
THE JOURNAL OF CHEMICAL PHYSICS VOLUME 46, NUMBER 10 15 MAY 1967 

Elasticity in Rigid-Disk and -Sphere Crystals 

FRANK H. STILLINGER, JR. 

Bell Telephone Laboratories, Incorporated, Murray Hill, New Jersey 

AND 

ZEVI W. SALSBURG 

Chemistry Department, Rice University, Houston, Texas 

(Received 30 December 1966) 

Our previously developed product representation for the partition func~ion of. rigid molecules. u~der 
high compression is generalized to include distorted reference lattices. The re~ultmg stral~ componen t ~anatlO~s 
of free energy then permit extraction of elastic constants, both linear and nonhnear. The h~gh-compresslOn el~stJc 
behavior of the two-dimensional rigid-disk crystal is explicitly evalu.ated ~hrou?h tnplet clu~ter contribu­
tions. For rigid spheres in three dimensions in the face-centered-cublc lattice, smglet a?d paIr cluster con­
tributions have been evaluated, and the sound velocity ratio is reported for propagatIOn along the (100) 
directions. Consideration of singlet and pair contributions for hexagonal packi~g. suggests not only that 
this structure is more stable than the face-centered-cubic case, but that It exhibits a spontaneous small 
contraction along the c axis. 

r. INTRODUCTION 

I N an earlier publication! a pr,ocedure :V~S d~veloped 
for calculating free energIes of ngid-disk and 

-sphere systems in the close-packed crystalline limit. 
The reference lattice utilized in definition of the relevant 
cell-cluster contributions (the leading one of which 
was the free area or free volume) was chosen to be 
undistorted from its most symmetrical form. In the 
present paper, however, we consi~er the T?ore general 
situation for which the underlymg lattICe bears a 
homogeneous distortion. Since the earlier procedure 
may be readily adapted to ~alculation of free ~nergy as 
an explicit function of stram components, thIS sequel 
provides a means for obtain~ng rigid-d~sk and -sph~re 
crystal elastic constants m the hIgh-compressIOn 
regime. 

In the same manner as before in the undistorted 
lattice work, the elastic properties calculated below are 
expressed as an infinite series of c~ntributions of e:er­
increasing complexity correspondmg to all pOSSIble 
connected figures that may be drawn on the reference 
lattice with nearest-neighbor bonds. With inclusion of 
strain components, the cell-cluster evaluations become 
especially lengthy even in the entirely computer­
automated procedure outlined below. For that reason, 
it has been necessary to truncate calculations at a 
lower cluster order than in Ref. 1 (the situation is 
particularly severe for the three-dimensi?nal crystals). 
As a result the elastic constant calculatIOns have less 
convincino- convergence properties. 

Althou;h we intend even tually to push the elastic­
constant calculations to inclusion of more complex cell 
clusters, the low-order results already obtained were 
deemed worthy of public exposure not only because they 
illustrate a new method for handling anharmonic 
solids but because they also yield qualitatively in­
teresting results. In particular we find tentatively that 

hexagonal packing is more stable for spheres in three 
dimensions than the face-centered-cubic packing2j 
furthermore the most stable form of the hexagonal 
packing appears to involve spontaneous contraction 
along the hexagonal c axis. 

The major advantage in working in the high-com­
pression limit is that curvatures of cell-cluster bound­
aries are negligible. In addition, vacancies or other 
lattice defects have such vanishingly small concentra­
tions in this regime as to be also totally negligible, so 
only perfect crystals are considered below. Although 
our free-energy series consisting of cell clusters each of 
which is taken in the high-compression limit demon­
strably yields the correct result for a finite system of 
particles (at least in some density neighborhood of 
close packing), the same has not yet been demon­
strated rigorously for the infinite system limit.3 We 
assume, however, that the two limit operations do in 
fact commute. 

With specific regard to elasticity, the high-com­
pression limit for disks or spheres implies that plastic 
relaxation of the system under an initial shear for 
example is entirely excluded. The high-compression 
limit therefore constitutes a regime in which elastic 
response may be deduced from a suitably arranged 
equilibrium theory, whereas more generally it must be 
treated as, say, a zero frequency limit of the real part 
of a temporal response function.4 

On account of its relative pictorial and mathematical 
simplicity, the two-dimensional crystal of rigid disks 
serves as a convenient starting point, so the general 
procedure below is first set up and illustrated for this 
system. The corresponding three-dimensional face-

2 This is true in spite of the fact that these two crystal structures 
have identically the same close-packed density. . 

• This finite-system limitation has been explored m Z. W. Sals-
burg and W. W. Wood,J. Chern. Phys.37, 798 (1962). . 

4 That certain general relations may always be established 
between elastic properties and strict equilibrium properties of 

1 F H St'll' J Z W Salsburg and R. L. Kornegay the system is demonstrated in F. H. Stillinger, Jr., Phys. Rev. 
1 mger, r., .., '237 (1966) 

J. Chern: Phys. 43,932 (1965). 142,. 
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ELASTICITY IN MODEL CRYSTALS 3963 

centered-cubic and hexagonal crystals are then treated 
in turn. 

II. RIGID-DISK CRYSTAL 

A. General Considerations 

Figure 1 illustrates the undistorted regular hexa­
gonal lattice for rigid disks under high lateral com­
pression. The particles have been placed at their 
nominal equilibrium sites, and the six-sided "free area" 
for motion of a single particle in the cage formed by its 
neighbors is bounded by circular arcs whose radii equal 
the collision diameter a. 

Let the vectors RI ••• RN locate the N sites of 
the underlying lattice, one for each particle of the 
system. If we imagine the crystal to be contained 
within rigid boundaries, the restriction to high densities 
implies that we may regard Disk 1 to be confined to the 
vicinity of R I , "', and Disk N to the vicinity of 
RN (i.e., particle interchanges are geometrically im­
possible). Then if rl'" rN denote the respective disk 
displacements from the lattice sites, the canonical 
partition function QN and Helmholtz free energy F N 
may be expressed in the following ways: 

QN=exp( -FN/kT) 

=X-sN f drl'" f drN IT. U(\ R;j+rj-ri I -a); 

R;j=Rj-Ri. (1) 

o 00 o 0 o 00 

o 0 
FIG. 1. Undistorted hexagonal lattice of rigid disks. The free 

area for any particle is formed by arcs of radius a centered about 
neighboring lattice sites. 

6 Since primary interest centers on bulk phase properties, we 
suppress explicit occurrence of rigid boundaries in Eq. (1). 
Indeed it is even possible in principle to use periodic boundary 
conditions (thus permitting free translation of the entire system) 
without substantially affecting free energy on a per-particle basis. 

FIG. 2. Reference lattice and free area under the influence 
of a homogeneous strain. 

Here X is the mean thermal de Broglie wavelength, s the 
dimensionality (2 for disks, 3 for spheres), U is the 
unit step function, 

U(x) =0 (x<O) 

=1 (x~O), (2) 

and the integrand product in Eq. (1) includes all 
nearest-neighbor (nn) pairs once. 

As the crystal is compressed to the high density 
limit, it is clear from Fig. 1 that the free areas shrink to 
zero size. Although any given particle may actually 
wander beyond the limits of the nominal free areas as a 
result of proper cooperative motion of neighbors, it is 
nevertheless true that the average displacements rj 
at high compression will be small compared to the 
lattice spacing. Therefore in the high-compression 
regime it is valid to simplify step-function arguments 
thus: 

U(\ Rij+rj-r; \ -a) 

"'U[(Rii/ R;j)' (Rij+rj-ri) -a]; (3) 

this operation amounts to replacing exclusion circular 
arcs by tangent lines perpendicular to the respective 
lattice directions. Replacements (3) in the partition 
function (1) constituted the basis of calculations in 
Ref. 1. In a forthcoming publication we shall show that 
a more exact development of the step function argu­
ment than exhibited in Eq. (3) permits evaluation of 
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3964 F. H. STILLINGER AND Z. W. SALSBURG 

correction tenus to F N which vanish in the high­
compression limit, but which become important at 
lower solid-phase densities. 

Under the influence of a homogeneous strain, the 
reference lattice and free areas might suffer distortions 
as exhibited for example in Fig. 2. Such homogeneous 

distortions may generally be described by a position­
independent dyadic strain tensor u. Under the influence 
of u the shifted lattice-site positions correspond to the 
vectors R1+u·Rt, "', RN+u·RN, so the strain-de­
pendent partition function and free energy generalizing 
Eq. (1) are thus: 

( 4) 

The boundary linearization corresponding to Eq. (3) for this more general case subsequently permits us to write at 
high compression 

QN (u) "-'A-8N f drl'" f drN U u[~:; . (RiJ+u·Rii+ri-ri) -a J­ (5) 

In discussion of statistical thermodynamics of rigid particles it is convenient to use a dimensionless density 
variable fJ, which varies between zero and an upper limit unity corresponding to close packing. In terms of fJ then, 

(6) 

Now the partition function expression (5) can be rewritten in the h1limit: 

(7) 

As the crystal is compressed toward its close-packed limit it of course becomes more and more difficult to distort, 
and the mathematical manifestation of this behavior in Eq. (7) is the increasing magnitude of the scaled strain 
tensor S relative to the actual strain tensor u. In the following we shall actually suppose that the components of S 
remain of order unity, so that the passage from Eq. (4) to Eq. (5) above is automatically justified by the con­
sequent vanishing of u components in the high-compression limit. 

Before proceeding to evaluate QN(U), it is advantageous to summarize the phenomenological form of linear 
elasticity theory for crystals with the hexagonal symmetry of the rigid-disk solid. It is thus required to express the 
free energy per particle as a multinomial in the components of u, retaining terms only through quadratic order. 
The correct form is the following: 

when expressed in terms of u's Cartesian components. Here we have followed the Landau-Lifshitz6 notation for 
elastic constants, instead of the Voigt7 convention. The pressure term is missing for crystals whose undistorted 
shape is stress free, but generally this term may be identified as a pressure-area work, since to leading order the 
fractional area increment is 

(9) 

The rigid-disk crystal linear elasticity may thus be described by just two elastic constants, A~t~ and Atm' 
We now proceed to develop ZN(U) and hence QN(U) into a formally exact product [in essentially the same 

manner as for QN(O) in Ref. 1J whose terms, respectively, are the free area approximation, pair cluster corrections, 
triplet corrections, etc. To do so, we note first that in terms of reduced configuration variables t i , the free area for 

& L. D. Landau and E. M. Lifshitz, Theory of Elasticity, translated by J. B. Sykes and W. H. Reid (Addison-Wesley Pub!. Co., 
Reading, Mass., 1959), p. 39. To adapt Eq. (10.8) for three-dimensional hexagonal crystals in this reference to the two-dimensional 
rigid-disk system, it is necessary to suppress terms including u components with subscripts z. 

7 W. Voigt, Lehrbuch der KristaUphysik (B. G. Teubner, Leipzig, 1928). 
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ELASTICITY IN MODEL CRYSTALS 3965 

particle i, Z;'l) (u), may be written in the high-compression regime as 

Z;<I)(u) = f dti II U(1+Wia,S'Wia- Wia,ti), 
aEP(i) 

(10) 

wherein the integrand product spans the set v(i) of nearest neighbors of particle i, In similar fashion a particle 
pair generalization of the free-area integral, for nearest-neighbor disks i and j, may be defined by 

ZiP)(U) = f dtif dtP[1+wij'S'Wij+wij' (tj-ti)J II U(l+wia,S,wia- wia,ti) 
aEV(i)-j 

X II U(1+Wjll,S'Wjll-Wjll,tj). (11) 
IlEV(j)-i 

Now the integrand contains step functions corresponding to nonoverlap between (1) disks i andj, (2) between i 
and its set v(i)-j of fixed nearest neighbors (thus excludingj), and (3) betweenj and its set v(j)-i of fixed 
nearest neighbors. Analogous higher-order configuration integrals Z(n)i! ... in may likewise be written down for any 
set of n disks which form a connected grouping on the lattice; that is, each disk can be reached from any other by 
nearest-neighbor jumps involving only disks in the set iI" ,in, Of course for large n there will tend to be a very large 
number of distinct types of connected groupings or clusters. 

The desired product representation has the following structure: 

ZN(U) ==Z(N\"'N(U) 

= [IT ZP) (u) J[ II' ZiP)(U) J[ II' Zijk(3) (U)Z/I) (u)ZP) (U)Zk(l)(U) J'" 
i=1 i<j Z;<t)(u)ZP)(u) i<j<k ZiP) (U)Zik(2) (U)Zjk(2) (u) 

N 

== [II Y;'l) (u) J[II' YiP)(u) J[ II' Yijk (3) (u)]- .. [Y(N\"'N(U) J. (12) 
i=1 i<j i<j<k 

The primes on the pair, triplet, "', factor products are to indicate that only connected clusters are included. It 
is a simple matter to prove by induction that (12) is a rigorous identity if the Y(N\!."in are generally defined to 
equal the corresponding Z(N)i! ... in divided by a Y of lower order for each connected proper subset of iI' "in, It hardly 
needs to be remarked that the general utility of the product representation rests upon the presumption that terms 
of ascending order converge rapidly to unity, and that numerical evaluation be feasible for at least the Lading 
members of the product. 

Our computations are aided by the translational symmetry of the crystal, for this implies that all Y(n»s for a 
given species (shape) of cluster of n particles with fixed orientation in the u field are equal. In view of Eqs. (7) and 
(12), then, the free energy per particle may be expressed as a series of cluster terms: 

FN(U) [A ] N -- =s In I - In[s-sY(l)(u)J- L [LT(n, a) InY(n.a)(u)J; 
NkT a(o-- -1) n=2 a 

(13) 

particle subscripts on V's are now unnecessary. a is an 
index denoting cluster species, and it is presumed that 
a given cluster of n particles may be formed on the 
lattice in T(n, a)N different ways.8 After the right 
member of Eq. (13) is expanded in powers of u com­
ponents, it becomes possible to identify the elastic 
constants of the rigid-disk crystal by comparison with 
the phenomenological free-energy expression (8), 

B, Cluster-Integral Evaluation 

For present purposes it is unnecessary to calculate 
the Y(n,a) for an arbitrary homogeneous strain field. 

8 Certain pairs of clusters for given n that are distinguishable 
with a certain distortion u may degenerate into indistinguish­
ability for u=O, because the undistorted crystal has higher sym­
metry. For this reason the topological factors r(n, a) constitute 
a larger set of numbers than the corresponding t(n, a) appearing 
in Ref. 1. 

Instead it suffices, to find AbI~~ and A~~'I'Q' to consider just 
two independent strain fields, which can be selected 
purely for computational convenience. In particular 
we choose (1) uniform dilation (uxx=uyy, UXy=O) and 
(2) uniaxial elongation (uxz= UXII = 0, Uyy~O). 

We suppose that the x axis coincides with one of the 
principal crystallographic directions for the undis­
torted crystal. Then from Fig. 3 one verifies that the 
unit vectors pointing to nearest neighbors are selected 
from the set 

Ws= -ti- (YJj2)j, 

Wa= -ti+ (YJj2) j, W6= ti- (YJj2) j, (14) 

expressed in terms of x- and y-direction unit vectors 
i and j. Instead of evaluating cluster integrals in terms 
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3966 F. H. STILLINGER AND Z. W. SALSBURG 

of Cartesian coordinates, it is far more convenient to 
introduce an oblique coordinate system ZI, Z2 whose 
axes as shown in Fig. 3 are parallel to sides of the high­
compression, free-area hexagon. The transformation is 

ZI=X, 

(15) 

Let U stand for the common value of u"x and U yy in 
the uniform dilation of the disk crystal. The cor­
responding scaled strain tensor is just a constant times 
the unit tensor: 

8=1)1, 

1)= 2u/ (o-L 1). (17) 

and the Jacobian transformation is found to be 

a(x, y)/a(ZI, Z2) = (2/YJ). 

With this simplification the free-area integral (10) may 
be expressed very compactly in terms of the oblique 

(16) coordinate system: 

Z(1)(U"x=Uyy=U) = ,:'J+oo dZI J+oo dz2U(1+1)-ZI) U(1+1)- z2) 
v3 -00 -00 

X U(l +1)+ZI-Z2) U(l+1)+ZI) U(1+1)+Z2) U(1 +1)-ZI+Z2). (18) 

One advantage offered by the oblique coordinates is that some of the step functions may be reinterpreted as in­
tegrallimits; Expression (18) accordingly becomes elementary to evaluate: 

2 Jl+~ JIH 
Z(I) (u",,= Uyy=u) = YJ -1-~ dZI -1-~ dz2U(1+1)+ZI- Z2) U(1+1)- ZI+ Z2) 

Under uniform dilation the higher-order cluster quanti­
ties Y(n,a) are independent of 1) since they are homo­
geneous of degree zero in length-scale shifts9 ; therefore 
they contribute only to the additive free-energy 
constant C which was the object of primary concern in 
Ref. 1. 

With the result (19) inserted into the free-energy ex­
pression (13), we can then begin to identify terms in the 
phenomenological free-energy expression (8): 

pA/NkT= 2/ (0-1-1) ; 

A~'i:<I=NkT/2(o-L1)2. 

(20) 

(21) 

These results are the free-area equation of state pre­
sumed to be asymptotically valid in the high-pressure 

(19) 

limit for rigid disks, and the corresponding "com­
pressibility" elastic constant. 

We therefore establish that only the free-area 
single-particle integrals need to be considered for one of 
the two elastic constants for disks, but extraction of the 
second constant is a fundamentally more difficult 
task since it involves the entire set of cluster integrals. 
The next step therefore is to evaluate the leading mem­
bers of this set under the uniaxial elongation, for which 
we now set 

8=1)jj, 

1)= 2Uyy/ (o-L 1). (22) 

By following the same steps as before, the oblique 
coordinate system integral is now found to belO 

2 (JO J1+(S/4)*.1 j+l f1+(S/4)~ ) = - dZl + dZI dZ2 
YJ -1 -1-(S/4)~ 0 -1-(3/4)~Z1 

Detailed analysis reveals a common pattern when 
the configuration integrals are expressed in terms of the 
scaled strain component 1). Invariably one finds step­
function products as integrands with arguments con­
sisting of linear polynomials in the oblique coordinates 
and 1) with rational number coefficients. These step 

» In other words they contain as many integrals in numerator 
as in denominator. 

(23) 

functions then generate possible sets of upper and lower 
limits on integrals which must be tested for logical 
consistency, and then treated as separate additive con­
tributions to the desired configuration integral. Aside 

10 This result actually requires '1;::: - j, below which lower 
limit the free area is no longer hexagonal, but quadrilateral. But 
since extraction of elastic constants only requires '1 to be in­
finitesimal, we disregard this irrelevant restriction. 
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ELASTICITY IN MODEL CRYSTALS 3967 

from transformation Jacobian factors which would be 
irrational for odd n, the result is a polynomial in 'I) 
with rational number coefficients. 

As n increases the number of logically distinct cases 
increases rapidly, and so these cases become difficult 
to enumerate and calculate accurately. For this reason 
a digital computer program was developed at the Rice 
University Computer Project to evaluate the 'I) poly­
nomial results exactly for each configuration integral, 
with step-function linear polynomial coefficients as 
input. This permitted evaluation of all rigid-disk pair 
and triplet cluster contributions to the uniaxial stretch 
mode free energy. 

An interesting complication arises in evaluation of 
cell-cluster integrals involving two or more particles, 
which is illustrated in Fig. 4 for a pair cluster. As a 
result of uniaxial stretch, the number of boundaries of 
the outer limits of possible motion for a given particle 
depends upon the sign of 'I), and therefore the poly­
nomials change as 'I) changes sign. This necessitates 
separate computer runs for positive and for negative 
'I), but combined results may always be expressed as 
functions of 'I) and \ 'I) I. 

The pair and triplet configuration integrals for 
uniaxial strain have been listed in Table I and are found 
to have the following values: 

Z(2,l) = (2jv3)2[W+19'1)+-\t'l)L-r\'I)2('I)- 1'1) 1)_&'1)3('1)_ 1'1) I)J, 

Z(2,2) = (2jv3)2[2N-+-41-'I)+W4]2+rh'l)2(1 'I) 1-4'1))+~s'l)3(2'1)+ 1 'I) I)J, 

Z(3,l) = (2/v3)3[¥2309_+3!Z.!.'I)+~¥'I)2+-4F('I)+Th \ 'I) 1)'1)2 

-¥N'I)3('I)-H 1 'I) I) _H~'I)4('I)_-H 1 'I) \) --rlllo'l)5('I)_l,j-1 'I) I) J, 

Z(3,2) = (2/v3)3[¥N+3!~~+-4-t~2+¥!6t'l)2('I)+5h 1 'I) I) 

-ffii'l)3('I)--f895 1'1) I) +1062?o'l)4('I)-lT 1 'I) I) -sHh'l)6J, 

Z(3,3) = (2jv3)3[~~+6~Z.!.'I)+2~83'1)2+1~H.!.'I)2('I)+A5_l'f 1 'I) I) 

--\8N-J-'I)3('I)-IHH 1 'I) \)_18\~Vo'tq4('I)-Hg 1 'I) l)+r~-H-h'l)5('I)-H 1 'I) !)J, 

Z(3,4) = (2jv3)3[~~+3!~.!.'I)+1~l'l)2+2h'l)2(1765'1)+391 'I) l)+lJ"9's'l)3(71 'I) \-19'1)) 

+~\-o'l)4(65'1)+7 1 'I) !) -nH411'l)5(37'1)+27 1 'I) I) J, 

Z(3,5) = (2jv3)3[¥2007_+3:gl'l)+5a~'I)2+\-V4]Llh4+2~go'l)4(63'1)+461'1) I) +rd-ho'l)5 (1093'1)+ 1126 1 'I) I)]. 

These results may be utilized to form next the cor­
responding Y(n,a) required by free-energy expression 
(13), with the factors r(n, a) taken from Table I. 
After expansion of the approximate free energy ob­
tained through this cluster order in powers of 'I), com­
parison with phenomenological expression (8) and 
exact result (21) for A~~~~ finally yields a numerical 
approximation for the "shear" elastic constant: 

A~~~=bNkTj(e-L 1)2 

= (1.000000+0.210559-0.716980+",) 

X [NkTj (e-L 1)2J 

""0.493579[NkTj(e-L 1)2]. (25) 

The three contributions shown represent, respectively, 
the free-area approximation, the pair cluster correction, 
and the totality of triplet cluster corrections. Since 
1'1) I terms in the Z's in (24) occur only in cubic or 
higher-order terms, they do not affect the linear­
elastic property predictions. 

The insistence on going beyond the simple free­
area approximation has clearly been necessary in view 
of the size of the multiple-particle cluster corrections 

(24) 

shown in Eq. (25). From the standpoint of error esti­
mation the convergence so far looks poor, and it would 
eventually be desirable to extend the calculation an 
order or two. We nevertheless have clearly established 
already the cooperative character of elastic response in 
the high-compression, rigid-disk crystal. 

TABLE I. List of rigid-disk-crystal pair and triplet clusters 
under vertical uniaxial strain. The cluster graph shown is intended 
to symbolize the entire set of clusters yielding the same configura­
tion integral, which is invariant to translation and to reflection 
about the vertical axis. The T(n, a) are the combinatorial weights 
for the cluster sets, required in Eq. (13). 

Cluster 
Strain Cluster number 

direction graph n,a T(n, a) 

2, 1 
I 2, 2 2 

I 3, 1 

/ 3, 2 2 

J 3,3 4 

< 3,4 2 

"" 
3, 5 2 
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3968 F. H. STILLINGER AND Z. W. SALSBURG 

C. Sound Velocities 

Within the high-compression regime, the pheno­
menological linear elasticity expression (8) may be 
compactly rewritten as follows: 

where the repeated-index summation convention ap­
plies to the last term (Latin subscripts stand for x or y). 
In this expression we use the following linear combin-

-N-I(aFN/aT)u= SeT, u)/N 

ations of Greek-subscript elastic constants: 

Axxxx= Ayyyy= 4A~tv+2At~, 

Axxyy = Ayyxx = 4A~l;v - 2At~, 

Axyxy = Ayxxy = Ayxyx = Axyyx = 2Attvv. ( 27) 

Because we are now concerned with propagation 
of sound waves in the crystal with wavelengths very 
large compared to the lattice spacing, it is necessary to 
transform the isothermal elastic constants appearing in 
Eqs. (8) and (26) to adiabatic elastic constants. 
Adiabatic transformations are carried out at constant 
entropy SeT, u): 

= [S( T, 0) /NJ+[2k/ (0-1- 1) J(uxx+uyy) - (2N)-I(aAijlm/aT)Ui)"Ulm. (28) 

It suffices for present purposes to obtain a temperature change linear in the strain components, so for the adiabatic 
change one has 

S( T, 0) /N""'[S( T +oT, 0) / NJ+[2k/(0-1-1) J(uxx+uyy) 

""'[S( T, 0) /NJ+ (Cv/T) oT +[2k/ (0-1- 1) J(uxx+uyy) , (29) 

where we have let Cv stand for the constant-strain specific heat per particle. The linear temperature change is thus 

(30) 

The adiabatic change analog of the free-energy-change equation (26), correct through second order in u compo­
nents, therefore becomes 

FN(T,O) 

N 

FN(T, O) 

N 
(31) 

here the temperature change oT in Eq. (30) has been inserted with the result that adiabatic elastic constants 
[superscripts (ad) J satisfying linear relations (27) arise, with 

(32) 

The wave equation describing adiabatic motion of the vector strain field (components Ui) in a general linear 
elastic medium has the formll 

(33) 

with p equal to the mass density, and again involving the repeated-index summation. We now write out the de­
tailed form for Ux and uy : 

(34) 

(35) 

11 Reference 6, p. 103. 
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ELASTICITY IN MODEL CRYSTALS 3969 

In the long-wavelength limit for which the wave 
equation is appropriate, the rigid-disk crystal permits 
propagation of both pure longitudinal and pure trans­
verse sound waves. The dispersion relation for the 
former may be obtained by substituting a plane wave 
corresponding to a longitudinal wave with frequency 
W traveling along the x direction: 

Uz=Uo exp[i(KX-Wt) J, 
(36) 

into Eq. (34) to obtain 

pw2= A (ad) xxxxK2 . (37) 

The propagation velocity (group velocity) then can be 
computed for this mode: 

VI=dW/dK= [(X(ad)xxxx/ p) ]1/2. (38) 

The analogous transverse wave propagating in the x 
direction 

Uz=O, 

(39) 

1]<0 

1] > 0 

FIG. 4. Effect of vertical uniaxial stretch upon motion of 
horizontal nearest-neighbor disk pairs. The solid boundaries are 
the distorted high-compression free areas, and the dotted lines 
indicate the outer limits of possible disk center excursion, with 
shapes depending on the sign of distortion ". The free areas shown 
are of course much expanded relative to the actual near-neighbor 
separation. Uy=Uo eXp[i(KX-Wt) J 

similarly leads to the dispersion relation Eq. (25), the dimensionless sound-velocity ratio has 
(40) theform 

and velocity 

Vt= [(X (ad)yxxy/ p) J1/2, ( 41) 

In terms of the previously computed number b in 

y 

~4~--------~k---------~ 

x 

FIG. 3. Undistorted hexagonal flat-sided free area appropriate 
for the high-compression regime. Unit vectors WI" 'w. point 
toward nearest neighbors. The oblique coordinate system Z" 

Z2 is used in evaluating the cluster integrals. 

Vl/Vt= [l+(l/b) + (4k/bCv) ]1/2. (42) 

If we take the specific heat Cv to equal k (two trans­
lational, no internal, degrees of freedom per disk), and 
adopt the numerical b value obtained in the triplet 
cell-cluster approximation, 

vl/v~3.3362, (43) 

which may be compared with (6)1/2=2.4495 that re­
sults from the cruder single-particle, free-area approxi­
mation (b= 1), 

III. FACE-CENTERED-CUBIC SPHERE CRYSTAL 

The phenomenological free-energy expression for any 
cubic crystal, corresponding to rigid-disk Eq. (8), is12 

FN(U) FN(O) pv 
NkT = NkT - NkT (uxx+Uyu+uzz) 

+ 2Xxyxy (UZy2+ux.2+UYZ2) J, (44) 

and in particular applies to the face-centered-cubic 
crystal of rigid spheres. The occurrence now of three 
different elastic constants requires separate examin­
ation of three distinct homogeneous strains. 

Figure 5 exhibits the three basis vectors aI, a2, a3 
which generate the face-centered-cubic lattice, with 

12 Reference 6, p. 40. 
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• 

• 
• 

y 

FIG. 5. Basis vectors ai, a2, ag and the Cartesian coordinate 
axes for the face-centered-cubic sphere crystal. 

the presumption that the ordinary Cartesian x, y, and 
Z axes coincide with the principal crystal axes. The unit 
vectors pointing toward the 12 nearest neighbors, when 
expressed in terms of the Cartesian unit vectors 
i, j, k, are given by 

wI=al/ I all = (1/Y1) (i+j), 

Wa=ad I a21 = (1/Y1) (j+k) , 

w.=aa/ I as I = (1/Y1) (i+k), 

W6= -Ws, 

Wn=Wa-Ws, 

(45) 

The partition-function expression (7) and cell­
cluster product development (12) are directly ap­
plicable to three-dimensional crystals. Of course the 
number of possible cell clusters for a given number of 
spheres increases in going from two to three dimensions 
on account of the variety of possible spatial orientations 
and conformations. In addition the number of unit 
step functions in cell clusters of given order increases 
as well reflecting the increased number of nearest 
neighbors. However by introducing again an oblique 
coordinate system Zl, Z2, Za, whose unit vectors constitute 
a system reciprocal to WI, W2, Wa, the unit step func­
tions may be forced to display arguments in the form 
of rational polynomials in Zl, Z2, Zs, and the distortion 
variable 1/. Thus, again the evaluation of cell-cluster 
integrals may be performed exactly by the rapid 

electronic computer scheme utilized already for the 
disk crystal. 

The linear transformation from Cartesian to oblique 
~oordinates leading to rational step function arguments 
IS 

Zl= (1/Y1) (x+y), 

Z2= (1/Y1) (y+z), 

Za= (1/Y1) (x+Z) , (46) 

for which the transformation Jacobian is found to be 

a(x, y, Z)/a(ZI, Z2, zs)=V2. (47) 

Because the evaluation procedure for cell-cluster 
integrals involves mostly tedious technical detail rather 
than conceptual novelty in comparison with the rigid­
disk case, we shall only present results. 

The first homogeneous strain to be examined is the 
uniform dilation (UX.,=Uyy=uzz=u): 

8=1/1, 

1/=3u/(o-l-1). (48) 

In exactly the same way as for the previous two­
dimensional example the only contribution to the high­
compression strain-dependent part of the free energy 
arises from the "free-volume" single-particle cell 
integrals. One obtains the result for these: 

Z(1) (UX.,=uyy=uzz=u) = 4V2(1+1/)s. (49) 

In comparison with Expression (44), this implies an 
exact high-compression sum rule that must be satisfied 
by two of the three cubic-crystal elastic constants: 

!Axxxx+Axxyy=9NkT/2(o-t-l)2, (50) 

which may be regarded as a three-dimensional analog of 
Eq. (21). In the process of comparison of free-energy 
expressions of course the pressure term in Eq. (44) is 
found to have the standard free-volume form: 

pV/NkT=3/(o-Ll). (51) 

The single elastic constant Axxxx next may separately 
be obtained from the uniaxial process for which only 
Uyy=U is nonzero, and hence for which 

8=1/jj. (52) 

Now in principle all cluster factors Y(n,or) should be 
taken into account for an exact calculation, but on 
account of computer limitation we are forced to accept 
as an approximation a truncation after only the pair 
cell clusters. First, the free-volume integral turns out 
simply to be 

(53) 

Secondly, there are two distinct types of nearest­
neighbor pairs according to whether the connecting 
link is perpendicular to, or at an oblique (45°) angle 
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to, the y axis; the respective integrals (weights rJ.=2 and r<=4) are 

ZJ.(2) (Uyy= u) = (v'1)2[-\-"<f-+327]+¥-7]2+t7]2(-77]+13\7] \) 

3971 

+T\-7]3(-317]+21\7] 1)+/"57]4(-7]+317] D+187]5(7]- 17] DJ, 

Z«2) (Uyy= u) = (v'1) 2[-\6J-+\-%-l7]+¥412+n7]2( -417]+3717] I) 

+rt"27]3(-3977]+38317] D+rlo7]4(2017]-140 \7] 1)+2S"h:07]5(46777]-5045 17] I)J. (54) 

In combination with Sum Rule (50), the configuration integrals (53) and (54) permit separate deduction of pair­
cell approximations to each of Axxxx and Axxyy. One finds 

Axxxx= (9-4.849928+··.) [NkT/(o-L 1)2J 

"'-'4.150072[NkT /(0-1-1)2J, 

Axxyy= (0+2.424964+···) [NkT /(0-1-1)2J 

"'-'2.424964[NkT /(o-L 1)2J; (55) 

as before the separate numbers in parentheses are, respectively, the free-volume predictions, and the correlated 
cell-pair corrections. 

The last of the three elastic constants for the face-centered-cubic lattice, Axyxy, may be obtained by application 
of a shearing strain which is described for convenience by the unsymmetrical tensor 

S=7]ij, 

so that in terms of the conventional symmetrical strain tensor u, 

7]=3U/(o-L 1) =6Uxy/(o-L 1), 

i.e., uxy=!u for this case. The result for the sheared free volume is 

Z(I) (uxy= !u) =v'1(4-7]2+(1/32) 17] \3). 

(56) 

(57) 

(58) 

Figure 6 exhibits the four distinct types of nearest-neighbor pairs; the unit vectors (45) corresponding to each of 
these types are: 

Type 1: W3, W4, W9, WIO (r= 2), 

Type 2: W5, W6, W7, Ws (r=2), 

Type 3: WI, W2 (r= 1), 

Type 4: Wu, W12 (r= 1). (59) 

It is clear from Fig. 6 that the pair-ceIl-cluster integrals for Types 3 and 4 as functions of 7] should differ only by a 
sign change of this variable. The machine calculations furthermore show that the integrals for Types 1 and 2 are 
identical: 

Z(2,1) (uxy= !u) =Z(2.2) (uxy= !u) 

= (v'1)2(W-¥7J2+H7]4+rh 17] \6- Th7]6), 

Z(2.3) (uxy= !u) = Z(2.4) ( -uXy= -!u) 

= (v'1)2[W+i'o7]-W77L~-1l+1h-7]3(737]+8\7] \) 

+m7]4 (57]+24 1 7] D+~7]5(157]+8\7] DJ. (60) 

Results (58) and (60) may finally be converted into the last of the three cubic elastic constants13 : 

Axyxy= (t+0.865092+· •• ) [NkT / (0-1-1)2J 

""-'5.365092[NkT/(o-L 1)2J. (61) 

13 It is interesting to notice that the Cauchy relation Xxxyy =XZyzy that must be obeyed by central force harmonic crystals fails 
apparently by more than a factor of 2 in the extremely a.nha.rmonic rigid-sphere model. 
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Each of the face-centered-cubic-Iattice pair integrals quoted in Eqs. (54) and (60) of course have a common 
value(v'2)2(467/30) in the limit of zero strain. For the purposes of later comparison with the hexagonal crystal, we 
note that the limiting undistorted high-compression free energy so implied is 

F N(O) I NkT,-...;3 In[A! a(e-I- 1) J+Cfee, 

Cfce= - In (4v'2/27) -6 In (467/480) - ••• 

'-"';1.727710, (62) 

where the Cfee is imagined arranged according to the u=O case of Eq. (13). 
The last aspect of the rigid-sphere face-centered-cubic lattice will be calculation of sound velocities on the basis 

of the approximate elastic constants just obtained. We consider only sound propagating along the x axis (the 
[100J direction). The temperature rise associated with an adiabatic sound wave in the crystal 

oT= - [3kT ICv(e-I- 1) J(uxx+uyy+u .. ) (63) 

results in the following adiabatic constants: 

A(ad)xxxx=Axxxx+[18Nk2T ICv(e-I- 1)2J, 

A(ad)xxyy= Axxyy+[18Nk2T ICv(e-I- 1)2J, 

A (ad) xyxy = Axyxy. (64) 

The general wave equation (33) again permits pure 
longitudinal, 

ux=Uo eXp[i(KX-wt) J, 

uy=Uz=o, (65) 

and pure transverse modes 

Ux=Uz=o, 

uy=Uo eXp[i(KX-wt)]. (66) 

After evaluating the respective dispersion relations, the 
sound-velocity ratio is found to be: 

vl/Vt= (A(ad)"xxx/A(ad)"YXy)1/2. (67) 

Finally, setting Cv = 3k12, and accepting approximate 
values (55) and (61) for the isothermal elastic con­
stants, one obtains 

vllv~1.7350, (68) 

whereas the free-volume approximation yields 
(14/3) 1/2= 2.1602. 

IV. HEXAGONAL SPHERE CRYSTAL 

The high symmetry of the face-centered-cubic lat­
tice implies that the stress is isotropic in the undis­
torted state, i.e., when all 12 nearest-neighbor distances 
from a given site in the reference lattice are equal. 
The result in the phenomenological free-energy equa­
tion (44) is that the linear terms in strain components 
all have the same coefficient, -pV/NkT, with p the 
ordinary thermodynamic pressure for the undistorted 
crystal. The hexagonal crystal however has lower 
symmetry, and even though it may be constructed 
from the face-centered lattice by shifting successive 
close-packed layers of spheres, it does not follow that 
with the same set of nearest-neighbor reference lattice 
distances as for the face-centered crystal that the stress 
will be isotropic. 

For reasons of computational convenience neverthe­
less we elect to define the "undistorted" reference state 
as the one with equal distances. Then if we choose 
Cartesian x and y axes to lie in the basal plane, so the 
z axis coincides with the conventional hexagonal 
"c axis," the requisite phenomenological free-energy 
expression must have the following form6 : 

FN(U) FN(O) pV _ 1 

NkT = NkT - NkT [(uxx+uyy+uzz) +E(2uzz-uxx-Uyy) J+(NkT) 1bAzzzzuzz2+2At~~(uxx+Uyy)2 

+A~m[ (uxx-Uyy)2+4uxy2J+2A~zz( uxx+uyy ) Uzz+4A~zvz(uxz2+Uy.2) }. (69) 

Here the constant E measures the reference-state stress 
anisotropy and - p stands for one-third the stress­
tensor trace in that state. We do not evaluate all five 
elastic constants in part because a greater number of 
homogeneous strains would have to be separately 

considered, but also our experience has unfortunately 
shown that evaluation of cell-cluster integrals of given 
order is far more time consuming for hexagonal than 
for face-centered-cubic crystals. Instead we are mainly 
content to examine stability of the crystal with respect 
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to elongation along the z(c) axis, accompanied by basal 
plane contraction so as to maintain constant density. 

As before, we examine first the homogeneous expan­
sion (48), for which only the free-volume factors in 
the basic product representation can yield 1) dependence. 
It was noted in Ref. 1 that the free volumes of the face­
centered-cubic and hexagonal crystals are equal as a 
result of a geometrically simple transformation relating 
the two. For that reason the cubic crystal Z(l) (1)) 
result quoted in Eq. (49) is equally valid for the 
hexagonal case. The direct implication is that Eq. (51) 
once again is the correct high-compression identification 
for p V / NkT in the free-energy expression (69), and 
furthermore the hexagonal high-compression elastic 
constants must obey the exact sum rule: 

tA.zz.+8A~~~v+4A~~z.= 27NkT/2((]L 1)2. (70) 

Figure 7 illustrates the three basic vectors aI, a2, a3 
which generate the hexagonal lattice. From them a set 
of three reciprocal vectors may then be constructed 
which define as before an oblique coordinate system 
that can be utilized in evaluation of cell-cluster in­
tegrals. We omit details. 

It suffices for the cited stability question to examine 
additionally only the homogeneous c-axis stretch 
(uu=u, all other components 0): 

z 

FIG. 6. Examples of the four types of nearest neighbors formed 
by a particle at the origin 0 in the face-centered-cubic lattice, 
with S ='1ij. To lowest order '1 with the shearing motion, distance 
(03) increases, but (04) decreases. 

The correspondingly stretched free volume iS14 

Z(1)(u •• =u) = (4v'2) (1+1)). (72) 

There are two distinct pair species, oriented, respec­
tively, perpendicular to (such as Vectors al and a2 in 
Fig. 7) or obliquely to (vector a3 in Fig. 7) the stretch 
axis, with equal numbers of the two species: 

(73) 

S=1)kk, 

1)= 3u/ ((]1-1). 
Through quadratic terms in the distortion the results 

(71) may be written as follows: 

ZJ.(2) (uzz=u) = (v'2)2 -\-V-[1+2.029978591)+1.032595761)2+0(1)3)J, 

Z«2)(uzz =u) = (v'2)2 ·11·H-iH[1+1.969263771)+0.9462672D7}2+0(1)3)]. (74) 

Although ZJ.(2) reduces for 1)=0 to the common value for undistorted pair cluster integrals for the preceding cubic 
case, Z«2) does not, but instead exhibits a slightly larger value. The undistorted hexagonal free energy to be com­
pared with Eq. (62) (both in the cell-pair approximation) is 

FN (0)/NkT,.....,3In[A/a((]L1)J+Chex, 

Chex = - In( 4v'2/27) - [3 In (-Hi) +3 In(m-+~ g)]- .... (75) 

The implication in this order of approximation is that at least under high compression the hexagonal crystal has a 
lower free energy per sphere than the face-centered-cubic crystal, with 

(76) 

The singlet and pair integral 1) variations shown in Eqs. (72) and (74) permit estimates to be made for E and 
the single elastic constant Azzz.: 

E=0-0.OO113647+·· • 

'" - 0.00113647; 

Azz•z= (9+1.109348+···) [NkT /((]L 1)2J 

::::::1O.109348[NkT/ ((]1_1)2]. (77) 

The other two elastic constants appearing in the sum rule (70) may also actually be evaluated with the infor-

14 That the same result obtains here as for the similarly stretched face-centered free volume, Eq. (53), again reflects the existence 
of the geometrical transformation between these polyhedra. 
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mation already at hand. The class of strains for which 

uxx=Uyy=a, 

uzz=a', (78) 

with a and a' independent variables, and all other u's vanishing, may by virtue of the trivial identity for the 
stretch-factor product, 

(79) 

be regarded as composed of a homogeneous dilation (u==uyy=uzz=a) followed by a uniaxial strain 
luzz =[(a'-a)/(1+a)J}. We know therefore that the free-volume integral will automatically be 

Z(1) (a, a') = (4V2) 11 +[3a/«(71_1) JPI1 +[3 (a'-a) /(1+a) «(71-1) J}. (80) 

Furthermore, we know that yen) factors for n~2 are invariant to uniform dilation, so for Processes (78) it suffices 
to construct Y(2)'S from the uniaxial pair integrals (74) by setting 1J=3(a'-a)/(1+a) «(7L 1). After this is done, 
comparison of the resulting free-energy expression with the basic form (69) for the hexagonal crystal yields the 
following high-compression values: 

At~t>I= (-1+0.069334+"') [NkT/«(7L 1)2J 

"'2.319334[NkT /«(71-1)2J; 

At~zz= (--1-0.277337+··· ) [NkT/«(7L 1)2J 

"'- 2.s27337[NkT /«(7L 1)2]. (81) 

The sum rule (70) is satisfied by our pair-cluster approximate elastic constants displayed in (77) and (81). 
The final remaining task is examination of crystal stability with respect to that particular distortion of type 

(78) for which over-all particle density is invariant. This condition requires that a' as a function of a vary in just 
the proper manner that the stretch factor product remain equal to unity: 

1= (1+uxx) (1+uyy) (1+uzz ) 

= (1+a)2[1+a'(a)]. (82) 

To the requisite quadratic order therefore 

(83) 

In view of this manner of coupling the a and a' variations, the free-energy expression (69) may be developed into a 
quadra tic expression in a: 

F N(a) / NkT= [F N(O) / NkTJ+[18e/ «(71-1) Ja+ (NkT)-1(2Azzzz+8At~t~-8At~zz)a2. (84) 

The thermodynamically stable configuration for the hexagonal sphere crystal should correspond to the minimum 
of this function of a, which is immediately found to be 

geNkT 

amin= - 2«(71-1) (Azzzz+4At~t~-4At~zz) 

"'0.00017338«(7L 1). (85) 

At least in the cell-pair-cluster approximation, there­
fore, our theory predicts that the stable configuration 
of the hexagonal crystal (with isotropic stress) dis­
plays slightly larger nearest-neighbor distances within 
the successive layers of spheres parallel to the basal 
plane, than for nearest-neighbor pairs inclined obliquely 
to the c axis. Of course in the close-packed limit 8= 1 
all distances are forced geometrically to be equal, and 
(85) vanishes accordingly. Our result may perhaps 
best be viewed as a small stable distortion of the free-

volume dodecahedron amounting to several hundredths 
of a percent. The corresponding free-energy reduction 
may be obtained by inserting the quantity (85) into 
(84): 

FN(amin) /NkT= [FN(O) /NkTJ-0.OOOOO1773. (86) 

This very tiny reduction is about three powers of ten 
less than the free-energy difference obtained in Eq. 
(76) for undistorted face-centered-cubic and hexagonal 
crystals. 

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

128.112.66.66 On: Tue, 24 Dec 2013 08:35:08



ELASTICITY IN MODEL CRYSTALS 3975 

V. DISCUSSION 

One must in fairness question the significance of 
the low-order results reported here. Although it may 
never. be possible to prove convergence of the very 
complIcated cell-cluster free-energy series, we have 
proceeded under the tentative assumption that useful 
res~lts c?uld be deri~ed ~t least in the sense of asymp­
totic senes. From thIS pomt of view we shall in a forth­
coming communication extend computation of un­
distorted crystal additive free-energy constants Cf 

and Chex to triplet clusters to see if the relative stabilit~ 
of the hexagonal crystal is maintained. In addition we 
shall then also report results for hybrid sphere crystals 
constructed by stacking schemes intermediate between 
those for pure face-centered cubic and hexagonal,15 

Unquestionably the most useful assessment of our 
calculations of the many-body aspects of rigid-sphere­
crystal phenomena could be provided by suitablv 
designed electronic computer "experiments," either ;f 
the Monte Carlol6 or the molecular-dynamic varietyP 
In particular it should in principle be possible to in­
vestigate the relative stability of the two crystal forms 
by integrating "measured" equations of state for each 
by the procedure outlined in Ref. 1, Sec. V. Alterna­
tively, initial conditions could be selected for computer 
experime~ts consisting of a composite crystal at high 
compreSSIOn, half-face-centered cubic and half-hex­
agonal, and then to see (by introduction of a few 
vacancies to enhance diffusion) which half grows at 
the expense of the other. 

FIG. 7. Basis vectors a[ 
a., a, generating the hexagonal~ 
crystal reference lattice. 

HEXAGONAL 
C-AXIS 

[5~. Pauling, The Nature of the Chemical Bond (Cornell Uni­
versity Press, Ithaca, N.Y., 1960), pp. 407-409. 

16 W. W. Wood, "Monte Carlo Calculations of the Equation 
of. Sta.te of Systems of 12 and 48 Hard Circles," Los Alamos 
Sc~enttfic Laboratory Rept. LA-2827, 1963. 

7 B. J. Alder and T. E. Wainwright, Phys. Rev. 127,359 (1962). 

It has been traditional in computer experiments 
to select boundary conditions (usually periodic­
boundary conditions) which are consistent with un­
strained crystals. The negative value obtained for E 

in Sec. IV suggests that if a hexagonal crystal were so 
constrained and "measurements" separately taken of 
the .various mean stress components, the hexagonal 
c-aXiS stress P ... should be slightly less than the basal plane 
pxx= fVY' EqUlvalently, the contact pair correlation 
functIOn should be larger for basal plane pairs than for 
oblique pairs. More generally it should be possible to 
measure each isothermal elastic constant (when the 
density is ~ufficiently high to prevent sphere migration) 
by measunng stress components as the periodicity cell 
changes shape in various ways. 

The molecular-dynamics approach furthermore raises 
the possibility of direct measurement of sound veloci­
ties, and therefore of adiabatic elastic constants. 
Relevant initi~l conditions in such an investigation 
f~r e.xample mIght correspond to a sinusoidal density 
dIstnbutIOn ,uor . sub~equent longitudinal standing 
wave~). or a smusOldal mcrement of transverse particle 
veloCltIes (for transverse standing waves). 

Beside their implications for macroscopic sound 
propagation, computations of crystal elasticity bear in 
an lmportant way on the character of point defects in 
solid~.18 We therefore anticipate complementary cal­
culatI?ns, both by extension of the present paper's 
techmque and by computer experiment, of the free 
energy and configurational relaxation around vacancies 
in crystals. 

Finally we mention only briefly the conviction that 
the ~ppearan:e of absolute values of strain components, 
for mstance m Eqs. (24), for terms in the cell-cluster 
development con~ributing to nonlinear elasticity, must 
surely be an artifact. The source is the fixed set of 
neighbors constrained to lattice sites for any given 
cluster under consideration, with the result that 
multidimensional polyhedra whose content must be 
eval~ated ~or Z(n) .change their numbers of edges and 
vertices With stram component sign change. In the 
actual crystal of course neighbors of any set of particles 
constantly fluctuate in position, so one may crudely 
say that the sharply delineated cell-cluster polyhedra 
are smeared on the average. If it were possible to 
calcula.te any selected nonlinear elastic response through 
ascendmg orders by our procedure, one probably 
would find the numerical coefficient of the absolute­
value portion converging to zero. More practically it 
seems reasonable in any finite order simply to aver~ge 
calculated responses for positive and for negative 
strains. 

[8 J. D. Eshelby, Solid State Phys. 3, 79 (1956). 
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