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Recent studies of random packing of ellipsoids show a cusplike increase in the packing density as the aspect
ratio deviates from 1 (spheres) followed by a maximum and then a strong density decrease at a higher aspect
ratio. We introduce a simple one-dimensional model, the “Paris” parking problem with ellipses randomly
oriented along a curb, with many of the same features. Our results suggest that the cusp results from approaching
a terminal (jammed) random state, the density increase results from relaxing a parameter constraint (orientation
or size of a particle) in the random packing, and the density decrease results from excluded volume effects.
We also discuss the isostatic conjecture for strict and local jamming.

Introduction

The work of our colloid group, a collaboration with Professor
Bill Russel, has centered on hard spheres and their phase
transitions and dynamics. The present study of hard particle
packing problems is an outgrowth of that collaboration. Indeed,
Professor Russel had significant input to these studies, providing
several of the basic ideas as well as insights into experimental
approaches and analysis. The work on ellipsoids is directly
related to the colloid group’s studies of hard sphere glasses1

and the effects of polydispersity2 on packing and on frustrating
crystallization.

As we discuss below, the formation of crystals from simple
liquids is often entropically driven by the different packing
densities of disordered and ordered spheres.3-7 In moving to
more complex shapes, with an eye toward forming new phases
and toward using colloids to build interesting and active
structures, the natural first step was to try the simplest
deformation of a sphere. An ellipsoid is obtained from a sphere
by an affine deformation, a linear change such as rescaling a
coordinate axis. An interesting question was how this simple
deformation could change the packing properties. The original
experiments on m&m candies8,9 found higher random packing
densities10 and higher mean contact number than for spheres.11

This led to a numerical study of the packing fraction,12 φc, and
mean contact number,Z, as a function of aspect ratio,R ) a/b,
for the maximally random jammed (MRJ) state,10 as shown in
Figures 1 and 2. Roughly speaking, the MRJ state can be thought
of as the “most random” (that is, the least ordered in terms of

a number of order metrics) state, subject to the constraint that
the packing is “jammed.” The results were quite dramatic in
that bothφc andZ were singular functions ofR at the sphere
point with a downward cusp and a linear increase inφc for small
R. Moreover, the mean contact number tended to saturate at
near the conjectured isostatic point13,14 for large R, while the
packing fraction decreased.

The experiments and simulations raised many fundamental
questions, some of which we address here. The isostatic
conjecture suggests that, for stability, the mean contact number
should be equal to twice the number of degrees of freedom (f),
Z ) 2f. If this were true, then we should see a discontinuous
jump in Z on leaving spherical symmetry. We here reexamine
the isostatic conjecture and present ways around it. The shape
of the packing fraction vsR needs understanding, and we present
here a simple system, a 1D parking problem with ellipses which
has many of the same features. This leads us to suggest that
the density increase is due to additional degrees of freedom,
the cusp is due to the singular nature of a random jammed state
(for definitions of the hierarchy of jammed states such as local,
collective, and strict, see refs 15 and 16), and the decrease at
high R is an excluded volume effect. The latter was originally
seen in spherocylinders by Williams and Philipse.17 We make
some comparisons between ellipsoids and spherocylinders
below. Finally we present some data on the packing density of
pennies in a jar.

Thermodynamics of Hard Particles

The packing problem has a great deal of relevance to physics
and, in particular, to the existence of the crystalline state and
the nature of the melting transition. For hard particles, the
potential energy is zero when particles do not overlap and
infinite when they interpenetrate. They, therefore, never touch,
and the potential energy is identically zero. The state with the
highest entropy is the stable state. The easiest example of an
entropic system is an ideal gas whereS ) kB ln V. van der
Waals noted that one of the first corrections to ideal gas behavior
is to account for the fact that particles occupy a certain volume
which is excluded from occupation by the other particles. For
hard particles in one dimension, this can be treated exactly by
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simply subtracting the length of the particles from the total
length of the box they are in.V f V - Nb, whereN is the
number of particles of volume (length)b. Factoring outV, we
haveV(1 - φ/φc) andS ) kB ln[V(1 - φ/φc)], whereφ is the
volume fraction andφc is the highest volume fraction for the
particular configuration, i.e., the jamming density. In one
dimension,φc ) 1. The pressure is related to the volume
derivative of S, P ) nkBT/(1 - φ/φc) and diverges at close
packing. Although the above expressions forSandP are exact
only in one dimension, the form is exact in any dimension for
infinitesimal deviations from a jammed configuration.16,22 In
particular,

For the case of hard spheres whereφc ≈ 0.64 for MRJ
packing andφc ≈ 0.74 for FCC packing, this implies that, asφ

f 0.64, the entropy of the crystal state is higher than that of
the liquid state. (We note that, more generally, the spatial

dimensiond in the pressure equation should be replaced byf,
the number of degrees of freedom of the particle.) Thus, before
reachingφ ) 0.64, there must be an entropy-driven transition
to the crystal. These arguments form the basis of many theories
of the melting of simple liquids.18

The reason these arguments are of interest in our present work
is the conclusion that, at high density, it is always the densest
packed phase that is thermodynamically stable. If a particular
shape of ellipsoids were to pack better randomly than in a
crystalline array, then it would not crystallize. As the density
increased, the system would remain amorphous and might form
an ideal glass. So far, we have not found any system in which
random packing is denser than a crystal packing, but there are
still many simple systems, e.g., ellipsoids21 and tetrahedra, where
the densest packings are not known. There are interesting
suggestions that, in higher dimensions. even sphere packings
may be denser in a random configuration than in an ordered
configuration.19 We also note that the driving force to crystal-
lization is the entropy difference between the disordered and
ordered phases, and this is related to the different packing

Figure 1. Packing fraction vs aspect ratio for 10 000 particles. The semiaxes are 1/Râ/R. Inset shows linear dependence for both MRJ10 (103-104 particles)
and RSA (103 particles) simulations

Figure 2. Mean contact number as a function of aspect ratio for MRJ.10 Light gray point and lines are expected behavior from the “isostatic conjecture”.

Sf NkB ln(V(1 - φ/φc))|æfφc
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fractions. For spheres, the large difference inφc, 0.64 vs 0.74,
makes crystallization easy to observe both in colloidal systems
and in computer simulations. The smaller difference between
φc for some random9 vs crystalline ellipsoids,φc ≈ 0.74 vs
0.747,21 reduces the thermodynamic drive for freezing, while
the additional rotational degrees of freedom may make the
formation of nuclei more difficult. Indeed, simulations have not
yet found crystallization for ellipsoids withR > 1.2, although
several groups have tried.20

Spherocylinders

There has been some beautiful work on the random packing
of spherocylinders17 which slightly predates our studies of
ellipsoids. Both systems are interesting and show similar curves
of packing fraction vs aspect ratio. There is an initial increase
in packing density, while at large aspect ratios, the density
decreases dramatically. The work by Williams and Philipse is
largely concerned with the decrease inφc for long cylinders
and suggests that this is an excluded volume effect. We tend to
agree with that interpretation, which is consistent with our results
from the Paris parking problem described below. However, it
is not as clear that the behavior at low aspect ratios arises from
the same effects for ellipsoids as for spherocylinders. Ellipsoids
are an affine deformation of spheres, and therefore, we have
several exact results to fall back on in interpreting our findings.
Two of the most surprising results for the random packing of
ellipsoids are the increase of the packing fraction as one moves
away from the sphere,R ) 1, and the observation that the sphere
is a singular point on the curve. For ellipsoids, the shape is a
continuous function of the aspect ratio, while for spherocylin-
ders, a sphere is already a singular point. One way of seeing
this difference is to see how the deformations affect the densest
crystal packing. If we start at the FCC lattice, then an affine
deformation changes the volume of each particle and the volume
of the confining space the same way. The lattice packing remains
unchanged at 0.74. (Even if we use the densest ellipsoid packing
yet discovered,21 the packing fraction increases in a quadratic
manner fromR ) 1.) On the other hand, the (probable) densest
packing of spherocylinders is obtained by adding a cylindrical
region on the planes of the sphere centers of the FCC lattice.
The packing fraction then gives a plane spacing weighted
average between the FCC and the infinite cylinder packing

whered is the diameter,l is the added length of the cylinder,R
) (d + l)/d, φFCC ) π/x18, φCYL ) π/x12, and the
approximation is for smallR - 1. For spherocylinders, the
crystal packing fraction increases linearly inR - 1 with a slope
that is comparable to the increase in random packing fraction.

Thus, although there is a linear increase in the random packing
density for spherocylinders (hence, a “cusp”), it is not clear
whether this is due to the singular shape change or the additional
rotational degrees of freedom. Moreover, for spherocylinders,
the random packing fraction does not approach the crystal
packing as aspect ratio is increased. The similarity between
ellipsoid and spherocylinder packing does reemerge at large
aspect ratios, where both are dominated by the excluded volume
effects that greatly decrease the packing fraction.

Isostatic Conjecture

In its most common usage, the isostatic conjecture states that,
for a mechanically stable large random packing of hard

frictionless particles, the mean contact number or number of
touching neighbors per particle is just twice the number of
degrees of freedom per particle.13,14 There are two assump-
tions: (1) to fix the positions and orientations, at least as many
constraints as degrees of freedom are needed and (2) disordered
packings will have the minimal number of contacts necessary,
since forming additional contacts introduces additional correla-
tions. For hard (frictionless) particles, the constraints come from
contacts with each contact involving two neighbors, hence, one
contact and two neighbors per particle per degree of freedom
on average. Part of our intuition as to why ellipsoids pack more
densely than spheres comes from the idea that, for shapes close
to spherical, if the number of degrees of freedom increases (for
ellipsoids orientation is important) and the number of contacts
must increase, then this should be associated with a density
increase. In fact, for our early experiments on m&m’s, the most
interesting finding was confirmation of the isostatic conjecture.
Randomly packed spheres with three degrees of freedom
(translations in 3D) have close to 6 neighbors, and m&m’s with
five degrees of freedom have close to 10 neighbors.11

Simulations of ellipsoid packing also indicate that the number
of neighbors for ellipsoids of revolution, spheroids (five degrees
of freedom), approaches 10 neighbors, and for ellipsoids with
three different axes and six degrees of freedom, it approaches
12 neighbors. However, the isostatic conjecture would suggest
that an infinitesimal deviation from sphericity would require a
jump from 6 to 12 contacts, and this is both difficult to reconcile
physically and not supported by simulations. Thus, either the
conjecture is not applicable universally or our understanding
of the simulations and/or the concept of jamming for ellipsoids
is incomplete. One problem in applying the isostatic conjecture
to ellipsoids is that the precise meaning of jammed (or rigid) is
unclear, especially close to the sphere point. (Note that, in ref
9, an affine transformation of the densest crystal packing of
spheres, which is strictly jammed, leads to a crystal packing of
ellipsoids that can be sheared and, therefore, is not strictly
jammed.) We can define jamming similarly to the way we do
for spheres, but it is not clear that this is really appropriate.
Moreover, we cannot test for jamming in ellipsoid packings as
we can for spheres.22 Therefore, we cannot rigorously prove
that the simulated ellipsoid packings near the sphere point are
truly jammed. So we revisit the ideas and assumptions in a
slightly different treatment than in the published literature. The
basic idea is that, for the system to be at stable equilibrium for
each particle, the sum of the forces and the sum of the torques
must be zero.23 In the absence of body forces (e.g., gravity),
the only forces are from the contacts,∑ContactsFi ) 0, and there
are d force equations from thed spatial dimensions. Torques
arise from forces at the contacts:∑Contacts(r × F)i ) 0, where
r is the vector from the center of mass (for each particle) to the
contact point. The maximum number of torque equations,n, is
nmax ) d(d - 1)/2 (n ) 1 in 2D, 3 in 3D). The conjugate
displacements are the degrees of freedom,f. Thus f ) d + n,
and the total number of equations isfN for N particles. The
unknowns in the problem are theFi’s at the contacts, which
numberdNc for Nc total contacts. Since each contact is shared
between two particles, the average mean contact number isZ
) 2Nc/N. In order for the linear system of equations describing
the force/torque equilibrium to have a unique nontrivial solution
that is also stable against slight perturbations (of the geometry,
or the application of small random loads on each particle, as in
shaking the packing), the number of equations equals the number
of unknowns,dNc ) fN, Nc/N ) f/d, Z ) 2f/d. This is the case
for frictional particles where both tangential forces and rotations

φ ) (φFCCx2/3d + φCYLl)/(x2/3d + l) ≈ φFCC + ((R -

1)/d)x3/2(φCYL - φFCC)
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are relevant (even for spheres),f ) d + d(d - 1)/2 ) d(d +
1)/2,Z ) d + 1. It is also possible that a torsional force normal
to the surface may be applied which resists twisting the object
under the contact point. This torsional force complicates the
torque equations but does not change their number. It does
increase the number of unknowns at each contact fromd to d
+ 1. We then have (d + 1)Nc ) fN ) Nd(d + 1)/2, Nc/N )
d/2, Z ) d. In 3D, Z ) 3. The torsional force is inapplicable in
one and two dimensions.

On the other hand, for frictionless particles, the only
component of the force that is relevant is the normal force, and
there is an additional set of equations which requires tangential
forces to be zero at each contact (n × F)i ) 0. This amounts to
(d - 1)Nc equations, and setting the number of unknowns (forces
at each contact) equal to the number of equations givesdNc )
(d - 1)Nc + fN or Nc ) fN, Nc/N ) f, Z ) 2f. This is the
frictionless isostatic result. Note that, for spheres, the normal
to the surface is also a radial vector, so that the frictionless
constraint is equivalent to a torque equation. Since the sphere
rotation then has no relevance, the rotations are not included in
the degrees of freedom.

If the number of equations equals the number of unknowns,
then a solution can be found for a configuration and perturba-
tions lead to nearby solutions. If there are more equations than
unknowns, there may be no solutions or there may be particular
solutions which are not stable to perturbations and form a less
dense set. For more unknowns than equations, there are multiple
solutions. The conjecture in the isostatic conjecture is that a
random jammed system is minimally constrained in the sense
that the number of unknowns and equations is equal. Part of
the reasoning is that neither the contacts nor the forces are
correlated in a random system. The reasoning requires that
degenerate geometries such as that of Figure 3 above do not
occur frequently.

There can be cases in which the constraints can be satisfied
by particular arrangements with fewer contacts. An illustrative
example is seen in Figure 3, which shows a locally constrained
ellipse. For local jamming of spheres, one requires (d + 1)
contacts, with the extra 1 to prevent escape. In general, one
imagines that four contact points are needed to fix the position
and orientation of the center ellipse (Figure 3a). However, the
three neighbors in Figure 3b also completely confine the central
ellipse because they are arranged so that the normals from the
points of contact meet at the same point and the curvature of
the ellipse on at least one of the points of contact is sufficiently
“flat” to prevent rotations of the ellipse. This example demon-
strates that one can, in fact, have a jammed system with fewer
constraints than the number of degrees of freedom and
contradicts a statement by S. Alexander “One requires 4 ()3
+ 1) contacts to fix the three DOF ... of an ellipse in the plane”

[cf. Section 15.5.1 in ref 24] if to “fix” and to “jam” have the
same meaning.24 The (infinite) number of ways that the three
contact configurations can constrain the ellipse is a zero measure
set compared to the number of ways with the four contacts.
Nonetheless, when the three fixed ellipses are positioned such
that the central ellipse cannot escape by translation and rotation,
then as the ellipses are grown in size (e.g., in a Lubachevsky-
Stillinger algorithm),25 the central ellipse will always find the
locally jammed configuration. This suggests that, in the three-
dimensional ellipsoid problem, the jammed state may likewise
find a more correlated configuration with many fewer arrange-
ments, in some sense lower “entropy”, than would be expected
for complete randomness or isostaticity. This reduction in
effective phase space may be similar to the nonergodicity found
in many glassy systems.

Random Sequential Addition

Probably the simplest packing problem is the “parking
problem” or random sequential addition, RSA,15 in the infinite-
time one-dimensional case. In the parking problem,26 cars of
equal length randomly pull up to a curb and park at the spot of
their first try if there is sufficient room for their length between
the other parked cars. Assuming the parking attempts are
uncorrelated, the question is, what is the maximum coverage
of the curb space for an infinitely long curb? RSA is the
generalization of this process to impenetrable objects randomly
placed sequentially in ad-dimensional space. The coverage
increases with the number of attempts and finally saturates.The
saturated state is a terminal state in which a particle can no
longer be added to the packing. In this sense, the saturated state
may be thought of as a “jammed” state, even though the average
contact number is exactly zero.

We would like to see whether we can learn something about
the behavior of the random packing of ellipsoids as a function
of aspect ratio from this much simpler, one-dimensional random
jamming problem. A mean field treatment of the parking
problem would suggest that, for monodisperse cars of length
L, the largest space left unfilled between cars would be slightly
smaller thanL. The average space between cars is thenL/2,
and the average coverage, car/(car+ space) isL/(L + L/2) )
2/3. The exact solution is higher at 0.749.15,26We can now ask
what happens when the cars are bidisperse with two lengths, as
in the semimajor and semiminor axes of our m&m’s. Does the
coverage increase or decrease? For small length differencesL(1
( ε), the mean field treatment would give a maximum space
of L(1 - ε), an average space ofL(1 - ε)/2, an average car
length of L, and an average coverage of (2/3)(1+ ε/3). The
density increases in a cusplike manner in terms of the ratio of
the two lengths. The exact solution to the bidisperse parking
problem has been published in ref 27, and the coverage indeed
increases in a cusplike manner in the length ratio. A related
polydispersity problem, the volume fraction at which the
pressure of a polydisperse hard-sphere liquid diverges, also
shows a linear increase fromφ ) 0.64 as polydispersity is
increased.2

Our simulation of the bidisperse parking problem is shown
in Figure 4. Selection of either size is equally probable. As in
the random ellipsoid packing problem, there is a singularity at
ratio 1 and an increase in packing fraction/coverage with size
ratioR. So it may be that the increase comes from the additional
degree of freedom (in choice of size for the bipisperse case or
orientation for ellipsoids) and the cusp is a consequence of being
in a critical, terminal, or jammed random state.28 Unlike the
bidisperse parking problem which increases and saturates with

Figure 3. Local jamming (outer particles are held fixed): (a) usually four
contacts constrain an ellipse, but (b) three contacts whose normals intersect
also work.
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length ratio, the ellipsoid packing has a maximum and then
rapidly decreases with aspect ratioR. Simulations on sphero-
cylinders led Williams and Philipse to propose that this is an

excluded volume effect, that long objects have a certain volume
but exclude a much larger volume from occupancy by neighbor-
ing particles. We can mimic this behavior in what we refer to
as the “Paris parking problem”: there is a curb, and a parked
car must have its center over the curb, but the angle with the
curb can be random. Here we take an ellipse, choose a random
orientation, and attempt to place the ellipse center at a random
point on a line with no overlap with previously placed ellipses.
Some particular configurations are illustrated in Figure 5, where
it is clear that there are strong exclusion effects for high aspect
ratios. We take the coverage as the length of the line covered
by the ellipse itself, not the projection. The results of the
simulation are shown in Figure 4. Here we see that the initial
cusp and increase are present as for the bidisperse case, but for
large aspect ratios, excluded volume dominates and the coverage
decreases.

Penny Packing

Because the initial experiments on ellipsoid packing were
done with m&m’s, they received worldwide coverage in the
media, and this elicited many comments from the scientific
community as well as the general public. The usual comment
from both scientists and the public was “Of course m&m’s pack
better than spheres, they are like pennies thrown into a jar. They
lie flat and pack like pancakes.” There are several things wrong
with these arguments, which are worth pointing out. If the
m&m’s were all to lie flat, then a simple affine expansion
perpendicular to the flat plane would make them into spheres
and their densest packing would be exactly the same as for
spheres. The basic misconception is that pennies are flat
cylinders and cylinders do pack better than spheres, at least in
a crystalline array. Crystal packing of spheres is 74% and that
of cylinders is 91%. However, an ellipsoid can, at best, only
fill 2/3 of a cylinder, making the analogous crystal packing only
61%, less than even random sphere packing. Of course, we also
experimentally verified that the m&m’s (and the simulated
packings) were not orientationally ordered.11 Finally it is
interesting, for the sake of argument, to find out what a typical
penny packing is like. A picture of a typical “random” penny
jar accumulated over several years is shown in Figure 6. There
is no doubt that, in this case, there are strong correlations

Figure 4. Simulations of two parking problems along a curb. The bidisperse
system has two lengths,a andb. Selection ofa or b is equally probable.
The “Paris” parking problem is ellipses of aspect ratiob/a randomly oriented
with their centers on the curb.

Figure 5. Some typical configurations for the “Paris” parking problem.
Low angle parking of long ellipses shows pronounced excluded volume
effects.

Figure 6. Typical configuration of pennies tossed “randomly” in a container (courtesy of Matt Sullivan). The central region has a packing fraction of 0.574
( 0.005.
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between orientations of close particles. The only sense in which
these pennies are random is the way they were thrown in the
jar.

There are important effects that we are not accounting for in
this preliminary study. For example, it is important to note that
a penny is not a circular cylinder (of small aspect ratio) but
rather is a nonconvex solid object. Very little is known about
the packing of nonconvex objects. It is clear, however, that
certain nonconvex solids will have unusually low densities
compared to those of convex objects. Moreover, the degree to
which friction between the pennies is inhibiting densification
has not been examined. Nonetheless, out of curiosity, we
measured the packing fraction. We determined the amount of
water needed to fill the container to different heights, and the
average value for the 3000 pennies was 57%, considerably lower
than that for random sphere packing. A more random packing
of flat cylinders with the aspect ratio of pennies would be much
lower.

Summary

The ancient problem of random and ordered packing of hard
objects continues to make contributions to mathematics, science,
and engneering. The newly discovered results on ellipsoid
packing open a new chapter in that study and, as presented
above, raise as many questions as they answer. Among the most
fundamental is whether objects can be found where the random
packing is denser than the ordered packing and how such objects
will behave thermodynamically. The inclusion of additional
rotational degrees of freedom also brings to question the ideas
of isostaticity and the stability of piles of particles. An interesting
aspect of these problems is the cooperative nature of the
research, which involves all of the tools at our disposal:
experiments, models and model systems, theory, and simulation.
This is an appropriate interplay that also reflects the research
style of Bill Russel, to whom this volume is dedicated.
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