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Our previously developed product representation for the partition function of rigid molecules under
high compression is generalized toinclude distorted reference lattices. Theresulting strain component variations
of freeenergy then permit extraction of elastic constants, bothlinear and nonlinear. The high-compression elastic
behavior of the two-dimensional rigid-disk crystal is explicitly evaluated through triplet cluster contribu-
tions. For rigid spheres in three dimensions in the face-centered-cubic lattice, singlet and pair cluster con-
tributions have been evaluated, and the sound velocity ratio is reported for propagation along the (100)
directions. Consideration of singlet and pair contributions for hexagonal packing suggests not only that
this structure is more stable than the face-centered-cubic case, but that it exhibits a spontaneous small

contraction along the ¢ axis.

I. INTRODUCTION

N an earlier publication! a procedure was developed
for calculating {ree energies of rigid-disk and
-sphere systems in the close-packed crystalline limit.
The reference lattice utilized in definition of the relevant
cell-cluster contributions (the leading one of which
was the free area or free volume) was chosen to be
undistorted from its most symmetrical form. In the
present paper, however, we consider the more general
situation for which the underlying lattice bears a
homogeneous distortion. Since the earlier procedure
may be readily adapted to calculation of free energy as
an explicit function of strain components, this sequel
provides a means for obtaining rigid-disk and -sphere
crystal elastic constants in the high-compression
regime.

In the same manner as before in the undistorted
lattice work, the elastic properties calculated below are
expressed as an infinite series of contributions of ever-
increasing complexity corresponding to all possible
connected figures that may be drawn on the reference
lattice with nearest-neighbor bonds. With inclusion of
strain components, the cell-cluster evaluations become
especially lengthy even in the entirely computer-
automated procedure outlined below. For that reason,
it has been necessary to truncate calculations at a
lower cluster order than in Ref. 1 (the situation is
particularly severe for the three-dimensional crystals).
As a result the elastic constant calculations have less
convincing convergence properties.

Although we intend eventually to push the elastic-
constant calculations to inclusion of more complex cell
clusters, the low-order results already obtained were
deemed worthy of public exposure not only because they
illustrate a new method for handling anharmonic
solids, but because they also yield qualitatively in-
teresting results. In particular we find tentatively that

1F, H. Stillinger, Jr., Z. W. Salsburg, and R. L. Kornegay,
J. Chem. Phys. 43, 932 (1965).

hexagonal packing is more stable for spheres in three
dimensions than the face-centered-cubic packing?;
furthermore the most stable form of the hexagonal
packing appears to involve spontaneous contraction
along the hexagonal ¢ axis.

The major advantage in working in the high-com-
pression limit is that curvatures of cell-cluster bound-
aries are negligible. In addition, vacancies or other
lattice defects have such vanishingly small concentra-
tions in this regime as to be also totally negligible, so
only perfect crystals are considered below. Although
our free-energy series consisting of cell clusters each of
which is taken in the high-compression limit demon-
strably yields the correct result for a finite system of
particles (at least in some density neighborhood of
close packing), the same has not yet been demon-
strated rigorously for the infinite system limit3 We
assume, however, that the two limit operations do in
fact commute.

With specific regard to elasticity, the high-com-
pression limit for disks or spheres implies that plastic
relaxation of the system under an initial shear for
example is entirely excluded. The high-compression
limit therefore constitutes a regime in which elastic
response may be deduced from a suitably arranged
equilibrium theory, whereas more generally it must be
treated as, say, a zero frequency limit of the real part
of a temporal response function.*

On account of its relative pictorial and mathematical
simplicity, the two-dimensional crystal of rigid disks
serves as a convenient starting point, so the general
procedure below is first set up and illustrated for this
system. The corresponding three-dimensional face-

2 This is true in spite of the fact that these two crystal structures
have identically the same close-packed density.

* This finite-system limitation has been explored in Z. W. Sals-
burg and W. W. Wood, J. Chem. Phys. 37, 798 (1962).

4That certain general relations may always be established
between elastic properties and strict equilibrium properties of
the system is demonstrated in F. H. Stillinger, Jr., Phys. Rev.
142, 237 (1966).
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ELASTICITY IN MODEL CRYSTALS

centered-cubic and hexagonal crystals are then treated
in turn.

II. RIGID-DISK CRYSTAL

A. General Considerations

Figure 1 illustrates the undistorted regular hexa-
gonal lattice for rigid disks under high lateral com-
pression. The particles have been placed at their
nominal equilibrium sites, and the six-sided ‘“‘free area”
for motion of a single particle in the cage formed by its
neighbors is bounded by circular arcs whose radii equal
the collision diameter a.

Let the vectors R;---Ry locate the N sites of
the underlying lattice, one for each particle of the
system, If we imagine the crystal to be contained
within rigid boundaries, the restriction to high densities
implies that we may regard Disk 1 to be confined to the
vicinity of Ry, -+, and Disk N to the vicinity of
Ry (i.e., particle interchanges are geometrically im-
possible). Then if ;- +ry denote the respective disk
displacements from the lattice sites, the canonical
partition function Qy and Helmholtz free energy Fy
may be expressed in the following way®:

Qv=exp(— Fx/kT)
(nn)
=X_SN/dn... /drzv [ U Rytr—1i] —a);

i<j

o
o0

5

0926

Fic. 1. Undistorted hexagonal lattice of rigid disks. The free
area for any particle is formed by arcs of radius ¢ centered about
neighboring lattice sites.

5 Since primary interest centers on bulk phase properties, we
suppress explicit occurrence of rigid boundaries in Eq. (1).
Indeed it is even possible in principle to use periodic boundary
conditions (thus permitting free translation of the entire system)
without substantially affecting free energy on a per-particle basis.
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F16. 2. Reference lattice and free area under the influence
of a homogeneous strain.

Here X is the mean thermal de Broglie wavelength, s the
dimensionality (2 for disks, 3 for spheres), U is the
unit step function,

U(x)=0 (x<0)

=1 (x20), (2)
and the integrand product in Eq. (1) includes all
nearest-neighbor (nn) pairs once.

As the crystal is compressed to the high density
limit, it is clear from Fig. 1 that the free areas shrink to
zero size. Although any given particle may actually
wander beyond the limits of the nominal free areas as a
result of proper cooperative motion of neighbors, it is
nevertheless true that the average displacements r;
at high compression will be small compared to the
lattice spacing. Therefore in the high-compression
regime it is valid to simplify step-function arguments
thus:

U(| Ri+ri—r1:| —a)
=U[(Ry/Ryj) - (Ry+15—1)—a]; (3)

this operation amounts to replacing exclusion circular
arcs by tangent lines perpendicular to the respective
lattice directions. Replacements (3) in the partition
function (1) constituted the basis of calculations in
Ref. 1. In a forthcoming publication we shall show that
a more exact development of the step function argu-
ment than exhibited in Eq. (3) permits evaluation of
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correction terms to Fy which vanish in the high-
compression limit, but which become important at
lower solid-phase densities.

Under the influence of a homogeneous strain, the
reference lattice and free areas might suffer distortions
as exhibited for example in Fig. 2. Such homogeneous
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distortions may generally be described by a position-
independent dyadic strain tensor u. Under the influence
of u the shifted lattice-site positions correspond to the
vectors R;4-u-Ry, +-, Ry+u:Ry, so the strain-de-
pendent partition function and free energy generalizing
Eq. (1) are thus:

O (1) = exp[— Fy (1) /T]
Y f dryee- / dry (ﬁU(l Ry+u-Riy+r—1:| —a). 4)

The boundary linearization corresponding to Eq. (3) for this more general case subsequently permits us to write at
high compression

(nn) R;;
On (1) ~A—Y f drye -+ f dy 11 U[ = -(R,.,.+u-R,.,.+r,.—n)—a]. (5)
<i i

In discussion of statistical thermodynamics of rigid particles it is convenient to use a dimensionless density
variable 8, which varies between zero and an upper limit unity corresponding to close packing. In terms of 4 then,

(a/Ri;)*=0. (6)
Now the partition function expression (5) can be rewritten in the §—1 limit:

Ov(a)~[a(67'—1) /sNIVZx(u),

(nn)

Zn(0) = f dtye -+ / dty ]| UL14-wirSewitwie (t—t) 7],

<j

wi= Riy/Rij,  t=sr;/a(67—1), S=su/(67-1). (7

As the crystal is compressed toward its close-packed limit it of course becomes more and more difficult to distort,
and the mathematical manifestation of this behavior in Eq. (7) is the increasing magnitude of the scaled strain
tensor S relative to the actual strain tensor u. In the following we shall actually suppose that the components of S
remain of order unity, so that the passage from Eq. (4) to Eq. (5) above is automatically justified by the con-
sequent vanishing of u components in the high-compression limit.

Before proceeding to evaluate Qx(u), it is advantageous to summarize the phenomenological form of linear
elasticity theory for crystals with the hexagonal symmetry of the rigid-disk solid. It is thus required to express the
free energy per particle as a multinomial in the components of u, retaining terms only through quadratic order.
The correct form is the following:

Fy(u) _ Fx(0) 74
NET NkT  NkT

(thaattty) + (NRT) 7 2gan( ozt 141) 2+)‘€Ew[(uu_uw)2+4ury2]} +0(u), (8

when expressed in terms of u’s Cartesian components. Here we have followed the Landau-Lifshitz® notation for
elastic constants, instead of the Voigt” convention. The pressure term is missing for crystals whose undistorted
shape is stress free, but generally this term may be identified as a pressure-area work, since to leading order the

fractional area increment is
SA/ A0t 10yy. (9)

The rigid-disk crystal linear elasticity may thus be described by just two elastic constants, Ay, and Aggr.

We now proceed to develop Zy{(u) and hence Qy(u) into a formally exact product [in essentially the same
manner as for Qx(0) in Ref. 17] whose terms, respectively, are the free area approximation, pair cluster corrections,
triplet corrections, etc. To do so, we note first that in terms of reduced configuration variables t;, the free area for

$L. D. Landau and E. M. Lifshitz, Theory of Elasticity, translated by J. B. Sykes and W. H. Reid (Addison-Wesley Publ. Co.,
Reading, Mass., 1959), p. 39. To adapt Eq. (10.8) for three-dimensional hexagonal crystals in this reference to the two-dimensional
rigid-disk system, it is necessary to suppress terms including u components with subscripts z.

TW. Voigt, Lekrbuch der Kristaliphysik (B. G. Teubner, Leipzig, 1928).
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particle 7, Z;%V(u), may be written in the high-compression regime as
Z:0(u) = / dt: J] U(14-Wiar S+ Wiam Win-£2), (10)

aev(i)

wherein the integrand product spans the set »(¢) of nearest neighbors of particle . In similar fashion a particle
pair generalization of the free-area integral, for nearest-neighbor disks 7 and j, may be defined by

H U(1+wia's'wia_wia'ti)

aev(i)—7

Z,-j(2)(u)= /dti/dtle:l-I-Wij'S'Wij‘{'Wij' (t_,—t;):l

X I(I) U(1+wi-S-wjs—wi-t;).
v l)—e

Now the integrand contains step functions corresponding to nonoverlap between (1) disks 7 and 7, (2) between ¢
and its set »(4) —j of fixed nearest neighbors (thus excluding 7), and (3) between 7 and its set »(j) —¢ of fixed
nearest neighbors. Analogous higher-order configuration integrals Z®; ...; may likewise be written down for any
set of # disks which form a connected grouping on the lattice; that is, each disk can be reached from any other by
nearest-neighbor jumps involving only disks in the set 4;+ « «2,. Of course for large » there will tend to be a very large
number of distinct types of connected groupings or clusters.

The desired product representation has the following structure:

ZN(u) EZ(N)l...N(u)

(] 2 (w) ][ [T i)

=1 < 2P () Z;V(u) :”:i<j<k

(11)

Zia® () 22 (0) 240 () . (1) ] .
Z;® (1) Z3® () Zp® (u)

—[H 7:0 @ LI V@@ I IT Yir® @) 3o+ LY s ()]

1<j <j<k

(12)

The primes on the pair, triplet, -« -, factor products are to indicate that only connected clusters are included. Tt
is a simple matter to prove by induction that (12) is a rigorous identity if the Y™, ...; are generally defined to
equal the corresponding Z®™, ...;, divided by a ¥ of lower order for each connected proper subset of ;- « + 2,.. It hardly
needs to be remarked that the general utility of the product representation rests upon the presumption that terms
of ascending order converge rapidly to unity, and that numerical evaluation be feasible for at least the 1:ading
members of the product.

Our computations are aided by the translational symmetry of the crystal, for this implies that all ¥™’s for a
given species (shape) of cluster of » particles with fixed orientation in the u field are equal. In view of Egs. (7) and
(12), then, the free energy per particle may be expressed as a series of cluster terms:

Fy(u) _ ln[(r'—l)\___i—)

NET

particle subscripts on ¥’s are now unnecessary.  is an
index denoting cluster species, and it is presumed that
a given cluster of # particles may be formed on the
lattice in 7(», o) N different ways.? After the right
member of Eq. (13) is expanded in powers of u com-
ponents, it becomes possible to identify the elastic
constants of the rigid-disk crystal by comparison with
the phenomenological free-energy expression (8).

B. Cluster-Integral Evaluation

For present purposes it is unnecessary to calculate
the Y™ for an arbitrary homogeneous strain field.

8 Certain pairs of clusters for given # that are distinguishable
with a certain distortion u may degenerate into indistinguish-
ability for u=0, because the undistorted crystal has higher sym-
metry. For this reason the topological factors 7(n, «) constitute
a largfrlset of numbers than the corresponding ¢(#, «) appearing
in Re:

]— [P0 () T 35 I3 r(, o) In¥oe) (w)];

(13)

Instead it suffices, to find Aggy and Agzy, to consider just
two independent strain fields, which can be selected
purely for computational convenience. In particular
we choose (1) uniform dilation (2.,=#,,, #.,=0) and
(2) uniaxial elongation (#,,=%=0, 2%,,=0).

We suppose that the x axis c01nc1des with one of the
principal crystallographic directions for the undis-
torted crystal. Then from Fig. 3 one verifies that the
unit vectors pointing to nearest neighbors are selected
from the set

W1=i, Wi= —‘i
wy=31+(V3/2)j,  ws=—3i—(V3/2)j,
wy=—3i+(v3/2)j, we=3i—(V3/2)j, (14)

expressed in terms of x- and y-direction unit vectors
i and j. Instead of evaluating cluster integrals in terms
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of Cartesian coordinates, it is far more convenient to
introduce an oblique coordinate system 2z, 2 whose
axes as shown in Fig. 3 are parallel to sides of the high-
compression, free-area hexagon. The transformation is

B=1x,
n=13x+(V3/2)y, (15)

and the Jacobian transformation is found to be
A(x, v)/0(z, 22) = (2/N3). (16)
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Let # stand for the common value of #.. and #,, in
the uniform dilation of the disk crystal. The cor-
responding scaled strain tensor is just a constant times
the unit tensor:

S=nl,
7=2u/(6"1—1). (17

With this simplification the free-area integral (10) may
be expressed very compactly in terms of the oblique
coordinate system:

2 +oo +oo
ZY (U=, =u) = \./—3,/‘ dzlf dzU(14n—2) U(14n—2)

XU(4n+z—2) U(1+n-+2) U(149+42) U (1+n—21+2).

(18)

One advantage offered by the oblique coordinates is that some of the step functions may be reinterpreted as in-
tegral limits; Expression (18) accordingly becomes elementary to evaluate:

g

\r e

ZO (s =thyy=1mu) =

dzlf dzU (14n+21—20) U(1+9—21+22)
—~1~9

2 0 p L4tz i 147 p 1+
S d
vz(f_lﬁ, z‘/_ z2+f n ) e 22)

= 2V3(1+4n)>.

Under uniform dilation the higher-order cluster quanti-
ties Y are independent of % since they are homo-
geneous of degree zero in length-scale shifts®; therefore
they contribute only to the additive free-energy
constant C which was the object of primary concern in
Ref. 1.

With the result (19) inserted into the free-energy ex-
pression (13), we can then begin to identify terms in the
phenomenological free-energy expression (8):

pA/NkT=2/(671—1);
Aaee=NET/2(671—1)2,

(20)
(21)

These results are the free-area equation of state pre-
sumed to be asymptotically valid in the high-pressure

ZW (uy,=u)

—1—-(3/9)n

1+@/n+21

_2 (
V3 [-1 “ —1—@/4)y
=2V3(1+n).

Detailed analysis reveals a common pattern when
the configuration integrals are expressed in terms of the
scaled strain component 5. Invariably one finds step-
function products as integrands with arguments con-
sisting of linear polynomials in the oblique coordinates
and 7 with rational number coefficients. These step

9 In other words they contain as many integrals in numerator
as in denominator.

(19)

limit for rigid disks, and the corresponding “com-
pressibility” elastic constant.

We therefore establish that only the free-area
single-particle integrals need to be considered for one of
the two elastic constants for disks, but extraction of the
second constant is a fundamentally more difficult
task since it involves the entire set of cluster integrals.
The next step therefore is to evaluate the leading mem-
bers of this set under the uniaxial elongation, for which
we now set

S=1jj,
n="2uy,/ (87—

By following the same steps as before, the oblique
coordinate system integral is now found to be'®

(22)

2 1+3/4)
- = f a4y 14 sk ) U a2

+1 1+3/4)m
+ / dZ]_ / ng)
0 —1—@/4)rt+z21

(23)

functions then generate possible sets of upper and lower
limits on integrals which must be tested for logical
consistency, and then treated as separate additive con-
tributions to the desired configuration integral. Aside

10 This result actually requires 7> —3%, below which lower
limit the free area is no longer hexagonal, but quadrllateral But
since extraction of elastic constants only requlres n to be in-
finitesimal, we disregard this irrelevant restriction.
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from transformation Jacobian factors which would be
irrational for odd #, the result is a polynomial in g
with rational number coefficients.

As n increases the number of logically distinct cases
increases rapidly, and so these cases become difficult
to enumerate and calculate accurately. For this reason
a digital computer program was developed at the Rice
University Computer Project to evaluate the 5 poly-
nomial results exactly for each configuration integral,
with step-function linear polynomial coefficients as
input. This permitted evaluation of all rigid-disk pair
and triplet cluster contributions to the uniaxial stretch
mode free energy.

Z@0 = (2/V3) [+ 19+ — e (n— | n D —
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An interesting complication arises in evaluation of
cell-cluster integrals involving two or more particles,
which is illustrated in Fig. 4 for a pair cluster. As a
result of uniaxial stretch, the number of boundaries of
the outer limits of possible motion for a given particle
depends upon the sign of 5, and therefore the poly-
nomials change as 5 changes sign. This necessitates
separate computer runs for positive and for negative
7, but combined results may always be expressed as
functions of 9 and |7 |.

The pair and triplet configuration integrals for
uniaxial strain have been listed in Table I and are found
to have the following values:

T2 (n— 2 1)],

ZeD = (2/V3) [+ + %A+ rdsn* (I n | —4n) +a8is7* (2t [} ],

200 = (2B T4

3471 30517
4+

AN (s 0 D

—35E (0~ 1% [0 )~ 1880t (1—83 |0 ) =5’ (=% 1 n )],
Z82= (2/V3) 32+ 2483+ (nFsds 0 ])
— 15587 (n—1%s [ 7 ) +10%5on* (1— 71 | n ) —sisdon®],
200 = QAGYTBH R 24 2 8 [ )
— 5 (n xr 3 AR I) — et (n— 1854 l n D +r5toten’ (n—38 [ 9 l) ],

Z(3 4) — (2/\/—)3[2453

8141 147
40 71+—2‘_77

269 = (3V3) LA+ 2RI+ SR+ S — §Ert 0B

These results may be utilized to form next the cor-
responding Y% required by free-energy expression
(13), with the factors 7(»#, «) taken from Table I.
After expansion of the approximate free energy ob-
tained through this cluster order in powers of », com-
parison with phenomenological expression (8) and
exact result (21) for Mg, finally yields a numerical
approximation for the “shear” elastic constant:

Negm=bNET/ (61— 1)?2
= (1.0000004-0.210559—0.716980+ - - +)

X[NET/ (671 —1)7]

0493579  NET/ (61— (25)

1)7].
The three contributions shown represent, respectively,
the free-area approximation, the pair cluster correction,
and the totality of triplet cluster corrections. Since
|7 | terms in the Z’ in (24) occur only in cubic or
higher-order terms, they do not affect the linear-
elastic property predictions.

The insistence on going beyond the simple free-
area approximation has clearly been necessary in view
of the size of the multiple-particle cluster corrections

25@772(176511-1-39 | ) +25%5en*(7| 7| —19n)

+eozsent (65947 | 1 |) —re¥dzon®(370+27 |9 ) ],

$o1*(63n+46 | 7 |) +1eddzon’ (10939+1126 | 9 ) ].

(24)

shown in Eq. (25). From the standpoint of error esti-
mation the convergence so far looks poor, and it would
eventually be desirable to extend the calculation an
order or two. We nevertheless have clearly established
already the cooperative character of elastic response in
the high-compression, rigid-disk crystal.

TaBLe I. List of rigid-disk-crystal pair and triplet clusters
under vertical uniaxial strain. The cluster graph shown is intended
to symbolize the entire set of clusters yielding the same configura-
tion integral, which is invariant to translation and to reflection
about the vertical axis. The 7(#, o) are the combinatorial weights
for the cluster sets, required in Eq. (13).

Cluster
Strain Cluster number
direction  graph n, & T(n, a)
— 2,1 1
7 2,2 2
— 3,1 1
Ve 3,2 2
7 3,3 4
< 3,4 2
A 3,5 2
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C. Sound Velocities

Within the high-compression regime, the pheno-
menological linear elasticity expression (8) may be
compactly rewritten as follows:

FN(T,U) _ FN(T, 0) _ 2kT ( + )
N N i e

+ (2N) 7 Nijimthitbim,

(26)

where the repeated-index summation convention ap-
plies to the last term (Latin subscripts stand for x or y).
In this expression we use the following linear combin-
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ations of Greek-subscript elastic constants:
Noozs= >\ww = 4)‘5115'0-{_ 2>‘55W7
Aoy = Nyyze= i — 2Neem,
(27)

Because we are now concerned with propagation
of sound waves in the crystal with wavelengths very
large compared to the lattice spacing, it is necessary to
transform the isothermal elastic constants appearing in
Egs. (8) and (26) to adiabatic elastic constants.
Adiabatic transformations are carried out at constant
entropy S(7, u):

>\.1:y:c'y = Ayzzy = Maye= Nayys = 2>‘$$1m-

—N"Y8FN/0T)u= S(T,u)/N
=[S(T, 0)/NI+[2k/ (67— 1) J(thast-1t) — (2N) 7 (ONijim/ O T) thigttim. (28)

It suffices for present purposes to obtain a temperature change linear in the strain components, so for the adiabatic
change one has

S(T, 0)/N=[S(T+T, 0)/NI+[2k/ (67— 1) ] (shaxt141,)
=[S(T, 0)/N1+(Cy/T)6T+[2k/ (67— 1) J(theat140) ,
where we have let Cy stand for the constant-strain specific heat per particle. The linear temperature change is thus

5T =—[2kT/Cy (81— 1) (ttast10,,) - (30)

(29)

The adiabatic change analog of the free-energy-change equation (26), correct through second order in u compo-
nents, therefore becomes

Fy(T+8T,u) Fy(T,0) 2&(T+8T)
il N = o N - 1—1 (ux:c-'l_uyy) +<2N)—1)\ijlmuijulm

_ Fx(T,0)  2%T

N -1— (1)

] (tast1) + (2N ) INCD ottt s

here the temperature change 67 in Eq. (30) has been inserted with the result that adiabatic elastic constants
[superscripts (ad) ] satisfying linear relations (27) arise, with

Mgy =[NET/ (67— 1)*][3+(2k/Cv) ],

ACD g = At (32)
The wave equation describing adiabatic motion of the vector strain field (components #;) in a general linear
elastic medium has the form!
pthi=NED o (0% / O210%1) (33)
with p equal to the mass density, and again involving the repeated-index summation. We now write out the de-
tailed form for %, and #,:

%, *u, %u, O,

= )\(ad)zuz x(ad)zz )\(ad)z Aad) z 3 34
g ox? + " 9x0y + ¥ dydx N 9%y (34)
%, azuz Bzuz 62141,
g, =Aed),  —Y 4 N\ ANad o — T aG@d Y 35
Pty vy 6y2 + Yy ayax + yzy 3xdy + yxTY Fye ( )

U Reference 0, p. 103.



ELASTICITY IN MODEL CRYSTALS

In the long-wavelength limit for which the wave
equation is appropriate, the rigid-disk crystal permits
propagation of both pure longitudinal and pure trans-
verse sound waves. The dispersion relation for the
former may be obtained by substituting a plane wave
corresponding to a longitudinal wave with frequency
w traveling along the x direction:

=y exp4(kx—wt) ],

1,=0, (36)
into Eq. (34) to obtain
pat=N\GD k2 (37)

The propagation velocity (group velocity) then can be
computed for this mode:

V= 6w/6x= [(A(ad)zxa:z/l)) ]1/2- (38)

The analogous transverse wave propagating in the x
direction

=0,
%, =1 exp[e(kx—wt) ] (39)
similarly leads to the dispersion relation
put=NED, 2 (40)
and velocity
=L (NOD g/ p) 1. (41)

In terms of the previously computed number & in

Y 2

X

Fic. 3. Undistorted hexagonal flat-sided free area appropriate
for the high-compression regime. Unit vectors wy--ws point
toward nearest neighbors. The oblique coordinate system z,
2% is used in evaluating the cluster integrals.
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n>0
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Fi1c. 4. Effect of vertical uniaxial stretch upon motion of
horizontal nearest-neighbor disk pairs. The solid boundaries are
the distorted high-compression free areas, and the dotted lines
indicate the outer limits of possible disk center excursion, with
shapes depending on the sign of distortion 5. The free areas shown
are of course much expanded relative to the actual near-neighbor
separation.

.oy,

r

Eq. (25), the dimensionless sound-velocity ratio has
the form

v/v=[1+ (1/b) + (4k/5Cy) 2. (42)

If we take the specific heat Cy to equal k£ (two trans-
lational, no internal, degrees of freedom per disk), and
adopt the numerical & value obtained in the triplet
cell-cluster approximation,

2;/0223.3362, (43)

which may be compared with (6)¥2=2.,4495 that re-
sults from the cruder single-particle, free-area approxi-
mation (b=1).

III. FACE-CENTERED-CUBIC SPHERE CRYSTAL
The phenomenological free-energy expression for any
cubic crystal, corresponding to rigid-disk Eq. (8), is'?
Fy(u) — Fy(0) _ a4
NET NET  NET

+ (Nk T) _IE%)\:;M:: (uza:2+uyy2+u252)
+)\:m:w (uzzuyy-l_ Ugalhzzt uyyuzz)
+2Nyzy (”zu2+uzz2+uyz2) ]: (44)

and in particular applies to the face-centered-cubic
crystal of rigid spheres. The occurrence now of three
different elastic constants requires separate examin-
ation of three distinct homogeneous strains.

Figure 5 exhibits the three basis vectors a;, a,, as
which generate the face-centered-cubic lattice, with

12 Reference 6, p. 40.

(uzz+uyu+uzz)
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Fic. 5. Basis vectors ai, a,, a3 and the Cartesian coordinate
axes for the face-centered-cubic sphere crystal.

the presumption that the ordinary Cartesian %, y, and
2 axes coincide with the principal crystal axes. The unit
vectors pointing toward the 12 nearest neighbors, when
expressed in terms of the Cartesian unit vectors
i, j, Kk, are given by

wi=ay/ | a1 | = (1/V2) (i+j),

We=—Wy,

wi=ay/ | a; | = (17V2) (j+k),
Wi= — W,

wi=ay/ | as | = (1/V2) (i+k),
Wg= — Ws,

Wi=W;— W3,

Wg= W3— Wy,
Wy= W1— W5,
Wio=W;— Wy,
W11 = W3— W,

W= W;— W3.

(45)

The partition-function expression (7) and cell-
cluster product development (12) are directly ap-
plicable to three-dimensional crystals. Of course the
number of possible cell clusters for a given number of
spheres increases in going from two to three dimensions
on account of the variety of possible spatial orientations
and conformations. In addition the number of unit
step functions in cell clusters of given order increases
as well reflecting the increased number of nearest
neighbors. However by introducing again an oblique
coordinate system zy, 2s, 23, whose unit vectors constitute
a system reciprocal to wi;, Wi, ws, the unit step func-
tions may be forced to display arguments in the form
of rational polynomials in z, 2,, 25, and the distortion
variable . Thus, again the evaluation of cell-cluster
integrals may be performed exactly by the rapid

AND Z.

W. SALSBURG
electronic computer scheme utilized already for the
disk crystal.

The linear transformation from Cartesian to oblique
coordinates leading to rational step function arguments

} a=(1/V2) (x-+y),
2= (1/V2) (y+32),
2= (1/V2) (x+2), (46)
for which the transformation Jacobian is found to be
a(x, v, 2) /0 (21, 2, 23) =V2. (47

Because the evaluation procedure for cell-cluster
integrals involves mostly tedious technical detail rather
than conceptual novelty in comparison with the rigid-
disk case, we shall only present results,

The first homogeneous strain to be examined is the
uniform dilation (4=, =u.,=u):

S=91,
p=3u/(671—1). (48)

In exactly the same way as for the previous two-
dimensional example the only contribution to the high-
compression strain-dependent part of the free energy
arises from the “free-volume” single-particle cell
integrals. One obtains the result for these:

ZO (shpr= 4y =0,,= 1) = 4VZ (149)3. (49)

In comparison with Expression (44), this implies an
exact high-compression sum rule that must be satisfied
by two of the three cubic-crystal elastic constants:

%Azxzz"‘)\xzyy: ONE T/2 (6—1_ 1) 2: (50)

which may be regarded as a three-dimensional analog of
Eq. (21). In the process of comparison of free-energy
expressions of course the pressure term in Eq. (44) is
found to have the standard free-volume form:

pV/NkT=3/(61—-1). (51)

The single elastic constant A,.,, next may separately
be obtained from the uniaxial process for which only
#,, = is nonzero, and hence for which

S=njj. (52)

Now in principle all cluster factors Y% should be
taken into account for an exact calculation, but on
account of computer limitation we are forced to accept
as an approximation a truncation after only the pair
cell clusters. First, the free-volume integral turns out
simply to be

ZO (uy=u) =42 (1+7). (53)
Secondly, there are two distinct types of nearest-

neighbor pairs according to whether the connecting
link is perpendicular to, or at an oblique (45°) angle
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to, the y axis; the respective integrals (weights r1=2 and r«=4) are
24 (=) = (VI LA+ 32+ S (— Ty +13 [ ]
o (=3In+21 [0 ) +5n* (=0 +3 [ ) +dsn* (n— [0 )],
2O (=) = (V2) 55+ + 28 +vsn? (— 41n+37 [ 1 [)
+rien’(—3977+383 | 1 |) +5807*(2019— 140 | 7 |) +osd309° (46770 —5045 [ g [} 1. (54)

In combination with Sum Rule (50), the configuration integrals (53) and (54) permit separate deduction of pair—
cell approximations to each of Azer and Azzy. One finds

Nezas= (9—4.849928 4+« -) [NRT/ (61— 1)?]
4.150072[ Nk T/ (6-1—1)7],

Naoyy= (0--2.424964-+ ) [NET/ (61— 1)?]
£2.424964[ NET/ (61— 1)?]; (55)

as before the separate numbers in parentheses are, respectively, the free-volume predictions, and the correlated
cell-pair corrections.

The last of the three elastic constants for the face-centered-cubic lattice, Azay, may be obtained by application
of a shearing strain which is described for convenience by the unsymmetrical tensor

S=nij, (56)
so that in terms of the conventional symmetrical strain tensor u,
n=3u/ (67— 1) = 6u,,/(671—1), (57)
i.e., #,,=3%u for this case. The result for the sheared free volume is
ZO (sey=5u) =V2(4—n*+(1/32) | n [*). (58)

Figure 6 exhibits the four distinct types of nearest-neighbor pairs; the unit vectors (45) corresponding to each of
these types are:

Type I: W3, Wi, Wy, Wio (r==2),
Type 2: W5, We, W1, Ws (r=2),
Type 3: W1, W (r=1),
Type 4: Wi, Wi (r=1). (59)

It is clear from Fig. 6 that the pair—cell-cluster integrals for Types 3 and 4 as functions of » should differ only by a
sign change of this variable. The machine calculations furthermore show that the integrals for Types 1 and 2 are
identical:

ZCD (up=3u) =Z® (u=Su)

— (VDR S+ Btk | n = rhon),
2O (g =gu) =200 (—uy=—13u)

— (VD[ on— = frHdorh T3+ 1 )

+adon'(Sn+24 19 ) +o'zon® (15948 | 1 ) 1. (60)
Results (58) and (60) may finally be converted into the last of the three cubic elastic constants!3:
Neyy= (§40.865092++ « ) [NET/ (61— 1)?]
£25.365002[ NET/ (61— 1)2]. (61)

13Tt is interesting to notice that the Cauchy relation A;zyy =Xzys, that must be obeyed by central force harmonic crystals fails
apparently by more than a factor of 2 in the extremely anharmonic rigid-sphere model.
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Each of the face-centered-cubic-lattice pair integrals quoted in Eqgs. (54) and (60) of course have a common
value(v2)?(467/30) in the limit of zero strain. For the purposes of later comparison with the hexagonal crystal, we
note that the limiting undistorted high-compression free energy so implied is

Fn(0)/NET~3 In[\/a (67— 1) T+ Ciee,
Cteo=— In(4v2/27) —6 In(467/480) — - - -

241.727710,

(62)

where the Ci. is imagined arranged according to the u=0 case of Eq. (13).

The last aspect of the rigid-sphere face-centered-cubic lattice will be calculation of sound velocities on the basis
of the approximate elastic constants just obtained. We consider only sound propagating along the « axis (the
[100] direction). The temperature rise associated with an adiabatic sound wave in the crystal

8T = —[3kT/Cy(672—1) [(thes 1y +2.2)

results in the following adiabatic constants:

(63)

)\(ad)axcu: )\zzxz+[18Nk2 T/CV (0_1_ 1)2];
NeD =N+ [18NET /Cy (71— 1) 2],

Mad)ryw = Azyay-

The general wave equation (33) again permits pure
longitudinal,

%=1uo expLi(kx—wt) ],

uy=u,=0, (65)
and pure transverse modes

u:=u,=0,

uy=1uo exp[i(kx—wt) . {66)

After evaluating the respective dispersion relations, the
sound-velocity ratio is found to be:

0/ V= (NOD g/ ND ) 12, (67)

Finally, setting Cy=3k/2, and accepting approximate
values (55) and (61) for the isothermal elastic con-
stants, one obtains

23/9,221.7350, (68)

whereas the free-volume approximation

(14/3)12=2.1602.

yields

Fy(u) _ Fy(0) _ Y
NkT NET NET

+)\E’<’1m[ (uza:— uw) 2+4uzu2]+2>\$'qzz (ua:m+uyy) uzz+4)\fzqz (uzzz'l_uyzz) } .

Here the constant e measures the reference-state stress
anisotropy and —gp stands for one-third the stress-
tensor trace in that state. We do not evaluate all five
elastic constants in part because a greater number of
homogeneous strains would have to be separately

(64)

IV. HEXAGONAL SPHERE CRYSTAL

The high symmetry of the face-centered-cubic lat-
tice implies that the stress is isotropic in the undis-
torted state, i.e., when all 12 nearest-neighbor distances
from a given site in the reference lattice are equal.
The result in the phenomenological free-energy equa-
tion (44) is that the linear terms in strain components
all have the same coefficient, —pV/NkT, with p the
ordinary thermodynamic pressure for the undistorted
crystal. The hexagonal crystal however has lower
symmetry, and even though it may be constructed
from the face-centered lattice by shifting successive
close-packed layers of spheres, it does not follow that
with the same set of nearest-neighbor reference lattice
distances as for the face-centered crystal that the stress
will be isotropic.

For reasons of computational convenience neverthe-
less we elect to define the “undistorted’ reference state
as the one with equal distances. Then if we choose
Cartesian x and y axes to lie in the basal plane, so the
z axis coincides with the conventional hexagonal
“c axis,” the requisite phenomenological free-energy
expression must have the following form®:

[(%c:c‘l‘“yu'*‘”zz) +e ( 20— Uza— uyu) :H' (Nk T) -t { %kzzzzuzz2+2>‘fﬂév(uzz+“yu) 2

(69)

considered, but also our experience has unfortunately
shown that evaluation of cell-cluster integrals of given
order is far more time consuming for hexagonal than
for face-centered-cubic crystals. Instead we are mainly
content to examine stability of the crystal with respect
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to elongation along the z(¢) axis, accompanied by basal
plane contraction so as to maintain constant density.

As before, we examine first the homogeneous expan-
sion (48), for which only the free-volume factors in
the basic product representation can yield  dependence.
It was noted in Ref. 1 that the free volumes of the face-
centered-cubic and hexagonal crystals are equal as a
result of a geometrically simple transformation relating
the two. For that reason the cubic crystal Z®(y)
result quoted in Eq. (49) is equally valid for the
hexagonal case. The direct implication is that Eq. (51)
once again is the correct high-compression identification
for pV/NET in the free-energy expression (69), and
furthermore the hexagonal high-compression -elastic
constants must obey the exact sum rule:

st Opntgt Denee=2TNET/2(61—1)2.  (70)

Figure 7 illustrates the three basic vectors ay, a,, a;
which generate the hexagonal lattice. From them a set
of three reciprocal vectors may then be constructed
which define as before an oblique coordinate system
that can be utilized in evaluation of cell-cluster in-
tegrals. We omit details,

It suffices for the cited stability question to examine
additionally only the homogeneous c-axis stretch
(#..=wu, all other components 0):

S=qkk,

n=3u/(671—1). (71)

3973

F16. 6. Examples of the four types of nearest neighbors formed
by a particle at the origin 0 in the face-centered-cubic lattice,
with S=4ij. To lowest order 5 with the shearing motion, distance
(03) increases, but (04) decreases.

The correspondingly stretched free volume is*
ZO (shzy=u) = (2) (1+4n). (72)

There are two distinct pair species, oriented, respec-
tively, perpendicular to (such as Vectors a; and a, in
Fig. 7) or obliquely to (vector as in Fig. 7) the stretch
axis, with equal numbers of the two species:

(73)

TL=T7<=3.

Through quadratic terms in the distortion the results
may be written as follows:

Z1® (u,,=u) = (V2)2 %5 [14-2.029978599+41.03259576m2+ O (%*) ],

Z® (=) = (VI)? 228353[1+1.969263777+0.9462672072+0 (%) 1.

(74)

Although Z1® reduces for =0 to the common value for undistorted pair cluster integrals for the preceding cubic
case, Z<® does not, but instead exhibits a slightly larger value. The undistorted hexagonal free energy to be com-
pared with Eq. (62) (both in the cell-pair approximation) is

Fy(0)/NET~3 1n[N/a (6= 1) T+ Chex,

Cuex=— In(442/27) —[3 In(485) +3 In ($35418) 1— - - -.

(75)

The implication in this order of approximation is that at least under high compression the hexagonal crystal has a
lower free energy per sphere than the face-centered-cubic crystal, with

AFy(0)/NET=20.00109.

(76)

The singlet and pair integral 5 variations shown in Egs. (72) and (74) permit estimates to be made for ¢ and

the single elastic constant A,,,.:

e=0—0.00113647+ - - -

~—0.00113647;

Nozez™= (9+1.109348+‘ . ')[NkT/(B—l— 1)2]

210.109348[ NL T/ (6-'— 1)2].

(77

The other two elastic constants appearing in the sum rule (70) may also actually be evaluated with the infor-

" That the same result obtains here as for the similarly stretched face-centered free volume, Eq. (53), again reflects the existence

of the geometrical transformation between these polyhedra.
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mation already at hand. The class of strains for which
U= Uy =01,
(78)

with a and «' independent variables, and all other #’s vanishing, may by virtue of the trivial identity for the
stretch-factor product,

(It u) (14-2) (14-02) = (14-0)* (14e) = (14+0)*{1+[(¢'—a) /(1+a) 1}, (79)

be regarded as composed of a homogeneous dilation (#,=w%,=u,.=a) followed by a uniaxial strain
{..=[('—a)/(14a)]}. We know therefore that the free-volume integral will automatically be

ZO(a, o) = (4V2) {14+[30/ (67"~ 1) JP{1+[3 ('~ ) / (14e) (6= 1) T}

Furthermore, we know that ¥ factors for #2> 2 are invariant to uniform dilation, so for Processes (78) it suffices
to construct ¥®’s from the uniaxial pair integrals (74) by setting n=3(a’—~a)/(1+a) (1—1). After this is done,
comparison of the resulting free-energy expression with the basic form (69) for the hexagonal crystal yields the
following high-compression values:

Meotr= (£40.069334+« - - ) [NET/ (67— 1)2]
£22.319334[NET/ (671~ 1)2];

Menee= (—$—0.2773374-- ) [NET/ (61— 1)2]
&~—2.527337[NET/ (67— 1)2].

/
Ue=0,

(80)

(81)

The sum rule (70) is satisfied by our pair-cluster approximate elastic constants displayed in (77) and (81).
The final remaining task is examination of crystal stability with respect to that particular distortion of type
(78) for which over-all particle density is invariant. This condition requires that ' as a function of « vary in just
the proper manner that the stretch factor product remain equal to unity:

1= (14-ss) (1+0,,) (14u..)
=(14a) 1+a'(a) ] (82)

To the requisite quadratic order therefore

a'(a) = —2a+4a2+0(a?). (83)

In view of this manner of coupling the « and &’ variations, the free-energy expression (69) may be developed into a
quadratic expression in a:
Fn(a)/NET=[Fy(0)/NET 4+ [18¢/ (61— 1) Ja+ (NET) 12\ .00 8Nyt — Nnzz) 2. (84)

The thermodynamically stable configuration for the hexagonal sphere crystal should correspond to the minimum
of this function of a, which is immediately found to be

9eNET
2 (0_1“ 1) (>‘zzzz+4)‘énén_ 4)‘&'1122)

240.00017338 (61— 1).

Omin=

(85)

At least in the cell-pair-cluster approximation, there-
fore, our theory predicts that the stable configuration
of the hexagonal crystal (with isotropic stress) dis-
plays slightly larger nearest-neighbor distances within
the successive layers of spheres parallel to the basal
plane, than for nearest-neighbor pairs inclined obliquely
to the ¢ axis. Of course in the close-packed limit §=1
all distances are forced geometrically to be equal, and
(85) vanishes accordingly. Our result may perhaps
best be viewed as a small stable distortion of the free-

volume dodecahedron amounting to several hundredths
of a percent. The corresponding free-energy reduction
may be obtained by inserting the quantity (85) into
(84):

Fy(omin) /NET=[Fx(0)/NET]—0.000001773. (86)
This very tiny reduction is about three powers of ten
less than the free-energy difference obtained in Eq.

(76) for undistorted face-centered-cubic and hexagonal
crystals.
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V. DISCUSSION

One must in fairness question the significance of
the low-order results reported here. Although it may
never be possible to prove convergence of the very
complicated cell-cluster free-energy series, we have
proceeded under the tentative assumption that useful
results could be derived at least in the sense of asymp-
totic series. From this point of view we shall in a forth-
coming communication extend computation of un-
distorted crystal additive free-energy constants Cie,
and Chex to triplet clusters to see if the relative stability
of the hexagonal crystal is maintained, In addition we
shall then also report results for hybrid sphere crystals
constructed by stacking schemes intermediate between
those for pure face-centered cubic and hexagonal.’s

Unquestionably the most useful assessment of our
calculations of the many-body aspects of rigid-sphere-
crystal phenomena could be provided by suitably
designed electronic computer “experiments,” either of
the Monte Carlo® or the molecular-dynamic variety."
In particular it should in principle be possible to in-
vestigate the relative stability of the two crystal forms
by integrating ‘“‘measured” equations of state for each
by the procedure outlined in Ref. 1, Sec. V. Alterna-
tively, initial conditions could be selected for computer
experiments consisting of a composite crystal at high
compression, half-face-centered cubic and half-hex-
agonal, and then to see (by introduction of a few
vacancies to enhance diffusion) which half grows at
the expense of the other.

HEXAGONAL
C-AXIS

Frc. 7. Basis vectors ay,
as, a; generating the hexagonal-
crystal reference lattice. .
’ H
i i
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It has been traditional in computer experiments
to select boundary conditions (usually periodic-
boundary conditions) which are consistent with un-
strained crystals. The negative value obtained for e
in Sec. IV suggests that if a hexagonal crystal were so
constrained and “measurements” separately taken of
the various mean stress components, the hexagonal
c-axisstress p,, should be slightlylessthan the basalplane
Psx= pyy. Equivalently, the contact pair correlation
function should be larger for basal plane pairs than for
oblique pairs. More generally it should be possible to
measure each isothermal elastic constant (when the
density is sufficiently high to prevent sphere migration)
by measuring stress components as the periodicity cell
changes shape in various ways.

The molecular-dynamics approach furthermore raises
the possibility of direct measurement of sound veloci-
ties, and therefore of adiabatic elastic constants.
Relevant initial conditions in such an investigation
for example might correspond to a sinusoidal density
distribution (for subsequent longitudinal standing
waves) or a sinusoidal increment of transverse particle
velocities (for transverse standing waves).

Beside their implications for macroscopic sound
propagation, computations of crystal elasticity bear in
an important way on the character of point defects in
solids.'®* We therefore anticipate complementary cal-
culations, both by extension of the present paper’s
technique and by computer experiment, of the free
energy and configurational relaxation around vacancies
in crystals.

Finally we mention only briefly the conviction that
the appearance of absolute values of strain components,
for instance in Egs. (24), for terms in the cell-cluster
development contributing to nonlinear elasticity, must
surely be an artifact. The source is the fixed set of
neighbors constrained to lattice sites for any given
cluster under consideration, with the result that
multidimensional polyhedra whose content must be
evaluated for Z™ change their numbers of edges and
vertices with strain component sign change. In the
actual crystal of course neighbors of any set of particles
constantly fluctuate in position, so one may crudely
say that the sharply delineated cell-cluster polyhedra
are smeared on the average. If it were possible to
calculate any selected nonlinear elastic response through
ascending orders by our procedure, one probably
would find the numerical coefficient of the absolute-
value portion converging to zero. More practically, it
seems reasonable in any finite order simply to average
calculated responses for positive and for negative
strains.

187, D. Eshelby, Solid State Phys. 3, 79 (1956).



