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Introduction 

by F. H. STILLINGER, Jr. 

The following set of papers written or coauthored by Professor Kirkwood 
have been selected as falling into either of two categories: Quantum Statistics, 
or Cooperative Phenomena. Under each of these headings, the papers are 
arranged chronologically. One unavoidably concludes that it is much to 
Professor Kirkwood's credit to have contributed original and notable ideas 
in the evolution of these fields, which even today rank among the most active 
and fashionable areas of theoretical physics. 

The general excitement prevalent in physical and chemical circles during 
the early years of quantum mechanics undoubtedly held strong attraction for 
theorists of that period. The early papers on intermolecular forces, polariz 
abilities, and susceptibilities written by Professor Kirkwood (contained in 
another section of this Collection) clearly show he was no exception. To one 
trained specifically in the Gibbsian methods of statistical mechanics it was, 
therefore, entirely natural to inquire about the effects that quantization has 
on the equilibrium properties of matter. The initial investigations (the articles 
are included with the others on intermolecular forces) were concerned with 
the quantum mechanical second virial coefficient of monatomic gases. 

The first paper included here, "Quantum Statistics of Almost Classical 
Assemblies", represents a systematic procedure (supplementing that of 
Wigner') for generating asymptotic quantum corrections to the canonical 
partition function in powers of Planck's constant. This paper, along with 
"Statistical Theory of Low Frequency Intermolecular Forces", which follows 
it, verify that for most applications of interest in physical chemistry the 
quantum corrections to predictions of classical statistical mechanics are 
indeed small. Since so much of Kirkwood's later research was devoted to the 
regime of classical statistics, these two papers conceivably formed a strong 
personal justification for the subsequent specialization. 

Included here as well is a correction to "Quantum Statistics of Almost 
Classical Assemblies", required by the failure of the final partition function 
expression, Eq. (21) in that paper, to yield an extensive free energy. Strangely 
enough, although the correction does indeed satisfy that condition by 
insertion of the necessary reciprocal factorial of particle number, it is not 
itself quite correct. The functions S(p) appearing in Eq. (3) of the correction 
unfortunately are not uniquely defined. One easily sees, for example, that in 
the case of free particles, where the wave functions themselves have the form 
shown in Eq. (2) of the correction, that one might choose: 

S(p) = (pi - P1) . . . 6(pN )9N), 

where the set of momenta j3i . . . fiN are specified by the index n. Since no 
more than 2S + 1 pa's can be equal for fermions with spin S, and since the 
p1 's which are equal to one another for bosons are not distinguishable, the 
S. can never form a complete set in the usual sense. Equally well, and perhaps 
more appropriately for the problem considered, the symmetrized (Bose 

1 E. Wigner, Phys. Rev. 40, 749 (1932). 



statistics) or antisymmetrized (Fermi statistics) average form also satisfies 
Eq. (3): 

S(p) = 	: (+ 1 	_ Pj31) . . . 6 (pN FJf3N). N. p 

If one then adopts this additional symmetry convention for the S, it is then 
possible to show (easily for small numbers o4' free particles by direct calcula-
tion) that Eq. (5) in the correction should read: 

S(p')S(p) 	I  
'7 	 = (/)3N(N!)2± V pWPI - Pj31) . . . (p - PPN), 

where h (in the obsolete notation of the time) is Planck's constant divided by 
2r. The partition function with properly extensive free energy subsequently 
follows. 

Considering the large amount of thought and computational effort 
devoted during his career to the classical liquid pair correlation function, 
Professor Kirkwood must surely have found gratification in the fundamental 
idea behind the three papers on liquid helium written in collaboration with 
R. M. Mazo. Thus, in spite of the fact that liquid helium vividly provides an 
example of matter about as far removed from the classical limit as one 
ordinarily encounters, it was shown at least approximately that the preceding 
classical calculations could be directly applied to the pair distribution in 
helium, simply by choosing a suitable temperature-, density-, and statistics-
dependent effective temperature, T. This parameter, which absorbs the entire 
manifestation of nonclassical behavior, was not calculated, but could be 
estimated from measured thermodynamic data. 

In the last of these three articles ("Statistical Thermodynamics of Quantum 
Fluids") appears the statement that the classically useful superposition 
approximation applied to the diagonal elements of the triplet density matrix: 

P3(123 123) 	p2(12 I 1 2)p2(13 I 13)p2(23 I 
Pi (I I l)o'(2  I 2)i (3 3) 

is less accurate than the corresponding classical limiting case. To account 
properly for particle indistinguishability, the appropriate quantum super-
position principle should read: 

p(l 	2) pi(l 	3)1 

p(2 { 2) p1(2 	3) g(l2)g(13)g(23), 

Pi (3 	2) pi (3 I 3) 	± 

p(l 	1) pi(l 	2) 

p(2 I p1(2 I 
g(12), 

and the subscripts + indicate interpretation as permanent or determinant for 
Bose or Fermi statistics, respectively. It is interesting to note that by means of 
this closure relation, the coupled equations for the singlet density matrix 

2 

and the diagonal part of the pair matrix (both of which may be deduced 
Eq. (3) of this third liquid helium paper) are jointly soluble in principle 
would hence permit calculation of the central quantity T. 

The work devoted to application of finite-temperature Thomas-1 
theory to correlation effects in systems with a degenerate electror 
("Quantum Statistical Theory of Plasmas and Liquid Metals", and "Qua 
Statistical Theory of Electron Correlation") are notable for their u 
electrolyte solution theory techniques, especially the charging pr 
Besides the acknowledged neglect of exchange energy, which can readi 
inserted into the development, it is perhaps also worth noting here 
another conceptually desirable refinement could also be incorpor 
although final numerical analysis might be materially lengthened. This 
from the fact that electrons are not static point charges, but have a 
velocity; consequently, for an electron moving with momentum p, 
density of other electrons surrounding it must be measured in a fran 
reference moving with respect to the Fermi sphere. In place of Eq. (2) c 
second of these two papers, say, one should write: 

n(rp) — J 	dpi 
, - - 1 + exp  {{Q' - p)2/2m - e,b(r,p) - pj/kT}' 

where b(r,p) is the generally aspherical mean potential at distance r fron 
electron of interest. Inclusion of both exchange and this velocity depend 
presumably would lead to better agreement in the high density region 
the known electron gas correlation energy limit. 

The last paper under the quantum statistics heading was written 
Professor Kirkwood's death. Since the fundamental ideas were his, oi 
not surprised to see in its beginnings a similarity in approach to the first p 
in this section. The intention, however, was to analyze the full rang 
quantum behavior in interacting many-body systems, without being restri 
to asymptotic deviations from the classical region. Although no mentio 
the fact was given in the article, it is easily possible to find explicitly 
statistics-independent interaction function F() appearing in the developir 
for certain simple cases, such as harmonic oscillators, and pairs of i 
spheres. 

The earliest type of cooperative phenomenon to receive scrutiny in 
Kirkwood papers was the order-disorder transformation in binary alloy 
is generally recognized that the approach outlined in the three art 
entitled: "Order and Disorder in Binary Solid Solutions," "Critical Beha 
of Solid Solutions in the Order-Disorder Transformation," and "Statisi 
Mechanics of Cooperative Phenomena," constitutes the first comprehen 
and systematic theoretical analysis of this broad class of problems in class 
statistical mechanics. Thus, by a well-defined (but possibly tedious) proced 
it was shown possible to generate an approximate evaluation of the on 
disorder partition function valid to any finite pre-assigned order in mv 
temperature. This "semi-invariant expansion" was carried out to fourth oi 
for the lattices considered; later, Chang 2  extended the calculation to s 
order. More recently, Brout 3  has examined in detail a re-ordering of 

2  T. S. Chang, J. Chem. Phys. 9, 169 (1941). 
3  R. Brout, Phys. Rev. 118, 1009 (1960). 
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2  T. S. Chang, J. Chem. Phys. 9, 169 (1941). 
3  R. Brout, Phys. Rev. 118, 1009 (1960). 
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semi-invariant expansion to improve convergence over the entire temperature 
range. 

The nature of the critical point in a given order-disorder model is still a 
largely unsettled problem. Apparently, carrying the Kirkwood scheme through 
some finite order always yields a finite, but discontinuous, specific heat, and 
a coexistence curve parabolic at the critical point. Actually, in the exactly 
soluble two-dimensional Ising model, and almost certainly as well in three 
dimensions, the specific heat suffers an infinite singularity, and the coexistence 
curve is considerably flatter than parabolic. 4  Probably the implication ought 
to be drawn that expansions in long-range order, such as exhibited in Eq. (7) 
of the second of these three papers, fail to converge at the critical point. 

The opinion has often prevailed that the significant analytic features of the 
various kinds of phase transitions should be common to theories of all of 
them, and so it has become common to refer to the phase transition problem. 
The application of the semi-invariant technique to systems other than binary 
alloys was consequently a natural step, and some of the papers collected under 
the heading "Solutions" display precisely this application for liquid mixtures. 

It was clearly recognized, and stated, in the early cooperative phenomena 
investigations reprinted here, that the vibrational contributions to the free 
energy were assumed to be independent of the mixing order parameters. That 
this decoupling is much less appropriate for the assumed mixing of molecules 
and voids in the "hole" theory of liquid-vapor coexistence than in true solid 
or liquid state mixture theories, forms the basis of "Remarks on the Hole 
Theory of Condensation." The final cooperative phenomena article, "Con-
tribution of Lattice Vibrations to the Order-Disorder Transformation in 
Alloys" explicitly calculates the effect of vibrational coupling, and demon-
strates thereby an enhanced specific heat anomaly. 

In the hole theory critique, it was stated (at the beginning of Part II) that if 
cellularization of space were to be carried out by means of nearest-neighbor 
(Voronoi) polyhedra for the face-centered cubic lattice of close-packed rigid 
molecular cores, that at most one molecular center could lie in each cell. 
Actually, it is possible to place up to four such centers in each polyhedron, 
but the amount of freedom left for movement of two or more particles in the 
same cell, though finite, is very small. The assumption of at most single 
occupancy is hence a reasonably good one with this cell choice. 

"On Phase Changes in Crystals Arising from Hindered Molecular Rota-
tion," and "Phase Transitions in Monolayers Due to Hindered Molecular 
Rotation" are, respectively, the theories of cooperative molecular orientation 
in three and two dimensions. The type of interaction chosen, depending only 
on a single angle between the axes of a pair of neighboring molecules, 
probably oversimplifies the physical situation. Instead, it is more suitable to 
have an interaction similar to the classic dipole-dipole energy (though 
perhaps of shorter-range character) depending on the orientation vectors of 
the molecular axes, ai and a2,  and the separation r12 between the centroids, in 
the form: 

f(r12)al . T12 . a2, 

where the dyadic tensor T 12  is defined: 

T12 = 	1 - 3r r12r12, 

4  M. E. Fisher, J. Math. Phys. 4, 278 (1963). 

4  

and f is some suitable function of scalar distance. As a trial calculation, 
however, the case worked out with the simpler and easier to handle potential 
may be regarded as a suggestive feasibility investigation for the general 
method, with satisfactory results. 

Perhaps partly because of concern over the complication of coupling to 
vibrational motions, and partly due to his extensive development of condensed 
matter distribution function theory, Professor Kirkwood proposed a theory 
of melting based upon the existence of spatially periodic crystalline, versus 
constant fluid, singlet density solutions to the relevant integral equations, 
with good results when applied to argon. At the time this calculation was 
done, the liquid state pair distribution functions that had to be utilized were 
not known with the accuracy available at present. It would be interesting to 
see these same calculations performed again with the full assistance of the 
now-available rapid electronic computers. 

The short "Note on the Theory of Fusion" raises a fundamental and deep 
question bearing upon the problem of transition to ordered crystalline 
phases: namely, whether the solid phase singlet density should truly possess 
long-range periodicity. The tentative resolution proposed is that by suitable 
constraints on the configurations allowed in the complete N-particle distribu-
tion function, which would have no visible effect on the form of the low-order 
distribution function integral equations, that the crystal lattice would be 
essentially "held in place," and that the singlet density should clearly exhibit 
periodically localized (vibrating) particle behavior. Unfortunately, though, 
it has never been demonstrated that the finite concentration of each of the 
various types of lattice defects that must be present at any positive tempera-
ture, do not introduce enough disorder to destroy the coherence of local 
periodicity in the infinitely long-ranged limit. In addition, it is known that in 
two dimensions even harmonic vibrations destroy long-range order: the 
mean square relative displacement of pairs of particles increases without 
bound as their equilibrium pair separation increases. 

In "Crystallization as a Cooperative Phenomenon," the fluid-solid tran-
sition is, so to say, attacked from the opposite direction, by calculating a 
limit of instability of the liquid state, rather than by finding directly the range 
of stability of the solid. Since liquid-solid transitions are first order, this 
limit must correspond to the attainable limit of metastability for the super-
cooled liquid. That the distribution function formalism should apply in this 
nonequilibrium regime must also require introduction of suitable constraints 
into the original complete phase space distribution for the entire set of 
particles; one presumably can split up particle arrangements into liquid-like 
and solid-like types, and admit only the former before integration down to 
the distribution functions for the small set of particles of interest. 

Our understanding of the nature of, and criteria for, cooperative phenomena 
will, of course, broaden and deepen with the passage of time. It seems certain 
that the stepwise systematic Kirkwood approach will constitute an important 
stylistic tool in this development. 
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