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We calculate the global phase diagram using classical statistical mechanics for an isotropic pair
potential that has been previously �Rechtsman et al., Phys. Rev. Lett. 95, 228301 �2005�� shown to
produce the low-coordinated two-dimensional honeycomb crystal as the ground-state structure.
Low-coordinated crystals are of practical interest because they have desirable photonic band-gap
properties. The phase diagram is obtained from Helmholtz free energies calculated using
thermodynamic integration and Monte Carlo simulations. Our results show that the honeycomb
crystal remains stable in the global phase diagram even after temperature effects are taken fully into
account. Other stable phases in the phase diagram are high and low density triangular phases and a
fluid phase. We find no evidence of gas-liquid or liquid-liquid phase coexistence. © 2006 American
Institute of Physics. �DOI: 10.1063/1.2213611�
I. INTRODUCTION

Self-assembly is the process whereby components of a
system arrange themselves into a larger functional unit by
virtue of their mutual interactions.1 It is a truly ubiquitous
phenomenon in nature. The spontaneous folding of a protein
into its native state, the formation of the DNA double helix
from two complementary oligonucleotide chains, and the for-
mation of lipid bilayers as membranes are just a few biologi-
cal examples. Synthetic self-assembling systems, especially
on the nanoscale, have been the focus of much research in
the last decade, as their technological importance has be-
come more and more apparent. Examples of these are block
copolymer nanostructures,2 colloidal and nanoparticle
crystals,3 and organometallic patterning in two dimensions.4

A particularly ambitious goal is the self-assembly of the dia-
mond lattice colloidal crystal, which has been called the
“holy grail” of colloid science, since such a material has a
full photonic bandgap and could thus be used in photonic
circuitry. As we reach the limits of resolution of conventional
microlithography, self-assembly is becoming widely viewed
as the best method of engineering extended nanoscale struc-
tures, and hence, the key materials of the future.

Attempts to find systems that will self-assemble into de-
sired structures have been largely based on trial and error
rather than on any systematic procedure. Despite much ex-
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perimental and theoretical research that has been carried out
in the search for exotic and technologically relevant self-
assembling systems, there has been no accepted theoretical
framework for the process of self-assembly as a whole. In a
preceding study by some of us,5,6 a statistical-mechanical
inverse method was formulated that allows one to optimize
interactions that stabilize a target crystalline, amorphous, or
even quasicrystalline structure. The optimization method was
applied in two dimensions to produce isotropic pair poten-
tials that give rise to the low-coordinated square and honey-
comb crystals. In Refs. 5 and 6, the stability of the crystal
structures was based on lattice sums, mechanical stability
�phonon spectra�, and annealed Monte Carlo �MC� simula-
tions. While these methods guarantee stability, they do not
give information on the global phase behavior where the
effects due to temperature �or, equivalently, entropy� are in-
cluded. Moreover, the knowledge of the global phase behav-
ior is of importance for experimental colloidal studies that
seek to achieve the target crystal structures.

Motivated by these recent studies,5,6 in the current paper
we examine the global phase behavior of what we call a
“honeycomb potential,” i.e., the interaction potential that in
Refs. 5 and 6 was shown to stabilize the honeycomb crystal.
We use classical statistical mechanics and the phase diagram
is obtained from Helmholtz free energies calculated using
thermodynamic integration and Monte Carlo simulations. We
find that the honeycomb crystal is indeed stable in the global

phase diagram along with two triangular phases and a fluid
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phase. We also find that the phase diagram is dominated by
fluid-solid and solid-solid phase coexistence regions, and we
find no evidence of gas-liquid or liquid-liquid phase
separation.

This paper is organized as follows. In Sec. II, we de-
scribe the methods used to calculate the phase diagram. In
Sec. III, we discuss the results, including the phase diagram
and snapshots of the system. We close with concluding re-
marks and related discussion in Sec. IV.

II. METHODS

The so-called honeycomb pair potential u�r� used in this
paper is given by5,6

u�r� =
5

r12 −
5.89

r10 + 17.9 exp�− 2.49r�

− 0.4 exp�− 40�r − 1.823�2� �1�

and is plotted in Fig. 1. In Eq. �1�, the potential u�r� and the
radial distance r are expressed in reduced units of energy ���
and distance ���, respectively. We can then define the re-
duced temperature as T=kBT� /� and the reduced �spreading�
pressure as P= P��3 /kBT�, where T� and P� are the conven-
tional temperature and pressure, respectively. The pair poten-
tial has two minima: a shallow one at r�1.07 and a slightly
deeper one at r�1.84. In Refs. 5 and 6 this potential was
shown to give rise to the self-assembly of the honeycomb
crystal. We point out that our potential in Eq. �1� is similar in
form to the Stell-Hemmer core-softened potential,7–10 which
has been studied in two dimensions in Refs. 11 and 12.

The Helmholtz free energy of the solid phases was cal-
culated using the Frenkel-Ladd method.13,14 In this method,
one starts from an Einstein crystal where the particles are
tied to their ideal lattice positions by harmonic springs. Then,
the springs are slowly removed and one recovers the original
interactions. The auxiliary potential energy function for N

N N

FIG. 1. The honeycomb potential.
particles at r = �ri�i=1 is given by
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U��rN� = U�rN� + T���
i=1

N

�ri − r0,i�2, �2�

where U�rN�=�i�j
N u�	ri−r j	� is the total potential energy, r0,i

is the ideal lattice position of particle i, � is a dimensionless
spring constant, and �� �0,1� is a coupling parameter. At
�=0, we recover the system where particles interact via the
honeycomb potential, while at �=1, once the spring constant
� is chosen large enough �we used �=8�104�, the particles
do not “feel” each other and the system reduces to an Ein-
stein crystal with Madelung energy U�r0

N� �the potential en-
ergy of a crystal with all particles at their ideal lattice posi-
tions�. The Helmholtz free energy for a system of N particles
on area A at temperature T is given by13–15

F�N,A,T� = F�=1�N,A,T,�� − T

0

1

d����
i=1

N

�ri − r0,i�2�
�

CM

,

�3�

where the ensemble average ¯��
CM is calculated with a

Boltzmann factor exp�−U� /T� for a crystal with a fixed cen-
ter of mass �CM�, and the free energy of the reference state is
given by

F�=1�N,A,T,�� = U�r0
N� + �N − 1�T ln��

�
� − T ln�A� . �4�

In practice, the integral in Eq. �3� was calculated using the
Gauss-Legendre quadrature16 with ten integration points. In
order to obtain a more slowly varying function for the nu-
merical integration, we changed the integration variable � to
ln���+c�, where c=1/ �i=1

N �ri−r0,i�2�0
CM, see Ref. 13.

The Helmholtz free energy of a fluid phase was calcu-
lated using the Kirkwood’s coupling parameter method,13,17

where we used the two-dimensional Weeks-Chandler-
Anderson18 �WCA� fluid as the reference state. The auxiliary
potential energy function is given by

U	�rN� = �1 − 	�UWCA�rN� + 	U�rN� , �5�

where UWCA�rN�=�i�j
N uWCA�	ri−r j	� is the total potential en-

ergy of a WCA fluid, 	� �0,1�, and

uWCA�r� = �4��1/r�12 − �1/r�6 + 1
4� for r � 21/6

0 for r 
 21/6.
� �6�

The Helmholtz free energy is given by

F�N,A,T� = FWCA�N,A,T� + 

0

1

U�rN� − UWCA�rN��	d	 ,

�7�

where FWCA�N ,A ,T� is the free energy of a two-dimensional
WCA fluid. We calculated FWCA�N ,A ,T� from the numerical
integration of the scaled particle theory19 equation of state
given by

P��,T�
�

=
1

�1 − ��/4��d�T�2�2 , �8�
where �=N /A is the number density, and
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d�T� =
0.3837T + 1.068

0.4293T + 1
�9�

is the effective diameter according to Verlet and Weis.20 This
combination of the equation of state and the effective diam-
eter has been shown to give good agreement with computer
simulations at all densities and temperatures.21 The integral
in Eq. �7� was calculated using the Gauss-Legendre
quadrature16 with ten integration points.

The number of particles used in the free energy calcula-
tions was 264 for the triangular and fluid phases, and 270 for
the honeycomb phase. These particle numbers are commen-
surate with the triangular and honeycomb lattice structures
and produce nearly square shaped simulation boxes. In the
fluid phase simulations, the box was always square shaped.
We used the standard Metropolis Monte Carlo method22 and
applied periodic boundary conditions in both coordinate di-
rections. The interaction potential in Eq. �1� was truncated at
half of the smaller simulation box side length. This results in
a relative cutoff error in the total energy per particle of order
10−5 or less, which is negligible compared to the statistical
error in the average total energy per particle that is of order
10−3. The ensemble averages were obtained from MC simu-
lations that consisted of 104 equilibration steps �trials to dis-
place each particle once� and 2�104 sampling steps. Addi-
tionally, we performed constant pressure simulations and
calculated the equation of state at various temperatures. The
constant pressure MC runs consisted of 105 equilibration
steps and 2�105 sampling steps, and they were used both to
check the phase diagram for presence of crystals other than
the triangular and honeycomb, and to test the fluid phase free

FIG. 2. The phase diagram for the honeycomb potential in the reduced
density �, reduced temperature T representation. The black circles denote
the points where two phases coexist. The statistical uncertainties are smaller
than the symbol sizes. The regions of stable fluid, triangular, and honey-
comb phases are indicated by the labels “fluid,” “TRI” and “HON,” respec-
tively, and the coexistence regions are marked by “fluid+TRI,” “TRI
+HON,” etc., and the tie lines are horizontal. The black lines are guide to
the eye, and the crosses indicate the locations where the snapshots in Figs.
4–7 are taken.
energy data.
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III. RESULTS AND DISCUSSION

The phase diagram for the honeycomb potential is
shown in the reduced density �, reduced temperature T rep-
resentation in Fig. 2, and in the reduced temperature T, re-
duced pressure P representation in Fig. 3. In Figs. 2 and 3,
the regions of stable fluid, triangular, and honeycomb phases
are indicated by the labels “fluid,” “TRI,” and “HON,” re-
spectively. In Fig. 2, the two-phase coexistence regions are
labeled as “fluid+TRI,” “TRI+HON,” etc. As can be seen
from Figs. 2 and 3, at low temperatures and with increasing
density or pressure, the sequence of phases is fluid, triangu-
lar, honeycomb, and triangular. There are therefore two tri-
angular phases, one at low density and one at high density.
The sequence triangular-honeycomb-triangular can be under-
stood based on the following reasoning. In the low density
triangular phase at density �=0.34, the nearest-neighbor dis-
tance is approximately 1.84, which corresponds to the loca-
tion of the deeper minimum in the interaction potential at r
�1.84. As the density is increased to �=0.69, the honey-
comb crystal becomes stable because it has the nearest
neighbors at distance r�1.06, close to the shallow minimum
at r�1.07, and the next nearest neighbors at distance r
�1.83, close to the deeper minimum at r�1.84. At density
�=1.02, the triangular phase is again stable because it has
the nearest-neighbor distance of r�1.06 that is close to the
shallow minimum at r�1.07. At ever higher �, the triangular
lattice remains stable as the strongly repulsive core region of
u�r� dominates nearest-neighbor interactions.

As is seen from Fig. 2, the regions of stable triangular
and honeycomb crystals are small compared to the surround-
ing fluid-triangular and triangular-honeycomb coexistence
regions. We also observe that the density of the stable trian-
gular and honeycomb phases remains approximately con-
stant with increasing temperature. The low density triangular

FIG. 3. The phase diagram for the honeycomb potential in the reduced
temperature T, reduced pressure P representation. The regions of stable
fluid, triangular, and honeycomb phases are indicated by the labels fluid,
TRI, and HON respectively. The black circles denote the points where two
phases coexist. The statistical uncertainties are smaller than the symbol
sizes. The black lines are guide to the eye, and the crosses indicate the
locations where the snapshots in Figs. 4–7 are taken.
phase terminates at a triple point at T�0.17, and the honey-
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comb phase terminates at a triple point at T�0.21. Note that
both triple points are only rough estimates and that more free
energy calculations would be needed to determine them more
accurately. At T
0.25, the only stable phases are the fluid
phase and the high density triangular phase. At higher tem-
peratures still, the system is dominated by the repulsive core
of u�r�, and one thus obtains the familiar fluid-triangular
phase coexistence similar to hard disks.23 According to
the Kosterlitz-Thoules-Halperin-Nelson-Young �KTHNY�
theory,24–28 in two-dimensional systems like ours, it is ex-
pected that solid phases melt via two continuous transitions.
Since studies of the KTHNY transition require somewhat
larger system sizes than the ones used in the present study,
and because we expect the hexatic phase predicted by the
KTHNY theory to play a negligible role in the phase dia-
gram, we have chosen not to look for the two-stage melting
here.

It is interesting to note that the phase diagram does not
contain a gas-liquid phase coexistence region in the low tem-
perature, low density part of the phase diagram. Instead, this
part of the phase diagram is dominated by a broad gas-solid
coexistence. Such behavior has been previously observed for
interaction potentials that have a narrow potential well

FIG. 4. Snapshot of a system with N=500 particles at T=0.1 and �=0.21,
where fluid is in coexistence with a low density triangular crystal.

FIG. 5. Snapshot of a system with N=500 particles at T=0.2 and �=0.65,

where fluid is in coexistence with a honeycomb crystal.
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minimum,29,30 such as the one used in this study. We also
find no evidence of liquid-liquid phase coexistence, although
conceivably this could be present because the potential has
two minima.

The statistical uncertainties in Figs. 2 and 3 are smaller
than the symbol sizes. The systematic error due to finite sys-
tem size was studied by repeating the calculations at approxi-
mately half as many particles. Halving the system size
shifted the fluid side of the fluid-triangular coexistence line
at the high density, high temperature �T
0.25� part of the
phase diagram to higher densities by less than 0.1, while
other parts of the phase diagram changed by less than the
symbol size. Since doubling the system size did not change
the high density, high temperature part of the phase diagram,
we conclude that the systematic error due to finite system
size is unlikely to change the main features of the phase
diagram.

Figures 4–7 show snapshots of systems at certain points
in the phase diagram. The locations of the snapshots in Figs.
4–7 are indicated in Figs. 2 and 3 by the gray crosses. The
snapshot in Fig. 4 is taken at T=0.1 and �=0.21, where fluid
is in coexistence with a low density triangular crystal. In Fig.
4, one sees small areas of crystal order surrounded by a fluid
that is rather structured and consists of voids and particles

FIG. 6. Snapshot of a system with N=505 particles at T=0.2 and �=0.8,
where a honeycomb crystal is in coexistence with a high density triangular
crystal.

FIG. 7. Snapshot of stable honeycomb crystal with N=264 particles at T

=0.15 and �=0.69.
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that are mostly distance r�1.84 apart from each other. The
snapshot in Fig. 5 is taken at T=0.2 and �=0.65, where fluid
is in coexistence with a honeycomb crystal. The snapshot in
Fig. 6 is taken at T=0.2 and �=0.8, where a honeycomb
crystal is in coexistence with a high density triangular crys-
tal. The snapshot in Fig. 7 shows stable honeycomb crystal at
T=0.15 and �=0.69.

IV. CONCLUSIONS

We have calculated the global phase diagram for an iso-
tropic pair potential that has been designed to give the low-
coordinated two-dimensional honeycomb crystal.5,6 Our re-
sults show that the honeycomb crystal is indeed stable in the
global phase diagram at positive temperatures. In the low
temperature region, we find a sequence of fluid, triangular,
honeycomb, and triangular phases connected by two-phase
coexistence regions. We did not find evidence of a gas-liquid
or liquid-liquid phase coexistence but instead found a gas-
solid phase coexistence.

In the density-temperature representation, the size of the
coexistence regions is much larger than the size of stable
region of the honeycomb crystal. This is so because the
search algorithm that was used to find the interaction poten-
tial was designed to optimize the potential close to the T
=0 limit. Large coexistence regions could mean difficulties
for experimental studies that try to realize the honeycomb
crystal, especially if the interaction potential is density de-
pendent. Since the size of the stable region of the honeycomb
crystal is larger in the pressure-temperature representation, a
tactically better way to achieve the honeycomb crystal would
be to perform the experiments at constant spreading pressure
instead of constant density. It would also be interesting to see
if one would be able to establish a statistical-mechanical in-
verse method that searches for interaction potentials that give
rise to large single-phase regions instead of two-phase coex-
istence. Such methods would have to include, in addition to
the lattice sums, an estimate of the entropic contribution to
the free energy.

ACKNOWLEDGMENTS

This work was partially supported by the NSF �MRSEC
Program� through the Princeton Center for Complex Materi-
Downloaded 23 Nov 2006 to 128.112.71.224. Redistribution subject to
als �DMR 0213706� through a PCCM Fellowship to one of
the authors �A.P.H.�. Additional support was provided by
ACS-PRF �Grant No. 38165-AC9� to another author
�A.Z.P.�. Three of the authors �M.C.R., F.H.S., and S.T.�
gratefully acknowledge the support by the Office of Basic
Energy Sciences, DOE, under Grant No. DE-FG02-
04ER46108.

1 G. M. Whitesides and B. Grzybowski, Science 295, 2418 �2002�.
2 S. A. Jenekhe and X. L. Chen, Science 283, 372 �1999�.
3 Z. Cheng, W. B. Russel, and P. M. Chaikin, Nature �London� 401, 893
�1999�.

4 G. M. Whitesides and P. E. Laibinis, Langmuir 6, 87 �1990�.
5 M. C. Rechtsman, F. H. Stillinger, and S. Torquato, Phys. Rev. Lett. 95,
228301 �2005�.

6 M. C. Rechtsman, F. H. Stillinger, and S. Torquato, Phys. Rev. E 73,
011406 �2006�.

7 P. C. Hemmer and G. Stell, Phys. Rev. Lett. 24, 1284 �1970�.
8 G. Stell and P. C. Hemmer, J. Chem. Phys. 56, 4274 �1972�.
9 J. M. Kincaid, G. Stell, and C. K. Hall, J. Chem. Phys. 65, 2161 �1976�.

10 J. M. Kincaid, G. Stell, and E. Goldmark, J. Chem. Phys. 65, 2172
�1976�.

11 M. R. Sadr-Lahijany, A. Scala, S. V. Buldyrev, and H. E. Stanley, Phys.
Rev. Lett. 81, 4895 �1998�.

12 N. B. Wilding and J. E. Magee, Phys. Rev. E 66, 031509 �2002�.
13 D. Frenkel and B. Smit, Understanding Molecular Simulations, 2nd ed.

�Academic, New York, 2002�.
14 D. Frenkel and A. J. C. Ladd, J. Chem. Phys. 81, 3188 �1984�.
15 J. M. Polson, E. Trizac, S. Pronk, and D. Frenkel, J. Chem. Phys. 112,

5339 �2000�.
16 M. Abramowitz and I. Stegun, Handbook of Mathematical Functions

�Dover, New York, 1970�.
17 J. G. Kirkwood, J. Chem. Phys. 3, 300 �1935�.
18 J. D. Weeks, D. Chandler, and H. C. Andersen, J. Chem. Phys. 54, 5237

�1971�.
19 E. Helfand, H. L. Frisch, and J. L. Lebowitz, J. Chem. Phys. 34, 1037

�1961�.
20 L. Verlet and J. J. Weis, Mol. Phys. 24, 1013 �1972�; Phys. Rev. A 5, 939

�1972�.
21 F. Cuadros and A. Mulero, Chem. Phys. 156, 33 �1991�.
22 N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller, and E.

Teller, J. Chem. Phys. 21, 1087 �1953�.
23 B. J. Alder and T. E. Wainwright, Phys. Rev. 127, 359 �1962�.
24 J. M. Kosterlitz and D. J. Thouless, J. Phys. C 6, 1181 �1973�.
25 J. M. Kosterlitz, J. Phys. C 7, 1046 �1974�.
26 B. I. Halperin and D. R. Nelson, Phys. Rev. Lett. 41, 121 �1978�.
27 D. R. Nelson and B. I. Halperin, Phys. Rev. B 19, 2457 �1979�.
28 A. P. Young, Phys. Rev. B 19, 1855 �1979�.
29 A. P. Gast, C. K. Hall, and W. B. Russel, J. Colloid Interface Sci. 96, 251

�1983�.
30 M. H. J. Hagen and D. Frenkel, J. Chem. Phys. 101, 4093 �1994�.
 AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp


