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We have discovered a family of three-dimensional crystal sphere packings that are strictly jammed
�i.e., mechanically stable� and yet possess an anomalously low density. This family constitutes an
uncountably infinite number of crystal packings that are subpackings of the densest crystal packings
and are characterized by a high concentration of self-avoiding “tunnels” �chains of vacancies� that
permeate the structures. The fundamental geometric characteristics of these tunneled crystals
command interest in their own right and are described here in some detail. These include the lattice
vectors �that specify the packing configurations�, coordination structure, Voronoi cells, and density
fluctuations. The tunneled crystals are not only candidate structures for achieving the jamming
threshold �lowest-density rigid packing�, but may have substantially broader significance for
condensed matter physics and materials science. © 2007 American Institute of Physics.
�DOI: 10.1063/1.2802184�

I. INTRODUCTION

Hard-particle models have played a substantial and in-
sightful role in the historical development of statistical me-
chanics. In particular, this is true for the venerable hard-
sphere model in d-dimensional Euclidean space Rd in which
the hyperspheres only interact with an infinite repulsion for
overlapping configurations. Hard-sphere packings have pro-
vided a rich source of outstanding theoretical problems and
have served as useful starting points to model the structure of
granular media,1 liquids,2,3 glasses,3 crystals,4 living cells,3

and random media.3 Sphere packing problems have inspired
scientists and mathematicians at least since the time of Ke-
pler and continue to present open challenging problems.5–9

One of the perennially popular aspects of hard-sphere
many-body systems concerns their “jamming” properties,
i.e., their mechanically stable packing arrangements. Jam-
ming behavior of sphere packings is intimately related to
classical ground-state structures and to glassy states of mat-
ter. The present paper concentrates on one portion of that
packing arrangement issue that to the best of our knowledge
has not previously been explored, namely, the “strict” jam-
ming threshold of three-dimensional sphere packings.

Three broad and mathematically precise jamming cat-
egories of sphere packings can be distinguished depending
on the nature of their mechanical stability;10 see also Ref. 11.
In order of increasing stringency �stability� for a finite sys-
tem of hard spheres, these are the following:

Local jamming: Each particle in the system is locally
trapped by its neighbors, i.e., it cannot be translated while
fixing the positions of all other particles.

Collective jamming: Any locally jammed configuration
is collectively jammed if no subset of particles can simulta-
neously be displaced so that its members move out of contact
with one another and with the remainder set. An equivalent
definition is to ask that all finite subsets of particles be
trapped by their neighbors.

Strict jamming: Any collectively jammed configuration
that disallows all globally uniform volume-nonincreasing de-
formations of the system boundary is strictly jammed.

It is important to note that the jamming category de-
pends on the boundary conditions employed. For example,
hard-wall boundary conditions10 generally yield different
jamming classifications from periodic boundary conditions.12

These jamming classifications are closely related to the con-
cepts of “rigid” and “stable” packings found in the math-
ematics literature.13 Rigorous and efficient linear-
programming algorithms have been devised to assess
whether a particular hard-sphere configuration is locally, col-
lectively, or strictly jammed.12,14

The enumeration and classification of both ordered and
disordered jammed circular disk and sphere packings for the
various jamming categories is an outstanding problem. Since
one cannot enumerate all possible packings even for a small
number of particles, it is desirable to devise a small set of
parameters that can characterize packings well. One impor-
tant property of a sphere packing is the packing fraction �,
which is defined to be the fraction of space covered by the
particles. Another useful way to characterize a packing is via
scalar order metrics.3,15 An order metric � is a well-defined
scalar function of a configuration of spheres and is subject to
the normalization 0���1. For any two states X and Y,
��X����Y� implies that state X is to be considered as more
ordered than state Y. Candidates for such an order metrica�Electronic mail: torquato@princeton.edu

JOURNAL OF APPLIED PHYSICS 102, 093511 �2007�

0021-8979/2007/102�9�/093511/8/$23.00 © 2007 American Institute of Physics102, 093511-1

Downloaded 14 Dec 2007 to 128.112.70.26. Redistribution subject to AIP license or copyright; see http://jap.aip.org/jap/copyright.jsp

http://dx.doi.org/10.1063/1.2802184
http://dx.doi.org/10.1063/1.2802184


include various translational and orientational order
parameters3,15,16 but the search for better order metrics is still
very active. Figure 1 from Ref. 15 shows a highly schematic
region of feasible hard-sphere packings in the �-� plane,
which has been called an “order map.” It is clear that only a
small subset of this feasible region will be occupied by
jammed packings for a given jamming category, as indicated
in Fig. 1. The following extremal points in the jammed re-
gion are particularly interesting:

�1� Point A corresponds to the lowest-density jammed pack-
ing, i.e., the jamming threshold, and its location strongly
depends on the jamming category used. We denote by
�min the corresponding jamming-threshold packing frac-
tion, which is expected to be characterized by a high
degree of order, as discussed in more detail later. As
discussed later, local jamming is a very weak condition
compared to collective or strict jamming.

�2� Point B corresponds to the densest jammed packing,
which also has the highest order metric. It has of course
already been identified to be a triangular lattice packing
for circular disks, and the face-centered-cubic �fcc� lat-
tice packing and its stacking variants for spheres. But
much less is known about polydisperse packings17–19 or
packings of nonspherical particles.20,21

�3� The MRJ point represents the maximally random
jammed state,15 which has been suggested to replace the
ill-defined random close packed �RCP� state.22 The MRJ
state is the most disordered jammed packing in a given
jamming category �i.e., locally, collectively, or strictly
jammed�. The MRJ state is well-defined for a given jam-
ming category and choice of order metric. The strict
MRJ state can be regarded to be the prototypical
glass—it is the most disordered packing arrangement
that is able to withstand shear forces.

It is crucial to note that the order map shown in Fig. 1 is
independent of the protocol used to generate a hard-sphere

configuration. In practice, one can use a variety of protocols
to produce jammed configurations in order to delineate the
boundary of the jammed region shown in Fig. 1, as was
partially done in Ref. 16. Moreover, the frequency of occur-
rence of a particular configuration is irrelevant in so far as
the order map is concerned. In other words, the order map
emphasizes a statistical-geometric approach to packing by
characterizing single configurations regardless of their occur-
rence probability. Therefore, ensemble methods that inher-
ently produce “most probable” configurations23 will likely
miss interesting extremal points in the order map, such as
point A as well as the other jamming-boundary loci of high
order in three dimensions.24

The preponderance of work on sphere packings has been
devoted to the determination of point B in Fig. 1 for low as
well as high dimensions.5,8 It is known that the densest ar-
rangements of monodisperse disks in two dimensions and
spheres in three dimensions are strictly jammed.10,12 This
implies that shear moduli of these packings are infinitely
large. The densest sphere packings have a packing fraction
given by

�max =
�

�18
= 0.74048 . . . . �1�

It has long been known empirically that this maximum is
attained both by the fcc and the hexagonal close packed
�hcp� crystal structures, as well as by their stacking hybrids.
A mathematically rigorous proof of Eq. �1� has only recently
appeared.8

We are interested in characterizing point A in Fig. 1 for
collectively and strictly jammed packings, which has re-
ceived far less attention than the determination of point B.
Specifically, it is desired to identify such packing arrange-
ments and the corresponding jamming-threshold packing
fraction �min. It is possible to arrange hard spheres in space,
subject only to the weak locally jammed criterion, so that the
resulting packing fraction is arbitrarily close to zero.25,26 But
demanding either collective jamming or strict jamming evi-
dently forces � to equal or exceed a lower limit �min that is
well above zero. No rigorous theory or even empirical study
has heretofore convincingly determined �min for collectively
or strictly jammed monodisperse hard spheres.

The present paper is devoted to a description of a class
of strictly jammed three-dimensional sphere packings with
anomalously low packing fraction, substantially lower in-
deed than the lowest previously known result.16,26 This class
appears to be a family of crystal structures previously not
identified before. We do not know if the resulting packing
fraction for this class actually attains �min. The packing
structures involved rely on an earlier observation that linear
arrays, or tunnels, of vacancies generated in close-packed
crystals, even with branching, do not destroy the mechanical
stability of the resulting structures.26

The following Sec. II provides some background on the
problem and describes previous work on low-density
jammed packings. Section III provides a structural character-
ization of the class of low-� tunneled structures. Via appli-
cation of a computational test,12,14 we establish that strict
jamming is attained in these structures. The final Sec. IV

FIG. 1. A highly schematic plot of the jammed subspace in the density-order
��-�� plane, taken from Ref. 15. Point A corresponds to the lowest-density
jammed packing and it is intuitive to expect that a certain ordering will be
needed to produce low-density jammed packings. Point B corresponds to the
densest jammed packing. Point MRJ represents the maximally random
jammed state, i.e., the most disordered state subject to the jamming
constraint. The shaded region represents unattainable hard-sphere
configurations.
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contains discussion, including the informal argument that ap-
proaching or attaining �min requires a regular structure, not
an amorphous packing.

II. BACKGROUND AND PREVIOUS WORK

One way to reduce the density of a strictly jammed pack-
ing while retaining the strict jamming characteristic is to
selectively remove subsets of spheres from the fcc, hcp, or
hybrid close packed crystals. This leaves behind an array of
vacancies. In this approach it is important to avoid removing
triads of spheres that were in mutual contact in the starting
crystal, i.e., a compact equilateral triangle of spheres, be-
cause that leads to local instability.26 However, one viable
option involves removing one-quarter of the spheres from an
fcc crystal, specifically those that constitute one of its four
simple-cubic sublattices. The result remains strictly
jammed26 and thus leads to the following bound:

�min �
�

25/2 = 0.55536 . . . . �2�

In addition to the vacancy-containing crystals just described,
collectively and strictly jammed packings with ���max also
exist with irregular �nonperiodic� sphere arrangements. In-
deed, in Ref. 15 it was shown that using the Lubachevsky–
Stillinger algorithm,27 one can produce such packings in a
nontrivial range of packing fraction

0.64 � � � 0.74048 . . . , �3�

where 0.64 corresponds to the packing fraction of the MRJ
state. In fact, we have conjectured that the Lubachevsky–
Stillinger packing algorithm typically produces packings
along the right �maximally dense� branch from the MRJ
point to the maximally dense point B in Fig. 1.28 Importantly,
we do not know of an algorithm that can systematically pro-
duce packings along the left �minimally dense� branch with-
out relying on some random removal process. Indeed, it has
been shown that by randomly diluting the fcc packing �sub-
ject to the constraint that no compact equilateral triangular
vacancies are created�, strictly jammed packings with a pack-
ing fraction of 0.52 can be created.16 It should not escape
notice that these considerations suggest that amorphous
sphere configurations cannot attain the jamming threshold
�min. Rather it is very plausible that �min is achieved by
structures characterized by a large order metric � value, as
schematically indicated in Fig. 1. In other words, �min is
likely to be realized by crystal �i.e., periodic� packings.29

Typical large, jammed packings produced via experimental
as well as computer-simulation protocols are characterized
by a significant degree of disorder, and therefore such proto-
cols would never find such crystal candidates because they
are sets of zero measure.

Isostatic packings are jammed packings that have the
minimal number of contacts to maintain a particular jam-
ming classification, a situation that is normally associated
with amorphous packings such as the MRJ state �cf. Fig. 1�.
In the limit of an infinitely large packing, collective and strict
jamming become equivalent constraints and the correspond-
ing isostatic condition implies an average of 2d contacts per

particle,28 where we recall that d is the space dimension.
Thus, ordered but strictly jammed sphere packings in Rd

with 2d contacts per particle would seem to be natural can-
didates to achieve the jamming threshold. Indeed, in R2, the
so-called “reinforced” Kagomé packing with precisely four
contacts per particle is evidently the lowest density strictly
jammed subpacking of the triangular lattice packing12,30 with
�min=�3� /8=0.68017. . .. The d-dimensional generalization
of the two-dimensional Kagomé packing has exactly 2d con-
tacts per particle because each particle is the vertex of
vertex-sharing simplices and would appear to achieve the
desired jamming threshold.31 In three dimensions, this struc-
ture is the well-known pyrochlore crystal that has received
considerable attention because such material structures can
exhibit exotic magnetic behavior; see Refs. 32 and 33, and
references therein. The three-dimensional Kagomé packing
possesses a rather low packing fraction ��=� /�72
=0.37024. . .�, but, unfortunately, it contains equilateral-
triangle-vacancy clusters and therefore cannot be collectively
or strictly jammed. Thus, the d-dimensional Kagomé packing
is not strictly jammed for d�3.

Note that in a Bravais lattice packing, the space Rd can
be geometrically divided into identical regions called funda-
mental cells, each of which contains the center of just one
sphere. Non-Bravais-lattice packings include periodic pack-
ings, in which there is more than one sphere per fundamental
cell, as well as disordered packings.

III. TUNNELED CLOSE-PACKED SPHERE PACKINGS

We begin by reminding the reader about the elementary
distinctions between the fcc, the hcp, and the hybrid close-
packed structures. All can be conveniently viewed as stacks
of planar triangular arrays of spheres, within which each
sphere contacts six neighbors. These triangular layers can be
stacked on one another, fitting spheres of one layer into
“pockets” formed by nearest-neighbor triangles in the layer
below. At each such layer addition there are two choices of
which set of pockets in the layer below are to be filled. A
lower layer with lateral position to be called A, is then sur-
mounted with the next layer in lateral position B or C. A
third layer subsequently can revert to lateral position A, or
can be C on a second layer B, or B on second layer C. The
fcc structure is a Bravais-lattice packing that utilizes the re-
peating pattern

. . .ABCABCABC . . . , �4�

while the hcp case �a periodic non-Bravais-lattice packing�
corresponds to

. . .ABABABAB . . . . �5�

Hybrid close-packed structures utilize other A,B,C patterns
of lateral positions, never immediately repeating one of these
three letters. Since there are two ways to place each layer
after the second, there is an uncountably infinity of distinct
packing schemes, all with the same density. These are called
the Barlow packings34 and include random stacking variants
�i.e., the two ways to place each layer after the second occur
with equal probabilities.�. In the latter case, there is no re-
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peating pattern, as exhibited by the following partial se-
quence:

. . .ABACBACBCA . . . . �6�

The tunneled crystal structures to which this paper is
devoted can similarly be classified by a layer lateral displace-
ment A,B,C code. However, the constituent planar layers to
be stacked are not triangular, but have the lower density
“honeycomb” pattern. The latter is illustrated in Fig. 2. This
amounts to the preceding triangular layer with one-third of
its spheres removed in a periodic pattern. Each remaining
sphere in the honeycomb layer contacts three neighbors in
that layer. A periodic primitive or fundamental cell for the
honeycomb structure in two dimensions contains two
spheres, not just one as for the triangular-lattice layer.

By adapting the three jamming category definitions to
two dimensions, one immediately discovers that the honey-
comb structure by itself is only locally jammed.10 It is easy
to see from Fig. 2 that the set of six particles surrounding any
vacancy can be rotated as a unit about its center to eliminate
six contacts within the layer. Repetition of this process, along
with other subsequently allowed displacements, would to-
tally unjam the layer. However, this intralayer instability is
eliminated when honeycomb layers are placed one upon an-
other, following one of the previously described A,B,C
codes. Note that there are three different choices for the di-
rection of the tunnels at each stacking stage. There are an
uncountably infinite number of such stacking arrangements
that we refer to as the “tunneled” crystals.

A. Tunneled fcc crystal

Consider first the fcc code �4�, which is depicted in the
top panel of Fig. 3. The bottom panel is a photograph of a
corresponding ball-bearing construction, which shows the
manifest stability of the packing. The periodic result in three
dimensions has a fundamental cell containing two spheres.
Assuming that the spheres have unit diameter, the basis vec-
tors locating sphere centers for the fundamental cell can be
assigned as follows:

a1 = �3i , a2 = −
�3

2
i +

3

2
j , a3 = −

�3

6
i +

1

2
j +

�2

3
k . �7�

The additional sphere in this fundamental cell is located
at

b1 = j . �8�

As a result of using honeycomb layers to form this struc-
ture, the packing fraction is

� =
2

3
�max =

�2�

9
= 0.49365 . . . . �9�

Examination of the tunneled fcc crystal structure reveals
that it contains a periodic array of parallel linear tunnels. The
direction of these tunnels is that of cube-face diagonals for
the parent fcc crystal. By symmetry this tunnel array could
have been oriented in any one of six equivalent directions.
Each remaining sphere in the tunneled fcc crystal lies imme-
diately next to three tunnels. The number of neighbor con-
tacts experienced by each sphere is seven, comprising three
within its own honeycomb layer, and two each from the hon-
eycomb layers immediately below and above. The spatial
arrangement of these seven contacting neighbors is chiral

FIG. 2. A portion of a honeycomb layer structure.

FIG. 3. �Color online� Top panel: A view of the tunneled fcc crystal looking
along the axis perpendicular to the honeycomb layers. The vacancies are
shown as smaller blue particles and the actual particles are colored red. The
“tunnels” consist of linear chains of vacancies and are parallel to one an-
other. Bottom panel: A photograph of the tunneled fcc crystal built up from
ball bearings of diameter 5/8 in. This actual construction shows the manifest
stability of the tunneled fcc crystal.
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�i.e., the mirror image of one is not superimposable on the
other�, with equal numbers of left- and right-handed versions
present �see Fig. 4�. Clearly, the tunneled fcc crystal has a
lower symmetry than its parent unvacated fcc packing.

Associated with each sphere center is its Voronoi cell,
which is defined to be the region of space nearer to this
center than to any other sphere center. The Voronoi cells for
any general point process are convex polyhedra whose inte-
riors are disjoint, but share common faces, and therefore the
union of all of the polyhedra tiles the space. Not surprisingly,
there are two types of Voronoi cells for the tunneled fcc
packing, one being the mirror image of the other �see Fig. 5�
and therefore, since these cells cannot be superimposed on
one another, they are chiral pairs. The volume of each
Voronoi cell is 3/2 times the volume of the Voronoi cell
�rhombic dodecahedron� of an unvacated fcc packing.

The vector R=n1a1+n2a2+n3a3+n4b1 spans all of the
sphere centers in the tunneled fcc crystal, where the vectors
ai and b1 are defined by Eqs. �7� and �8�, respectively, the ni

�i=1, 2, or 3� are the integers, and n4=0 or 1. Thus, the
corresponding squared distance from the origin is given by

R2 = 3�n1
2 + n2

2 − n1n2 + n2n4� + 2n2n3 + n3
2 + n4

2 + n3n4 − n1n3.

�10�

The quadratic form �10� enabled us to determine the theta
series �tfcc�q� for the tunneled fcc crystal up to an arbitrarily
large number of terms �100 000 or more�. The first 14 terms
of this series are given by

�tfcc = 1 + 7q + 4q2 + 18q3 + 7q4 + 16q5 + 6q6 + 28q7 + 4q8

+ 30q9 + 14q10 + 16q11 + 18q12 + 42q13 + ¯ . �11�

The theta series is a fundamental characteristic of a packing
that encodes coordination structure information,5 namely, the
exponent of q gives the squared distance of spheres from a
sphere located at the origin and the associated coefficient is
the number of spheres located at that squared distance. The
result �11� should be contrasted with the corresponding theta
series for the unvacated fcc packing given by

�fcc = 1 + 12q + 6q2 + 24q3 + 12q4 + 24q5 + 8q6 + 48q7 + 6q8

+ 36q9 + 24q10 + 24q11 + 24q12 + 72q13 + ¯ . �12�

Observe that the coordination shell distances are the same for

FIG. 4. �Color online� The chiral pairs of seven contacting neighbor ar-
rangements in the tunneled fcc packing. The orientation of the three red
�equatorial� spheres that contact a central blue sphere within each honey-
comb layer is the same in both chiral alternatives.

FIG. 5. The chiral pairs of Voronoi cells in the tunneled fcc packing. Each
cell has nine faces: One rectangular face �with sidelengths of 1 and 3/2�, two
isosceles triangular faces �with sidelengths 1 and 1/�2�, two other isosceles
triangular faces �with sidelengths 3/2 and 1/�2, and four rhombical faces
�with sidelengths 3/2 and 1/�2�. The edge lengths indicated are given as
follows: AB=1, AC=1/�2, BC=1/�2, AD=3/2, AE=1/�2, and DE
=1/�2. Each cell has 16 edges and nine vertices. Merging the two rectan-
gular faces �mirror planes� so that they coincide results in a dodecahedron
�12-faced polyhedron� that tiles the space.
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both the tunneled fcc crystal and its saturated counterpart,
but the corresponding occupation numbers in the former are
always strictly less than those in the latter.

We note in passing that the corresponding three-
dimensional crystals formed by stacking Kagomé layers can
be obtained from the honeycomb-stacking arrangements by
placing the largest nonoverlapping sphere at each of the mid-
points of the bonds joining the spheres in each honeycomb
layer �as per the d-dimensional mapping described in Ref.
31�. The Kagomé stackings have a packing fraction �i.e.,
three fourths of �max� that is considerably higher than that of
the honeycomb stackings, and a contact number of 8.

B. Tunneled hcp crystal

The alternative layer stacking code �5� that is associated
with the hcp crystal also produces a regular tunnel array,
exhibiting the same packing fraction �9�. However, in this
case the tunnels have a zig-zag shape with overall orientation
parallel to the hexagonal “c” direction. The zig-zag tunnels
have three possible lateral directional orientations, depending
on whether the constituent honeycomb layers were stacked
periodically as AB, AC, or BC pairs. These choices have the
zig-zags rotated relative to one another by plus or minus 60
degrees, when viewed down the hexagonal c axis. Once
again the spheres have seven contacts with immediate neigh-
bors, but those seven neighbors have a nonchiral arrange-
ment. Similarly, in contrast to the tunneled fcc packing, the
hcp counterpart has a unique Voronoi cell, even if its faces
are less symmetrical than the ones depicted in Fig. 5. The
former also possesses 16 edges and nine vertices as well as
nine faces: two irregular quadrilaterals, two pairs of irregular
triangles, and three quadrilaterals, each with a mirror axis of
symmetry. Of course, the volume of the cell is 3/2 times the
volume of an unvacated hcp packing.

The tunneled hcp crystal has a fundamental cell contain-
ing three spheres. Again, assuming that the spheres have unit
diameter, the basis vectors locating sphere centers for the
fundamental cell can be designated as follows:

a1 = �3i , a2 = −
�3

2
i +

3

2
j , a3 =

�8

3
k . �13�

The additional two spheres in this fundamental cell are
located at

b1 = j , b2 = −
�3

6
i +

1

2
j +

�2

3
k . �14�

The vector R=n1a1+n2a2+n3a3+n4b1+n5b2 spans all of
the spheres in the tunneled hcp crystal, where the vectors ai

and bi are defined by Eqs. �13� and �14�, respectively, the ni

�i=1, 2, or 3� are the integers, n4=0 or 1, and n5=0 or 1. The
corresponding squared distance from the origin is given by

R2 = 3�n1
2 + n2

2 − n1n2 + n2n5� + 2n2n5 + n4
2 + n5

2 + n4n5

− n1n5 +
8

3
n3

2 +
8

3
n3n5. �15�

The theta series �thcp�q� for the tunneled hcp crystal was
also determined up to 10 000 terms or more. The first 14
terms of this series are

�thcp = 1 + 7q + 4q2 + 2q8/3 + 14q3 + 6q11/3 + 3q4 + 8q5

+ 12q17/3 + 4q6 + 4q19/3 + 6q20/3 + 14q7 + 4q22/3 + ¯ .

�16�

The result �16� should be contrasted with the theta series for
the unvacated hcp packing given by

�hcp = 1 + 12q + 6q2 + 2q8/3 + 18q3 + 12q11/3 + 6q4 + 12q5

+ 12q17/3 + 6q6 + 6q19/3 + 12q20/3 + 24q7 + 6q22/3 + ¯ .

�17�

Although the coordination shell distances are the same for
both the tunneled hcp crystal and its saturated counterpart,
the corresponding occupation numbers in the former are al-
ways less than or equal to those in the latter. The fact that the
occupation numbers in the tunneled hcp and unvacated hcp
packings can sometimes be identical never occurs in the fcc
analogs.

C. Tunneled Barlow packings

Associated with the infinite number of Barlow packings
are the infinite number of tunneled Barlow packings that are
obtained by stacking the honeycomb layers �two of which
are the tunneled fcc and hcp crystals�. However, this infinite
set of packings is larger than the unvacated Barlow packings
because, as noted earlier, there are three different choices for
the direction of the tunnels at each stacking stage. Of course,
all of the tunneled Barlow packings have the packing frac-
tion specified by Eq. �9�.

At first glance, the tunneled packings may seem to be
similar in structure to crystal structures involving honey-
comb stackings found in nature, such as hexagonal graphite
and boron nitride.35 However, the locations of the honey-
comb layers relative to one another are distinctly different in
the latter and, in particular, are not sublattices of the unva-
cated Barlow packings.

D. Computer tests of jamming category

In earlier work,10 we suggested that the aforementioned
jamming categories can be tested using numerical algorithms
that analyze an equivalent contact network of the packing
under applied displacements. Subsequently, a rigorous but
practical algorithm was devised to assess the jamming cat-
egory of a sphere packing in this fashion.12,14 The algorithm
is based on linear programming and is applicable to regular
as well as random packings of finite size with hard-wall and
periodic boundary conditions. If the packing is not jammed,
the algorithm yields representative multiparticle unjamming
motions.

We begin by testing the tunneled fcc crystal using this
algorithm. The fundamental �primitive� cell is replicated to
form a periodic unit cell with N spheres, i.e., to form a finite
periodic packing. It turns out that the tunneled fcc crystal for
any finite N under periodic boundary conditions structures is
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not collectively jammed. �The actual N used was as large as
500.� Although each sphere possesses seven contacting par-
ticles, the two contacting particles below and above the plane
containing the central sphere �cf. �Fig. 4�� can move collec-
tively, enabling the central sphere to roll into the tunnels.
This causes unjamming of the entire packing. However, if
one replaces a single honeycomb layer of the tunneled crys-
tal structure at one of the boundaries of the unit cell with a
perfect triangular-lattice layer of spheres, the aforementioned
collective motion is eliminated and the packing is strictly
jammed. This surface triangular-lattice layer of particles does
not contribute to the density in the infinite-packing limit,
and, therefore, the jamming threshold is given by Eq. �9�.
This reinforcement by a single triangular-lattice layer is also
the reason for the stability of the ball-bearing construction
depicted in Fig. 3. The tunneled hcp crystal packing also has
an instability without reinforcement, but becomes strictly
jammed by inserting a perfect triangular-lattice layer of par-
ticles in the manner described earlier.

Based on these results, it can be argued that any stacking
variant of the honeycomb layers will also be strictly jammed
when reinforced by a triangular-lattice layer. Indeed, in com-
puter tests for random honeycomb stackings with up to 1000
spheres per periodic unit cell, strict jamming is achieved.

E. Hyperuniformity

An important characteristic of a packing is the extent to
which long-wavelength density fluctuations are suppressed.
A hyperuniform point pattern is one in which infinite-
wavelength density fluctuations vanish identically.36 This
property implies that the number variance of sphere centers
within a compact subregion of space �window� grows more
slowly than the volume of the window. All periodic packings
are hyperuniform.36 However, not all packings that are hype-
runiform are necessarily rigid in the sense of strict
jamming,11 especially if they are not saturated. A packing is
saturated if there is no space available to add another sphere
without overlapping the existing particles. Thus, both the
tunneled fcc and hcp crystals are unusual packings in that
they are hyperuniform �because they are periodic� and
strictly jammed �despite the fact that they are unsaturated�. It
appears that the property of hyperuniformity extends to all of
the tunneled Barlow packings, including the purely disor-
dered ones. The reason is that any single honeycomb layer is
itself hyperuniform and translations of the honeycomb layers
in the equally spaced honeycomb planes in the stacked ar-
rangements should not accumulate long-wavelength density
fluctuations. A rigorous proof that the tunneled random
stacking variant is hyperuniform would require one to show
that the structure factor vanishes in the limit of vanishing
wave number using the methods of Ref. 11 that were applied
to other crystal structures.

IV. DISCUSSION AND CONCLUSIONS

Beside their intrinsic relevance for hard-sphere-jamming
phenomena, the existence of tunneled crystal structures may
have substantially broader significance for solid state physics
and materials science. For example, the directionality of the

parallel arrays of tunnels in the tunneled fcc packing �de-
scribed in Sec. III� might produce some unusual properties
that exploit the resulting anisotropy. One obvious candidate,
say for the linear tunnels in the fcc-parent case, would be
separation technology for substances whose constituent par-
ticles have just the right size to diffuse along those tunnels,
leaving behind larger impurity particles. In the event that a
metallic element or alloy were to be rendered in the form of
a tunneled crystal, the electronic characteristics would doubt-
less be strongly influenced by the structural anisotropy. The
anisotropic porosities of a tunneled crystal also suggest that
they might serve as catalytic substances for reactants that fit
into these pores. Elsewhere, the magnetic properties of the
tunneled crystals are being studied by examining the classi-
cal Heisenberg Hamiltonian for Ising, XY, and Heisenberg
spins on these structures.37

It should be kept in mind that the tunneled crystal struc-
tures conceivably could be synthesized at the atomic scale,
or alternatively at a larger length scale they might be as-
sembled from spherical colloids. In such instances, the me-
chanical stability of the crystals could be enhanced via at-
tractive interactions that are absent in the sphere packings. In
the case of colloids, the attractive interactions can be opti-
mized for mechanical stability using inverse statistical-
mechanical techniques; see Ref. 38, and references therein.

As stressed earlier, we have no proof that the tunneled-
crystal packing fraction shown in Eq. �9� is the lowest attain-
able for collectively or strictly jammed sphere packings. It is
noteworthy that any attempt to remove even a single addi-
tional sphere from the tunneled fcc, hcp, or hybrid tunneled
crystals immediately causes the structure to begin collapsing.
However, this observation does not in itself eliminate the
possibility of discovering some other unrelated class of
structures with yet a smaller packing fraction �. One might
suspect that if such a lower density structure were to be
created, it might exhibit a number of contacts per sphere less
than the seven present in all of the cases described herein. As
we noted earlier, isostatic packings have the minimum aver-
age number of contacts of six that would be consistent with
collective or strict jamming, a situation that is usually asso-
ciated with the amorphous MRJ state. This disordered pack-
ing, however, has a distribution of contact numbers that in
principle could be as large as the maximum value of 12.
Ulam conjectured that the maximal density for packing con-
gruent spheres is smaller than that for any other convex
body.39 If the tunneled crystals identified in this paper are
indeed the ones that achieve the strict jamming threshold,
then it may be possible that �min is itself minimized by
spherical packing elements among all congruent convex bod-
ies. It is also possible that the tunneled crystals provide the
lowest density strictly jammed structures that are subpack-
ings of the densest sphere packings, but that true jamming
threshold is achieved by packings that are not subpackings of
the densest packings.

At least in one, two, and three dimensions, the maximal
density �max can only be attained by restricting local sphere
coordination geometries to a very limited set. The result is
that these maximal-density structures exhibit periodic long-
range order. This is true even of the hybrid close-packed
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crystals, which are only partially disordered in their density
distributions. By contrast, the local coordination geometries
present in amorphous sphere packings are very numerous,
but are overwhelmingly unsuited as structural elements for
attaining �max. We conjecture that an analogous situation ap-
plies for the jamming threshold �min. The vast majority of
amorphous packing coordination geometries are likewise un-
suited for producing the lowest density collectively or
strictly jammed sphere packings. Only crystalline structures
in three dimensions should be expected to exhibit �min.
Whether the tunneled crystals described in this paper are the
solution to this minimization remains to be seen.
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