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We develop an extension of the original Reiss-Frisch-Lebowitz scaled particle theory that can serve
as a predictive method for the hard sphere pair correlation function g�r�. The reversible cavity
creation work is analyzed both for a single spherical cavity of arbitrary size, as well as for a pair of
identical such spherical cavities with variable center-to-center separation. These quantities lead
directly to a prediction of g�r�. Smooth connection conditions have been identified between the
small-cavity situation where the work can be exactly and completely expressed in terms of g�r�, and
the large-cavity regime where macroscopic properties become relevant. Closure conditions emerge
which produce a nonlinear integral equation that must be satisfied by the pair correlation function.
This integral equation has a structure which straightforwardly generates a solution that is a power
series in density. The results of this series replicate the exact second and third virial coefficients for
the hard sphere system via the contact value of the pair correlation function. The predicted fourth
virial coefficient is approximately 0.6% lower than the known exact value. Detailed numerical
analysis of the nonlinear integral equation has been deferred to the subsequent paper. © 2006
American Institute of Physics. �DOI: 10.1063/1.2374889�

I. INTRODUCTION

The conceptually simple hard sphere model has served
for well over a century in research efforts to understand a
wide range of many-body phenomena.1–3 But owing to the
complexity of these phenomena both within and outside the
regime of thermal equilibrium, this model and its extensions
to other spatial dimensions continue to be the focus of
basic research inquiry. The present paper �“I”� and its
sequel �“II”� add to this lengthy sequence of investigations,
but in directions that previously have been largely unex-
plored.

The “scaled particle theory” represents one of the in-
sightful strategies that have been applied to the equilibrium
behavior of the hard sphere model. This approach was origi-
nated by Reiss et al.4 as a statistical mechanical descriptive
device for the fluid phase of the model in three dimensions,
with results that agreed well with computer simulations that
were available at the time.5–7 Several refinements to the
method have appeared in the literature.8,9 Subsequent work
utilizing the strategy of the scaled particle theory has pro-
vided useful contributions to fluid mixtures10 to other hard-
particle convex shapes,11,12 to hydrophobic phenomena,13,14

and to crystals.15 The primary objective of this and the fol-
lowing paper is to adapt and generalize the concepts of the
established scaled particle theory to prediction of the hard
sphere pair correlation function, a basic attribute of the mod-
el’s equilibrium state. At least one previous scaled particle
theory analysis was directed toward evaluating pair correla-

tion functions,16 but its approach and implementation dif-
fered from those developed in the present pair of papers. It
might also be noted in passing that an early paper by Meeron
and Siegert17 examined arrangements of multiple unit-size
cavities in hard sphere systems, thus connecting to some as-
pects of the present work.

The following section �Sec. II� briefly reviews the con-
ventional scaled particle approach that employs a single
variably-sized spherical exclusion region, and extends its
scope to the case of a pair of exclusion regions. This pair is
restricted to equal sizes, but with variable center-to-center
separation, and thus it connects directly to the distance varia-
tion of the model’s pair correlation function. The free energy
associated with the cavity pair is determined in principle by
molecular distribution functions of all orders for the hard
sphere model, and that generates a family of size/separation
geometric connection conditions for the double cavity that
are discussed at length in Sec. III. In the limit that the two
cavities become very large, their free energy possesses an
asymptotic expansion, details of which are examined in Sec.
IV. Section V assembles the preceding concepts in a way that
produces a self-consistent format for calculating the hard
sphere equilibrium pair correlation function. This format ad-
mits a fully self-determined density expansion for the pair
correlation function and thus for the pressure virial coeffi-
cients, some results for which are presented in Sec. VI. The
final section �Sec. VII� examines a few issues raised by the
approach developed in this paper. An Appendix collects eight
mathematical conditions that form the basis for closure of the
extended scaled particle theory, and that are available for
later numerical study.a�Electronic mail: pdebene@princeton.edu
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II. BACKGROUND AND GENERAL STRATEGY

The hard sphere many-body system is defined by the
singular pair potential u�rij� acting between all pairs of par-
ticles i , j,

u�rij�= + � �0 � rij � ��
= 0 �� � rij� .

�2.1�

Here ��0 is the collision diameter for the particles. The
number density �=N /V in the large-system limit is geometri-
cally constrained so as not to exceed the close-packing limit
��3=21/2. This upper density limit is attained in any of the
crystalline close-packed structures for the repelling spheres
�face centered cubic, hexagonal close packed, and their
stacking hybrids�, so we require that

0 � ��3 � 21/2. �2.2�

Within the domain of classical statistical mechanics, the
equilibrium pair correlation function g�r ,��, normalized to
unity in the large-r limit, determines the pressure equation of
state through its contact value via the hard sphere version of
the virial relation,18

�p = � + �2��2�3/3�g��,�� . �2.3�

Here �=1/kBT denotes the inverse temperature. Provided
that ��3�21/2, the pair correlation function will be a
bounded, continuous, and differentiable function of separa-
tion distance for r��.

One of the basic quantities considered in the conven-
tional scaled particle theory4 is the reversible isothermal
work W�	 ,�� that must be expended in the large-system
limit to expel all spherical particle centers from a spherical
region with radius 	. If the equilibrium phase of the system
is fluid, this quantity will automatically be independent of
position, while in the crystalline region of the phase diagram,
the same will be true if system-translation-permitting peri-
odic boundary conditions are present, as we shall assume in
this analysis. The Boltzmann factor associated with W gives
the probability P0�	 ,�� that the spherical region would spon-
taneously be found to be empty,

P0�	,�� = exp�− �W�	,��� � 1 − �
n=1

�

Pn�	,�� . �2.4�

Here Pn stands for the probability that the spherical region to
be identified as the 	 cavity would be found spontaneously to
contain exactly n particle centers at the given density.

On account of the repulsions that act between hard
spheres, the summation shown in the second line of Eq. �2.4�
automatically terminates at a finite n value that increases
with 	, to be denoted by n*�	�. Table I presents information
about the relevant 	 intervals for 1�n*�7. When 0�	
�� /2 no more than a single sphere center can reside at any
instant within the radius-	 cavity �n*=1�, leading in turn to
the elementary result,

�W�	,�� = − ln�1 − 4��	3/3� �0 � 	 � �/2� . �2.5�

As 	 increases beyond � /2 further terms in the summation in
Eq. �2.4� begin to contribute to �W, but in any case this
quantity remains a continuous and differentiable function of

	 for all positive values of that variable. In the large-	
asymptotic limit, an appeal to macroscopic behavior indi-
cates that �W should be dominated by work contributions
determined by the cavity volume and surface,4 so that

�W�	,�� � �4��p/3�	3 + 4��
	2 − 8��
�	 . �2.6�

Here 
��� is a planar-surface free energy per unit area �sur-
face tension for the fluid phase�, and its curvature corrections
have the exclusion surface as the dividing surface. ���� is a
Tolman length20 that arises from the curvature dependence of
that surface free energy.

When 	=� the empty cavity is configurationally indis-
tinguishable from one of the hard spheres comprising the
many-particle system. At this stage one can verify that
n*���=12. The density of particle centers at the surface of
the 	=� cavity is equal to �g�� ,��, which is directly related
to the pressure via Eq. �2.3�. This connection leads to a dif-
ferential work identity involving the 	 derivative of W,

���W��,��/�	� = 4���2g��,�� . �2.7�

The conventional scaled particle theory assumes that ex-
pression �2.6� provides an adequate approximation to �W for
all 	�� /2. Then the requirements that �W and its first 	
derivative match that of the exact small-	 form in Eq. �2.5�,
and that Eq. �2.7� be obeyed, suffice to determine the un-
knowns p, 
, and � as functions of the density. The pressure
equation of state obtained this way is as follows:4

�p

�
=

1 + ����3/6� + ����3/6�2

�1 − ����3/6��3 . �2.8�

While this result constitutes an adequate description of the
hard sphere model’s fluid phase, it was not designed to cap-
ture the known first-order freezing transition.21 Furthermore
the simple form in Eq. �2.8� erroneously predicts a finite
pressure at and beyond the close-packed density ��3=21/2.

The various intriguing concepts and connections ad-
vanced by the conventional scaled particle theory invite ex-
tensions that might improve upon its predictive ability. This
paper proposes such an extension, specifically focusing on
the statistical thermodynamics of double cavities. These are
illustrated in Fig. 1. They consist of two empty spherical
regions with a common radius 	, whose centers are separated
by distance r�0. When 0�r�2	 the cavities overlap and

TABLE I. Intervals of the size parameter 	 corresponding to the maximum
numbers n*�	� of unit-diameter spheres whose centers can fit simultaneously
and without overlap within a spherical region of radius 	.

n*�	� 	 interval

1 0�	 /��1/2
2 1/2�	 /��3−1/2�0.577 350
3 3−1/2�	 /�� �3/8�1/2�0.612 372
4 �3/8�1/2�	 /��2−1/2�0.707 107
5 �no interval�a

6 2−1/2�	 /��0.795 627b

7 0.795 627�	 /�� �1/2��2+2−1/2�1/2�0.822 664

aWhen 	 becomes large enough to allow five sphere centers, six can also fit
within the spherical region.
bReference 19.
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constitute a singly-connected exclusion region. When r
�2	 the exclusion region is disconnected. Two elementary
geometric properties of the double cavity are its volume,

v�r,	� = ���4	3/3� + 	2r − �r3/12�� �0 � r � 2	�

= 8�	3/3 �2	 � r� , �2.9�

and its surface area,

a�r,	� = 2�	�2	 + r� �0 � r � 2	�

= 8�	2 �2	 � r� . �2.10�

When the two portions of the double cavity overlap, the
length of the circular perimeter common to the two spherical
surfaces is

l�r,	� = ��4	2 − r2�1/2 �0 � r � 2	� , �2.11�

and the angle at which these surfaces intersect is


�r,	� = � − arccos�1 − �r2/2	2�� . �2.12�

This more elaborate scenario requires introduction of
W2�r ,	 ,��; the reversible isothermal work required to clear
particle centers from the interior of the double cavity. How-
ever, it is important to note that the conventional scaled par-
ticle approach is automatically included in the double cavity
extension. This is clear by virtue of the obvious identity for
r=0,

W2�0,	,�� � W�	,�� . �2.13�

Furthermore, when r becomes large the two disconnected
parts of the cavity approach statistical independence so that

lim
r→�

W2�r,	,�� = 2W�	,�� . �2.14�

The pair correlation function g�r ,�� for the hard sphere
system can be viewed as the Boltzmann factor for the revers-
ible isothermal work necessary to bring a pair of spheres
from infinity to finite distance r��. This implies that

g�r,�� = exp�2�W��,�� − �W2�r,�,��� �r � ��

= 0 �0 � r � �� . �2.15�

Consequently, the intended extension of the scaled particle
approach has the capacity to become a predictive mechanism
for the entire distance dependence of pair correlation, not just
its contact value. When properly exploited in a self-
consistent manner as described below, this feature generates
a substantial improvement in the description of the single
cavity quantity W�	 ,�� compared to that attained in its con-
ventional analysis.4 The new approach provides additional
conditions that allow for the calculation of higher order
terms in the W�	 ,�� expansion, which in turn leads to a
closer correspondence of the predicted fourth virial coeffi-
cient B4 with the exact value �see Sec. VI�.

The overall strategy for calculating g�r ,�� from Eq.
�2.15�, to be explained in detail in following sections, can be
summarized as follows:

�1� Two expressions for �W�	 ,�� are developed. One is
valid for � /2�	�� /31/2 and another asymptotic,
large-	 form that is valid for 	�� /31/2. The
�-dependent coefficients of the latter are determined by
invoking thermodynamic conditions at 	=� �Eqs. �2.3�
and �2.7�� and by matching the � /2�	�� /31/2 and
the 	�� /31/2 expressions and their corresponding first
two derivatives with respect to 	, at 	=� /31/2.

�2� Two expressions for �W2�r ,	 ,�� are developed. One is
valid for nmax�r ,	�=2 and the second is an asymptotic,
large- 	 form. Here nmax�r ,	� denotes the maximum
number of hard sphere centers that can be accommo-
dated in a �r ,	� double cavity. The unknown coeffi-
cients of the asymptotic form are obtained by matching
the nmax=2 and the large-	 expressions and their first
two derivatives with respect to 	 at 	=� /2.

�3� Knowledge of �W�	=� ,�� and �W2�r ,	=� ,�� allows
the calculation of g�r ,�� according to Eq. �2.15�.

�4� The � /2�	�� /31/2 expression for �W�	 ,�� and the
nmax=2 expression for �W2�r ,	 ,�� require g�r ,�� as an
input. This generates an iterative procedure for calcu-
lating g�r ,��, whereby the current estimate of this func-
tion is used as input to the calculation, and convergence
is attained when the difference between this estimate
and the result of computing the right hand side of Eq.
�2.15� is smaller than some imposed convergence
criterion.

III. GEOMETRIC CONNECTION CONDITIONS

Equation �2.4� has a direct extension to the double cav-
ity,

P0,2�r,	,�� = exp�− �W2�r,	,��� � 1 − �
n=1

�

Pn,2�r,	,�� .

�3.1�

In analogy to the single cavity case, Pn,2 stands for the prob-
ability that the interior of a region identical in shape to that
of the double cavity, placed at random in the hard sphere

FIG. 1. Double exclusion cavities considered in the present extension of
scaled particle theory. The two spherical exclusion zones have a common
variable radius 	. The distance r�0 between their centers can produce
overlap �top� or disconnection �bottom�.
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system, would happen to contain the centers of exactly n
spherical particles. Also as before, the sum shown in the last
equation necessarily truncates at some finite upper limit on n,
now dependent on the values of both r and 	, which will be
denoted by nmax�r ,	�, as introduced earlier.

In the preceding background �Sec. II� we have used
�-explicit expressions for consistency with the literature.4

The natural distance unit choice for the hard sphere model is
the collision diameter, so in what follows we set �=1, and
hence have the density restriction 0���21/2. As a result of
this convention, it becomes unnecessary for � to appear ex-
plicitly in any of the following mathematical expressions.

When r�2	+1 any sphere occupying one of the discon-
nected halves of the double cavity cannot geometrically in-
terfere with spheres in the other half. Consequently, one has

nmax�r,	� = 2n��	� �r � 2	 + 1� . �3.2�

For smaller distances r, interferences can come into play and
can have the effect of reducing nmax. This interference
reaches its greatest extent at r=0, for which obviously

nmax�0,	� � n��	� . �3.3�

In the infinite system limit that is the object of attention
in this study, one can introduce a full family of symmetric
particle correlation function g�n��r1 , . . . ,rn ,�� for sets of n
=1,2 ,3 , . . . spheres at positions r1 , . . . ,rn. The nonoverlap
property of hard spheres of course implies that any g�n� van-
ishes if one or more of its pair distances rij �1. On account
of the free translation permitted by periodic boundary condi-
tions, one has g�1��1 even in the crystal phase and the
higher-order g�n� depend only on relative, not absolute, posi-
tions. In the fluid phase all g�n� approach unity in the limit
that all of its pair distances diverge. The function g�r ,��
appearing in Eq. �3.3� is identical to g�2��r ,�� in the equilib-
rium range of fluid densities, and if necessary it can be con-
strued as an orientational average of g�2��r ,�� in the crystal
density range. It is possible to convert expression �3.1� into
an equivalent alternating series whose terms involve inte-
grals of the g�n� over the interior of the double cavity;4,22

exp�− �W2�r,	,��� = 1 + �
n=1

nmax �− 1�n�n

n!
	

V

dr1 . . .

�	
V

drng�n��r1, . . . ,rn,�� . �3.4�

In particular, the individual particle integrals each span the
full interior of the double cavity with volume v�r ,	�, even
when it comprises two disconnected portions.

In order for nmax�r ,	� to equal its minimum value unity,
it is necessary for the most remote pair of distances in the
double cavity region to be less than the distance of the clos-
est approach for spheres. This is satisfied if

r + 2	 � 1 �nmax = 1� . �3.5�

The correspondingly truncated form of the series in Eq. �3.4�
leads to

�W2�r,	,�� = − ln�1 − �v�r,	�� �r + 2	 � 1� , �3.6�

an obvious generalization of earlier Eq. �2.5�.
As Eq. �3.2� indicates, when 	�1/2 and r is sufficiently

large, each of the disconnected portions of the double cavity
can accommodate a single sphere center, i.e., nmax=2. This
upper limit on 	 for the nmax=2 region remains in force until
r declines into the interval,

0 � r � �31/2 − 1�/2 � 0.366 025. �3.7�

In this restricted r range the mutual interference between
spheres permits 	 to increase somewhat above 1/2 while still
excluding a third sphere from invading the interior of the
double cavity. The upper limit for this 	 increase is estab-
lished by considering the extremal geometry illustrated in
Fig. 2, in which the centers of three spheres can simulta-
neously fit on the boundary of the double cavity. Any in-
crease in either r or 	 �or both� would permit these three
spheres some extent of independent motion inside the double
cavity. Straightforward algebra leads to the following rela-
tion at the geometry shown in Fig. 2:

r2 + 2�r + 	�
	 + �	2 − �1/4��1/2� = 1. �3.8�

This can be transformed into an explicit expression for the
upper 	 limit when r is in the interval �3.7�. Consequently,
the r-dependent upper limit 	2�r� for the nmax=2 region in
the �r ,	� positive quadrant has the following form:

	2�r� =
1

2
�31/2

2
− r
 +

1

8
�31/2

2
− r
−1

�0 � r � �31/2 − 1�/2�

= 1/2 ��31/2 − 1�/2 � r� . �3.9�

Regions corresponding to odd integer values of nmax are
necessarily confined to relatively small r on account of Eq.
�3.2�. The case nmax=3 is no exception. Its upper boundary
	3�r� is determined by a tetrahedral arrangement of the cen-
ters of four mutually contacting spheres on the surface of the
double cavity, with two of the four on each of its two
	-sphere portions. This extremal geometry leads to the fol-
lowing expression for the nmax=3 upper boundary:

FIG. 2. External geometry for three sphere centers just to fit on the bound-
ary of a �r ,	� double cavity. The three spheres are in mutual contact, and are
coplanar with the centers of the two 	 spheres comprising the double cavity.
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	3�r� = �1/2��1 + �r − 2−1/2�2�1/2 �0 � r � 2−1/2� .

�3.10�

No portion of the nmax=3 region exists for 2−1/2�r. Figure 3
shows the regions for nmax=1,2 ,3 and �4 in the �r ,	� posi-
tive quadrant.

Provided that 	�1/2 for any r�0, it is possible to ex-
press the n=2 term in the series �3.4� as a simple quadrature
involving g�r ,��. This results from the fact that the integral
can be expressed in a convolution form, a reduction that is
not applicable within that small portion of the nmax=2 strip
near the origin that rises above 	=1/2. With this restriction
one has

�W2�r,	,�� = − ln�1 − �v�r,	� + I�r,	,���

�nmax = 2,	 � 1/2� , �3.11�

where the explicit form of the pair correlation contribution is
the following:

I�r,	,�� = �2�2�2/r�	
max�r−2	,1�

r+2	

k�r − r1,	�r1g�r1,��dr1,

�3.12�
k�u,	� = �8/15�	5 − �2/3�	3u2 + �1/3�	2�u�3 − �1/60��u�5.

As Eq. �2.14� has already indicated, the large-r limit for
the double cavity reduces to twice that for the single cavity
with the same 	 value. In this single cavity circumstance
series �3.4� with r=0 terminates at n=2 over the interval
1 /2�	�3−1/2. Once again the n=2 integral has a convolu-
tion form and may be reduced to a simple quadrature �though
the result cannot be immediately derived from Eq. �3.12�
above�. One finds

�W�	,�� = − ln�1 − �4��	3/3� + H�	,���

�1/2 � 	 � 3−1/2� ,

�3.13�

H�	,�� = 2�2�2	
1

2	

��4/3�	3r1
2 − 	2r1

3

+ �1/12�r1
5�g�r1,��dr1.

Suppose 	 were to exceed 1/2 only slightly in this last ex-
pression, specifically,

	 = �1 + ��/2, �3.14�

where � is very small. Then the range of r1 integration in
H�	 ,�� would be sufficiently small that in the integrand one
could set g�r1 ,���g�1,�� to leading order. Explicit evalua-
tion of the resulting elementary integral then leads to the
conclusion,

�W�	,�� = − ln
1 − �4��	3/3� + ��2�2g�1,��/6��3

+ O��4�� . �3.15�

Consequently, the sudden inclusion of sphere pairs inside an
expanding single sphere cavity only causes a discontinuity in
third and higher derivatives of �W�	 ,�� with respect to 	.

A similar conclusion applies to continuity of
�W2�r ,	 ,�� and its first two 	 derivatives as 	 begins to
exceed 1/2. Although g�3� and g�4� formally appear as inte-
grand factors in the nmax=4 region, these functions are finite
and do not basically influence the geometry involved in the
possible insertion of sphere pairs in each separate portion of
the double cavity when r�2	+1. When r is small enough to
permit interferences to occur �r�2	+1�, the available con-
tributing configurations will be somewhat restricted. How-
ever, no mechanism is present to generate any terms of lower
order in � than O��3�, so the analog to the preceding Eq.
�3.15� is

�W2�r,	,�� = − ln�1 − �v�r,	� + O��3��

�	 = �1 + ��/2� . �3.16�

It is also useful to consider the effect on the single cavity
function �W�	 ,����W2�0,	 ,�� as the size parameter 	 be-
gins to exceed 3−1/2, thus just allowing invasion by a sphere
triplet. Figure 4 provides a graphical guide for the geometry
of these three particles �1,2, and 3�. The particle nonoverlap
constraints permit the center of particle 1 to move on a
sphere of radius �	, but radially within the cavity only by a
small magnitude of order ��	−3−1/2�. With particle 1 at any
of its possible locations, particle 2 can swing around a circle

FIG. 3. Regions in the �r ,	� positive quadrant for nmax=1, 2, 3, and �4.

FIG. 4. Typical placement of three unit spheres inside a single radius-	
sphere for 	 slightly in excess of the threshold value 3−1/2. The centers of the
three unit spheres �1, 2, and 3� are depicted as though those spheres are in
mutual contact.
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with radius �1/2, but its other two degrees of freedom are
each restricted to ��	−3−1/2�, essentially the same small pa-
rameter. With particles 1 and 2 fixed at any of their possible
locations, particle 3 is restricted in all three of its degrees of
motion freedom each to ��	−3−1/2�. By accounting for all of
the small factors identified by this informal analysis, one
concludes that as 	 begins to exceed 3−1/2 the corresponding
contribution from the n=3 term in series �3.4� for r=0 is
dominated by the factor �	−3−1/2�6. This implies that only
the sixth and higher 	 derivatives of �W�	 ,�� will exhibit
discontinuities at 	=3−1/2. Furthermore, an extension of this
type of argument suggests that even higher order derivatives
are those first manifesting discontinuities when increasing 	
crosses the boundaries into the n*=4 ,5 , . . . regions, as iden-
tified in Table I.

IV. ASYMPTOTIC PROPERTIES

As will become clear in the following, the present
double cavity formalism offers a wider array of mathematical
interconnections between its various functions than are
present in the conventional scaled particle theory. Conse-
quently, it will prove to be possible to represent the single
cavity work quantity �W by a more elaborate asymptotic
form than shown earlier in Eq. �2.6�. Specifically we shall
utilize a five-term representation;

�W�	,�� � J���	3 + K���	2 + L���	 + M��� + N���/	 .

�4.1�

The first three coefficients J, K, and L will necessarily have
the same interpretation as before in terms of the macroscopic
properties pressure, surface tension, and surface tension cur-
vature dependence. All five coefficients in Eq. �4.1� require
self-consistent determination in the present extension.

With suitable modifications, the double cavity quantity
�W2�r ,	 ,�� should also be amenable to representation by an
asymptotic form analogous to that shown in Eq. �4.1� for the
single cavity function �W�	 ,��. In the large-cavity regime, it
is again possible to identify the two leading terms as arising
from macroscopic pressure-volume and area-surface tension
work terms. Therefore in leading orders in 	 one can assume
that

�W2�r,	,�� = �pv�r,	� + �
a�r,	� + . . . , �4.2�

where in principle p and 
 are the same functions of density
that determine J��� and K��� in Eq. �4.1�. Equation �4.2�
should be appropriate regardless of whether the two portions
of the double cavity overlap or are disconnected. Note that a
succeeding term of order 	 involving simply the curvature
dependence of surface tension, following those shown in Eq.
�4.2�, has not been invoked. This is an important observation
arising from the fact that other contributions of the same
linear order in 	 will begin to appear. These can be identified
as due �a� to a line tension associated with the circular pe-
rimeter l�r ,	� when r�2	 and �b� to interferences between
the short-range correlations induced in the sphere system
around each half of the double cavity.

The disconnection property of double cavities introduces
an aspect not present in the conventional scaled particle

theory. This feature is expected to create singularities in the
functions of interest such as �W2 at the point of disconnec-
tion �r=2	�. For that reason it is helpful to introduce a
simple linear transformation to a pair of oblique variables,

s = r − 2	 ,

�4.3�
t = 2	 − 1,

or equivalently,

r = s + t + 1,

�4.4�
	 = �t + 1�/2.

Here s measures the positive distance between nearest points
of the two 	 spheres when they do not overlap; but when
they do overlap s is negative and has a magnitude equal to
the distance between the interpenetrating surfaces measured
along the line of centers. The other variable t is just a shifted
and rescaled cavity-sphere size variable. Figure 5 graphically
illustrates the s=0 cavity-contact line and its intersection
with the t=1 �	=1� half-line that is the locus of points in-
volved in evaluation of the pair correlation function g�r ,��.
Other constant s loci are a family of lines parallel to the one
shown in Fig. 5. By holding s�0 constant, increasing 	�t�
from small to large values does not encounter the
connection/disconnection singularity, and the function and
derivative continuity conditions previously stated in terms of
	 at constant r can be directly transferred to variations with
respect to t at constant-s.

In the large 	 asymptotic limit, each of the geometric
characteristics v, a, and l of the double cavity, Eqs.
�2.9�–�2.11�, can be expanded in descending integer powers
of 	. Therefore it is a reasonable assumption that at constant-
s, the double cavity work quantity �W2 has an asymptotic
expansion that is consistent with, but extends, the leading
terms shown in Eq. �4.1� above. For the remainder of this
paper, we shall suppose that a five-term representation is
possible at any chosen density �, analogous to that for �W,

FIG. 5. Relevant regions and linear loci in the �r ,	� positive quadrant.
Shown explicitly are the double-cavity contact line, and the horizontal locus
that is relevant to evaluation of g�r ,��.
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�W2�r,	,�� � J���� v�r,	�
v�0,	��	3 + K���� a�r,	�

a�0,	��	2

+ X�s,��	 + Y�s,�� + �Z�s,��
	

� . �4.5�

Here r and 	 in the right member can be expressed in terms
of their s and t equivalents. The cavity interference effects
mentioned above cause the new coefficient functions X, Y,
and Z, dependent on separation variable s, to appear in this
expression in place of L, M, and N.

V. SELF-CONSISTENCY CONDITIONS

The asymptotic expressions �4.1� and �4.5� for �W and
�W2 are smooth functions of the cavity size parameter 	, and
thus are intrinsically incapable of representing the singulari-
ties that occur across each locus at which n* or nmax change
discontinuously. However, it has been stressed above in Sec.
III that these singularities affect only high-order derivatives,
particularly when large n* or nmax are involved. Likewise,
weak singularities in the g�n� themselves,23 appearing as in-
tegrand factors in series �3.4�, should only influence high-
order derivatives of �W and �W2. Consequently, it is a sen-
sible approximation to suppose that the forms of asymptotic
expressions �4.1� and �4.5� can be extended to relatively
small 	 with appropriate choices for the coefficients. In fact,
we shall assume that Eq. �4.1� for �W�	 ,�� is valid for

3−1/2 � 	 � + � , �5.1�

which covers the entire range over which n*�3. In the case
of the double cavity, the corresponding assumption will be
that asymptotic expression �4.5� adequately covers the fol-
lowing 	 range:

1/2 � 	 � + � , �5.2�

which by Eq. �4.3� is equivalent to

0 � t � + � . �5.3�

The fact that different 	 lower limits are to be used for these
two cases does not in itself constitute an inconsistency be-
cause distinct sets of paths in the �r ,	� positive quadrant will
be involved. In order to evaluate the hard sphere pair corre-
lation function g�r ,�� it will be necessary to determine �W
along the vertical �r=0� axis, and to determine �W2 along
inclined linear paths of constant s�−1 that intersect the r
�1, 	=1 half-line, as indicated in Fig. 5.

If a complete strategy is to be constructed, it must con-
tain enough relations to determine the eight unknown quan-
tities J, K, L, M, N, X�s�, Y�s�, and Z�s� as functions of �.
Suppose initially g�r ,�� has been specified for the density of
interest, if only in approximate form. This immediately al-
lows evaluation of the pressure �Eq. �2.3�� and hence evalu-
ation of J�=4��p /3�. Using this same input g�r ,��, Eq.
�3.13� can be used to provide values at 	=3−1/2 for �W�	 ,��
and its first two 	 derivatives, and because each of these
must be continuous at that point these values constitute three
constraints on K, L, M, and N that are the remaining four
coefficients in the �W�	 ,�� asymptotic form, Eq. �4.1�. The

	=1 identity, Eq. �2.7�, is the final condition needed to fix
the five coefficients J , . . . ,N to be consistent with the given,
possibly approximate, input g�r ,��.

The requirements of smooth connection across the 	
=1/2 line suffice to determine the remaining functions
X�s ,��, Y�s ,��, and Z�s ,��. To implement these conditions in
the most useful manner, the two forms of �W2 �Eqs. �3.11�
and �4.5�� are expressed in terms of variable t, and then
continuity of this function as well as of its first and second
derivatives with respect to t at t=0 are imposed.

Explicit mathematical formulas for the eight conditions
just described have been collected in the Appendix. Applying
these formulas as evaluated with the given estimate for
g�r ,�� leads to corresponding predictions for �W�	=1,��
and �W2�r ,	=1,��. Equation �2.15� then yields a next-stage
estimate for g�r ,��. Of course the objective is self-
consistency, with identical g�r ,��’s appearing both as input
and output, and when that is attained at the chosen density �
it constitutes a reportable prediction of this extended version
of scaled particle theory.

VI. DENSITY EXPANSION

The pair correlation functions for classical models with
uncharged particles have convergent power series in density
that describe those functions in the low to moderate density
regime.24 In particular, this is true for the hard sphere model
under consideration in this paper, so we write the formal
series

g�r,�� = �
j=0

�

� jgj�r� , �6.1�

where of course g and all of the gj vanish identically for r
�1. The density-independent leading term is just the pair
Boltzmann factor for the hard sphere potential, i.e., the unit
step function U centered at the collision diameter,

g0�r� = exp�− �u�r��

� U�r − 1� . �6.2�

Exact evaluation of the succeeding gj�r� would involve
Mayer cluster integrals whose numbers and topological com-
plexities rise very rapidly with order j.24,25 The j�1 terms in
Eq. �6.1� for hard spheres vanish identically when r� j+1.
The present extended version of the scaled particle theory in
principle offers an alternative method to generate the density
expansion �6.1�, albeit in approximate form. The purpose of
this section �Sec. VI� is to demonstrate that the theory as
described above indeed has the capacity to produce such a
density expansion. To be able to do so should be regarded as
a necessary condition that the theory must meet. A failure to
meet that condition would have to be regarded as a fatal flaw
invalidating the approach.

Note first that the zero-order pair function �6.2�, when
inserted into the virial equation of state expression �2.3�
yields the pressure correct through O��2�. More generally, if
g0�r� , . . . ,gl�r� are known, inserting those results into the
virial equation predicts pressure through O��l+2�. This is also
equivalent to specifying the single cavity function J���
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through O��l+2�. When this result for J is inserted in Eqs.
�A2�–�A5� one obtains four independent linear equations for
the remaining four single cavity unknowns K, L, M, and N,
with constant coefficients, and inhomogeneous terms valid
through O��l+1�. Solving this equation set thus determines
each of K, L, M, and N through O��l+1�.

Similar remarks apply to the three connection conditions
�A6� for the pair cavity. This insertion of g�r ,�� through
O��l�, along with the single cavity quantities just determined
through O��l+1�, suffice to determine X�s ,��, Y�s ,��, and
Z�s ,�� through O��l+1�. This means that both �W�	 ,�� and
�W2�r ,	 ,�� can be evaluated through O��l+1�. Equation
�2.15� subsequently provides gl+1�r�, thus completing a stage
of the density expansion. Repetition of this procedure in
principle continues to increment l and so can extend the se-
ries in Eq. �4.1� to an arbitrary number of terms.

For purposes of concrete illustration we now carry out
this strategy in explicit form for the first few orders. The
starting point simply utilizes the ideal gas pressure, the lead-
ing term in the right member of Eq. �2.3�, namely, �p=�
+O��2�. It is then straightforward to show that in this density
order, J��� is the only nonvanishing member of the set of
eight unknowns J��� ,L��� , . . . ,Z�s ,��,

J��� = �4�/3�� + O��2� . �6.3�

Subsequently, evaluating �W�	 ,�� and �W2�r ,	 ,�� at 	=1
and inserting the results in Eq. �2.15� yields the following:

g1�r� = ��4

3
− r +

r3

12

 �1 � r � 2�

= 0 �2 � r� . �6.4�

This is the exact result in linear order in density, well known
from the Mayer cluster expansion.25 When combined with
g0�r�, Eq. �6.2�, and placed in the virial pressure expression
�Eq. �2.3��, this correctly reproduces the equation of state
through the third virial coefficient,

�p = � + �2�/3��2 + �5�2/18��3 + O��4� . �6.5�

At the next level of iteration, only the first two terms in
Eq. �6.5� for the pressure are required, in order to specify
J��� to second order,

J��� = �4�/3�� + �8�2/9��2 + O��3� . �6.6�

This, and the pair correlation function through linear order in
density, may then be inserted into each of the four connec-
tion condition Eqs. �A2�–�A5� to evaluate their inhomoge-
neous terms consistently through O��2�. The results are the
following:

2K + L − N = − �2�2 + O��3� , �6.7�

31/2K + 3L + 33/2M + 9N = −
5 · 31/2�2�2

12
+ O��3� , �6.8�

2K + 31/2L − 33/2N = − �2�2 + O��3� , �6.9�

K + 33/2N = − �2�2/2 + O��3� . �6.10�

These last four equations are easily solved through the req-
uisite density order,

K = − �2�2/2 + O��3� ,

L = 0 + O��3� ,

�6.11�
M = �2�2/36 + O��3� ,

N = 0 + O��3� .

The results shown here for K and L agree in this density
order with their analogs in the conventional scaled particle
theory, but M and N have no precedents in that earlier ver-
sion with which to compare.4

The next step requires setting up and solving the three
equations �A6� for the unknowns X�s ,��, Y�s ,��, and Z�s ,��
through the same second order in density. By confining at-
tention just to a result for g2�1�, which is sufficient to predict
the fourth virial coefficient, we can limit the analysis to these
three unknowns just at s→ +� and at s=−1. For the first of
these two cases, starting with Eq. �3.11�, expanding in den-
sity through second order and applying the connection con-
ditions leads to the following:

X�+ �,�� = 0 + O��3� ,

Y�+ �,�� =
�2�2

18
+ O��3� , �6.12�

Z�+ �,�� = 0 + O��3� .

Then using these results for subsequent evaluation of �W2

for this infinite-separation case yields the following work
quantity for insertion of two independent unit spheres:

�W2�s = + �,t = 1� =
8��

3
+

5�2�2

6
+ O��3� . �6.13�

The same result emerges from the alternative route that
evaluates �W�	=1� directly from the single cavity analysis
and multiplies the result by 2, as indicated in Eq. �2.14�.

For the purpose of evaluating g�1,�� it is necessary to
obtain �W2�s=−1, t=1� through the same quadratic order in
density. The corresponding computation that also starts with
Eq. �3.11� is quite tedious, so we skip most details. This
procedure yields the following intermediate results:

X�− 1,�� =
�2�2

16
+ O��3� ,

Y�− 1,�� = −
5�2�2

144
+ O��3� , �6.14�

Z�− 1,�� =
�2�2

64
+ O��3� .

When these are combined with J and K through the same
order, one is able to establish that
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�W2�s = − 1,t = 1� =
9��

4
+

457�2�2

576
+ O��3� . �6.15�

The contact pair correlation function follows from Eq.
�2.15�, which requires the results in Eqs. �6.13� and �6.15�,

g�1,�� = 1 +
5��

12
+

73�2�2

576
+ O��3� . �6.16�

Finally, the virial pressure equation of state, Eq. �2.3�, can be
exhibited explicitly through fourth order in density,

�p = � +
2�

3
�2 +

5�2

18
�3 +

73�3

864
�4 + O��5� . �6.17�

The last explicitly shown coefficient in Eq. �6.17� is the
fourth virial coefficient B4, as predicted by the present ex-
tended scaled particle theory �ESPT�,

B4 �
73�3

864
�ESPT� . �6.18�

This is close, but not precisely equal, to the known exact
value,25

B4 = 2.6362 . . . �
73.459�3

864
�exact� . �6.19�

To put this comparison in a useful context, we also note that
the fourth virial coefficient estimate that emerges from the
equation of state �2.8� produced by the conventional scaled
particle theory4 �SPT� is the following:

B4 �
19�3

216
�

76�3

864
�SPT� . �6.20�

It is also worth mentioning that the popular Carnahan-
Starling �CS� approximate equation of state for the hard
sphere fluid,26

�p

�
=

1 + ���/6� + ����/6��2 − ���/6�3

�1 − ���/6��3 , �6.21�

makes the prediction,

B4 �
�3

12
�

72�3

864
�CS� . �6.22�

VII. DISCUSSION

The original SPT created by Reiss et al. focused on the
creation work for a single spherical cavity with arbitrary ra-
dius in the single-component hard sphere system.4 In addi-
tion to generating an equation of state for the fluid phase of
that hard sphere system their approach automatically had the
capacity to estimate the chemical potential for a dissolved
spherical solute of any size, in the infinite-dilution limit. The
extension presented in this and the following paper adapts
concepts of that original work to the case of a double cavity
composed of two spherical exclusion regions with arbitrary
but equal sizes, with variable center-to-center separation. The
underlying motivation was the desire to predict the distance
and density dependent pair correlation function for hard
spheres, g�r ,��. This extension includes description of the

single cavity quantity of the original theory, but embeds that
description in a somewhat more elaborate formalism. In
analogy with the previous situation, this double cavity ap-
proach in principle allows estimation of the infinite-dilution-
limit chemical potential for diatomic species dissolved in the
hard sphere solvent.

A necessary test that needs to be passed by any proposed
approach to predicting g�r ,�� is that it can generate a well-
defined density expansion for this function and for the hard
sphere virial series. Section VI above demonstrates that such
a density expansion emerges from the present strategy. As in
the case of the original SPT, the second and third virial co-
efficients are reproduced exactly by ESPT. The implied
fourth virial coefficient exhibits a small deviation from the
known exact value, but that deviation is substantially less
than those produced either by the original scaled particle
theory or the Carnahan-Starling equation of state. These
comparisons indicate that the present extension of the scaled
particle theory has intrinsic merit.

It needs to be stressed that the exploratory analysis of-
fered in this paper has not invoked the full set of thermody-
namic conditions that are available. Specifically, the spatial
integral of the pair correlation function leads to the isother-
mal compressibility, whose inverse yields the pressure equa-
tion of state upon integration with respect to density. Also,
the single cavity quantity W�	=1,�� represents the nonideal
part of the hard sphere chemical potential that also must be
consistent with the virial equation of state at all densities.
This unused information, if incorporated, might well serve to
modify the strategy developed above to produce a more ac-
curate theory.

The five-term asymptotic expansions, Eqs. �4.1� and
�4.5� that were introduced for the single and double cavities,
respectively, have been assumed valid and used as such
down to small-cavity sizes. This presumption deserves care-
ful scrutiny in the future. It is possible that the nature of local
sphere arrangements, particularly at high densities, requires a
different and more flexible format. In particular, an accurate
account of the first-order fluid-crystal transition displayed by
the hard sphere system might demand such a modification. It
also should be stressed that nothing is explicitly present in
the double cavity formalism developed here that would as-
sure divergence of the pressure at the close-packed density
�=21/2. The unused exact conditions mentioned in the pre-
ceding paragraph might be important components of a vari-
ant of the double cavity scaled particle theory that success-
fully predicts these characteristics of the hard sphere system.
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APPENDIX: EQUATIONS DETERMINING J, K, L, M, N,
X, Y, AND Z

The purpose of this Appendix is to collect the self-
consistency and connection conditions that are needed to de-

204504-9 Scaled particle theory for hard sphere pairs. I J. Chem. Phys. 125, 204504 �2006�

Downloaded 24 Nov 2006 to 128.112.71.208. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp



termine �W�	� and �W2�r ,	�. These conditions must suffice
to determine the eight quantities J, K, L, M, N, X�s�, Y�s�,
and Z�s� as functions of density �. They will be stated in a
fashion that assumes a given input estimate is available for
the pair correlation function g�r�. For notational economy
here and in the following, we suppress explicit appearance of
� as a variable in the various functions to be determined.

The first condition connects J to the contact value of the
pair correlation function, utilizing Eqs. �2.3�, �2.6�, and �4.1�,

J =
4��

3
+

8�2�2

9
g�1� . �A1�

A second condition emerges from Eq. �2.7�, relating to incre-
mental single cavity expansion work at 	=1,

3J + 2K + L − N = 4��g�1� . �A2�

The continuity of �W, of ��W /�	, and of ��2W /�	2 across
	=3−1/2 provide three further conditions, which respectively

can be shown from Eq. �3.13� to have the following explicit
forms:

3−3/2J + 3−1K + 3−1/2L + M + 31/2N

= − ln�1 −
4��

35/2 + 2�2�2

�	
1

2/31/2 � 4r2

35/2 −
r3

3
+

r5

12
�g�r�dr� , �A3�

J + 2 · 3−1/2K + L − 3N

= �1 −
4��

35/2 + 2�2�2	
1

2/31/2 � 4r2

35/2 −
r3

3

+
r5

12
�g�r�dr�−1� 4��

3

− 4�2�2	
1

2/31/2 �2r2

3
−

r3

31/2�g�r�dr� , �A4�

2 · 31/2J + 2K + 2 · 33/2N = �1 −
4��

35/2 + 2�2�2	
1

2/31/2 � 4r2

35/2 −
r3

3
+

r5

12
�g�r�dr�−2� 4��

3
− 4�2�2	

1

2/31/2 �2r2

3

−
r3

31/2�g�r�dr�2

+ �1 −
4��

35/2 + 2�2�2	
1

2/31/2 � 4r2

35/2 −
r3

3
+

r5

12
�g�r�dr�−1� 8��

31/2

− 4�2�2	
1

2/31/2 � 4r2

31/2 − r3�g�r�dr� . �A5�

These equations �A1�–�A5� can be simultaneously solved for
the five quantities J, K, L, M, and N.

Three additional equations emerge from the require-
ments that �W2 and its first two derivatives with respect to t
�at constant s� be continuous across the locus t=0, i.e., 	
=1/2. These equations are necessary to determine the re-
maining unknowns X�s�, Y�s�, and Z�s�. With the under-
standing that subscripts i=0,1 ,2, respectively, refer to con-

tinuity of �W2, its first t derivative, and its second t
derivative at t=0, these three equations may be symbolically
written as follows:

Ai�s� = Bi�s,t = 0� �i = 0,1,2� . �A6�

Here the Ai�s� stem from the assumed asymptotic formula in
Eq. �4.5�, while the Bi�s , t� arise from Eqs. �3.11� and �3.12�.
The specific forms for the Ai�s� are

A0�s� = �1

4
−

3s2

16
−

s3

16
�J + �1

2
+

s

4
�K +

X�s�
2

+ Y�s� + 2Z�s� �s � 0�

=
J

4
+

K

2
+

X�s�
2

+ Y�s� + 2Z�s� �0 � s� , �A7�

A1�s� = �3

4
−

3s2

16
�J + �1 +

s

4
�K +

X�s�
2

− 2Z�s� �s � 0�

=
3J

4
+ K +

X�s�
2

− 2Z�s� �0 � s� , �A8�
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A2�s� =
3J

2
+ K + 4Z�s� �all s� . �A9�

One also has the following expression:

B0�s,t� = − ln�1 − ��� �t + 1�3

3
−

s2�t + 1�
4

−
s3

12
� +

2�2�2

�s + t + 1�	1

s+2�t+1�

k�s − r1 + t + 1,
t + 1

2

r1g�r1�dr1� �s � 0�

= − ln�1 −
���t + 1�3

3
+

2�2�2

�s + t + 1�	max�s,1�

s+2�t+1�

k�s − r1 + t + 1,
t + 1

2

r1g�r1�dr1� �0 � s� . �A10�

Here the integral kernel k has been defined earlier in Eq.
�3.12�. One also has

B1�s,t� = �B0�s,t�/�t �A11�

and

B2�s,t� = �2B0�s,t�/�t2, �A12�

the explicit forms of which are straightforward to generate
but are rather lengthy, and so will not be shown here.
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