case, discrete clusters can be identified by a precise
‘‘physical cluster’’ criterion that is based on a pair-
distance connectivity criterion to decide inclusion
or exclusion (Stillinger, 1963). Suppose this has been
done, and then let nk(s) denote the number of clus-
ters containing exactly k particles, present at virtual
time s. Then for the present series of calculations
these numbers satisfy the condition:

400 ¼
X400

k¼1

knkðsÞ ð5:1Þ

and yield the average cluster size at virtual time s:

hki ¼ 400
X400

k¼1

nkðsÞ
,

. ð5:2Þ

Fig. 3 presents a system configuration that
started as shown in Fig. 2, after the aggregation
process driven by the steepest descent process has
been underway, but still in a relatively early stage.
The virtual time that has elapsed at this snap-
shot is s ffi 4770. This configuration presents 74



Fig. 3. Early-stage configuration showing cluster aggregation. The virtual time that has elapsed during the steepest descent process is
approximately 4770. At this stage the average cluster size is 5.41 particles.
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distinguishable clusters, for a mean cluster size
hki ffi 5.41. The potential energy at this stage of
the steepest descent process is U ffi �614.533.

The system configuration at a substantially later
stage of the steepest descent operation appears in
Fig. 4. The elapsed virtual time at this snapshot is
s ffi 423,000. The potential energy has declined to
U ffi � 803.261. Aggregation has reduced the num-
ber of distinct clusters to 19 (average cluster size
hki ffi 21.05). The mean gap between neighboring
clusters has widened considerably, in comparison
with that of the preceding Fig. 3 (the plotting length
scales are virtually the same for the two figures). It
also should not escape attention that most of the
clusters present rather non-compact shapes, evi-
dently reflecting the preferred directions along
which the steepest descent process has brought the
component smaller fragments into contact. More
specifically, clusters tend to be attracted to, and to
attach to, one another at their most protuberant
portions as a result of the rather short range of
the LJ forces.

Figs. 5–9 provide a sampling of the inherent
structures for the 400 LJ particles, generated from
intermediate-stage configurations of the steepest
descent process. The order of their appearance in
these figures corresponds to increasing virtual time
of the steepest descent process that supplied the
initial configurations for MINOP. In the authors�
opinion, these figures convey at least qualitatively
the types of tenuous final aggregation patterns that
can occur when just a single connected cluster
appears. These five examples have been selected
from the collection of 92 inherent structures gener-
ated for the 400 LJ particles, no two of which were
identical in structure or energy.

The captions to Figs. 5–9 state the respective val-
ues of potential energy U for those inherent struc-
tures shown. These values lie well within the upper
and lower bounds for all inherent structures for
400 LJ particles in the unbounded plane. As men-
tioned above, the upper bound corresponds to the
fully extended needle configuration. Our calcula-
tions suggest that the lower bound, the lowest-lying
inherent structure, involves an hexagonal piece
of the triangular lattice, comprising 397 particles
(a ‘‘perfect hexagon number’’ of the form 3n2 �
3n + 1), augmented by the remaining three particles



Fig. 4. Intermediate stage configuration during the steepest descent process, following that shown in Fig. 3. The elapsed virtual time at this
point is approximately 423,000, and the average cluster size is 21.05.

Fig. 5. Inherent structure generated from the intermediate-stage
configuration of the steepest descent operation, shown above in
Fig. 3. The potential energy is �1041.704.

Fig. 6. Inherent structure generated from an intermediate stage
of the steepest descent procedure. The potential energy of this
configuration is �976.705.
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Fig. 7. Inherent structure generated from an intermediate stage
of the steepest descent procedure. The potential energy of this
configuration is �1009.080.

Fig. 8. Inherent structure generated from an intermediate stage
of the steepest descent procedure. The potential energy of this
configuration is �967.687.

Fig. 9. Inherent structure generated from an intermediate stage
of the steepest descent procedure. The potential energy of this
configuration is �936.838.

F.H. Stillinger, D.K. Stillinger / Mechanics of Materials 38 (2006) 958–968 965
resting together midway on one side of the hexa-
gon. Consequently, all 400-particle inherent struc-
ture energies apparently must lie within the inter-
val:

�843:097 P U P �1263:247. ð5:3Þ
The average value of the 92 inherent structure ener-
gies constructed from the steepest descent trajectory
is:

hUi ¼ �1001:189. ð5:4Þ
The fact that this average is significantly closer to
the upper limit in Eq. (5.3) than to the lower limit
evidently illustrates the statistical preponderance
of non-compact particle arrangements, with corre-
spondingly reduced numbers of close particle con-
tacts. The highest and lowest values obtained for
inherent structures during the simulation were
�929.707 and �1091.372, respectively. Further-
more, examination of the entire set of 92 inherent
structures shows the expected steady trend toward
more compactness as energy descends over this
interval. It is reasonable to suppose that if the steep-
est descent process had started with the 400 particles
randomly dispersed over a larger circular area, the
resulting inherent structures would have tended to
be even more tenuous and higher in average poten-
tial energy.

The inherent structure presented in Fig. 5 was
generated from the steepest-descent-mapping con-
figuration that appeared earlier in Fig. 3. This pro-
vides a clear example of the occurrence of large
portions of empty space that are often found
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enclosed by particle bridges formed from subsets of
the full 400 particle system. They are a key struc-
tural element in the formation of two-dimensional
expanded matter with the LJ interaction. The case
shown in Fig. 6 illustrates multiple branching, to
produce a dramatically non-convex outer contour
of the inherent structure. Neighboring branches
around such a contour can be regarded as incom-
plete enclosures of empty space, and if a substan-
tially larger number of LJ particles than 400 had
been considered in the calculation, enclosure could
well have occurred. Fig. 7 displays a medium-sized
cavity that is partly surrounded by a strongly curved
bridge amounting to a stressed portion of a needle
structure. Fig. 8 demonstrates how thin a profile
can arise in what is nominally a mechanically stable
(but no doubt rather fragile) arrangement of the 400
LJ particles. The final example, Fig. 9, can credibly
be argued as representing the beginning of the
growth of a larger spongy structure, pervaded with
large voids.

Some of the voids appearing in the inherent
structures can simply be identified as cases of miss-
ing-particle clusters within what would otherwise be
locally a close-packed (triangular) crystal arrange-
ment. The simplest of these are the monovacancy
(bounded by six neighboring particles) and the diva-
cancy (eight neighboring particles), single examples
of which both appear in Fig. 5. Depending of course
on the number of LJ particles available to form an
inherent structure, polyvacancies of arbitrarily large
size are possible. However, many other cavity types
also arise, which cannot simply be identified as poly-
vacancies, but are associated with crystal disloca-
tions. The two voids in Fig. 8, that are larger than
its divacancy, have this character. For both of these,
hypothetical attempts to fill them with extra parti-
cles would yield a small void surrounded by five
neighboring particles, not six as with a monova-
cancy. Other examples exhibit seven neighboring
particles either directly, or after hypothetical parti-
cle additions.

Generally, the voids can be classified according
to their ‘‘Burgers vector’’ (Meyers, 1997). Voids that
are simple monovacancies, divacancies, or polyva-
cancies have vanishing Burgers vectors. The remain-
ing cases have non-vanishing Burgers vectors
specifying the amount of local strain that has to
be imposed on an unstrained lattice in order to
match up the contacting lines of particles that
remain around the cavity. These strain-exhibiting
particle arrangements amount to dislocations in
the underlying triangular lattice structure. Fig. 7
exhibits a case of substantial strain manifested as
strong inward curvature. When a non-vanishing
Burgers vector is present (always a multiple of the
lattice vector), the lines of particles surrounding
the void curve inward or outward, depending on
the local direction of that vector. Inherent structures
for large numbers of LJ particles in an expanded
solid state can simultaneously exhibit voids with a
variety of Burgers vectors.

6. Discussion

The existence of many diverse expanded (low
density) forms of matter depends on the capacity
of those materials� constituent particles to adopt
mechanically stable arrangements (inherent struc-
tures) that incorporate substantial void space. This
capacity evidently can arise from a wide variety of
binding interactions, and it remains a challenge to
determine how details of those interactions quanti-
tatively influence the specific properties of the
expanded solids at both the molecular and macro-
scopic levels. The present investigation offers a small
contribution to this subject. It has been restricted to
particle aggregation in two dimensions, and has
utilized the very simple and theoretically popular
Lennard-Jones (LJ) pair potential. In spite of these
simplifications, the results obtained from the coop-
erative aggregation process considered exhibit sev-
eral non-trivial and informative properties.

The scenario considered starts with a dilute gas-
like arrangement of 400 point particles, confined
for convenience only at the outset to the interior
of a large circle. Forces between these particles are
specified uniquely by the LJ pair interactions pres-
ent. The initial particle configuration is subse-
quently deformed by the steepest-descent process
(Eq. (3.1)), moving the particles toward a mechani-
cally stable potential energy minimum (an ‘‘inherent
structure’’). For practical reasons, the later stages of
the minimization process are handled by an effi-
cient function minimization routine (MINOP). As
a result of repeated application of that latter routine
at regularly spaced times of the steepest descent it
has been possible to generate a large collection of
inherent structures characteristic of a dilute vapor.

The representative samples of the inherent struc-
tures produced in this investigation, shown in Figs.
5–9, illustrate the ability of the LJ model of interact-
ing particles to aggregate into a wide variety of spa-
tially extended structures. These low-density solid
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structures can be highly branched, and can enclose
void space that ranges in size from single missing
particles (monovacancies) to holes of much larger
size limited only by the fixed number of particles
present in the calculations. Furthermore, these spa-
tially extended inherent structures can, and usually
do, incorporate elements of disorder and strain
associated with non-vanishing Burgers vectors.
The average value of the binding energy for this col-
lection of inherent structures has been found to lie
significantly closer to the upper limit for 400 LJ
particles than to the lower limit, owing to the large
fraction of the 400 that reside at the external and
internal surfaces of the extended, branched, void-
containing inherent structures. Such geometric
patterns of course cannot arise from a system
constrained to high density. These observations
confirm the assumptions that were previously
invoked to analyze the enumeration of distinguish-
able inherent structures in the low-density regime
(Stillinger, 2001).

Of course it is highly desirable to extend the pres-
ent simple two-dimensional modeling to three
dimensions. Even retaining the LJ interaction in
that extension, some important changes can be
anticipated. First, the void space within the interior
of a spatially extended inherent structure can be
connected to the exterior by means of tunnels, either
simple or multiply branched. Second, the locally
dense regions packed with LJ particles in three
dimensions have many possible amorphous
arrangements, in contrast to the obvious local crys-
talline order that is evident in the two-dimensional
examples exhibited in Figs. 5–9. Third, though
likely to be rare, is the possibility in three
dimensions that separate bridges of particles, both
attached to the main body of an inherent structure,
can geometrically pass through one another without
touching. In any case, one expects the preponder-
ance of inherent structures formed in unbounded
three-dimensional space to have the same strong
statistical tendency toward spatial extension, and
to reinforce the same qualitative assumptions about
enumeration that apply to the two-dimensional
scenario.

It is perhaps inevitable that the present inherent
structure generation method, based on the steep-
est-descent mapping operation, should be compared
and contrasted with the so-called ‘‘diffusion-limited
aggregation’’ (DLA) process (Witten and Sander,
1981; Meakin, 1983). Both techniques produce
ensembles of spatially extended cluster structures
for which the concept of ‘‘fractal dimension’’ may
become applicable in the large-system limit. How-
ever, DLA is a sequential process, by which single
particles are added irreversibly to a growing cluster.
The present approach is concurrent, i.e. all particles
present in the final inherent structure are present
from the outset, initially causing formation of small
clusters that eventually combine to produce the final
single aggregate. The DLA results tend to be highly
dendritic, that is, consisting of radially diverging
thin branches that in two dimensions seldom
enclose void space disconnected from the exterior
space. Most DLA simulations use an underlying
discrete lattice of available particle positions, and
so cannot produce structures for which non-vanish-
ing Burgers vectors are present. DLA processes do
not involve a potential energy function, one of the
basic elements of the present modeling.

One of the obvious limitations of the present
approach is that it cannot directly address the very
low density regime of particle aggregation. Although
attractive LJ forces are present at any large distance
between pairs of particles, it becomes impractical to
attempt any numerical study of steepest-descent
mapping when the average distance between neigh-
boring particles in the initial configuration is very
large. Nevertheless, it is reasonable to extrapolate
from the present observations into the very dilute
regime with the conclusion that for sufficiently large
particle number N, the typical inherent structures
that would be produced would be even more
extended. If one were to imagine surrounding each
final configuration with a convex envelope, the den-
sity of points within that envelope would approach
zero in the large-N, zero-initial-density limit.

Although the calculations reported in this paper
have utilized a circle-herded initial configuration
embedded in an infinite space, alternative boundary
condition choices should eventually be examined.
An obvious alternative is periodic boundary condi-
tions, for example with a square (two dimensions)
or cubic (three dimensions) primary cell containing
N particles, surrounded on all sides by a periodic
array of image cells extending to infinity. Upon
reduction to corresponding mechanically stable
inherent structures, this would provide an approxi-
mation to an infinitely extended expanded solid with
density determined by the choice of primary cell
size. Considering the clear tendency toward aggre-
gate non-compactness exhibited by the results of
the present study, it seems clear that results likely
to emerge with periodic boundary conditions will
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be above the percolation threshold (i.e. globally
connected throughout all space) unless the density
was very low. It will be instructive in the long run
to determine, for any given interaction, what density
represents that percolation threshold.

Returning finally to the silica aerogel example
mentioned at the outset, we remind the reader that
reasonably accurate potential energy functions have
been published for SiO2 and that these are available
for study of low-density inherent structures using the
kinds of strategies considered in this paper (Tsu-
neyuki et al., 1988; van Beest et al., 1990). Among
other issues that deserve attention, such simulations
could determine the similarities and differences in
chemical bonding characteristics between aerogels
and solid amorphous silica, and the chemical reactiv-
ity of the surface of the aerogel inorganic network to
foreign species such as water and hydrogen fluoride.
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