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ABSTRACT We investigate the effect of temperature and pressure on polypeptide conformational stability using a two-
dimensional square lattice model in which water is represented explicitly. The model captures many aspects of water ther-
modynamics, including the existence of density anomalies, and we consider here the simplest representation of a protein: a
hydrophobic homopolymer. We show that an explicit treatment of hydrophobic hydration is sufficient to produce cold, pressure,
and thermal denaturation. We investigate the effects of the enthalpic and entropic components of the water-protein interactions on
the overall folding phase diagram, and show that even a schematic model such as the one we consider yields reasonable values
for the temperature and pressure ranges within which highly compact homopolymer configurations are thermodynamically stable.

INTRODUCTION

Globular proteins remain in their functional native state in a

limited range of temperatures and pressures, unfolding into

denatured states at both high and low temperature and high

pressure (1,2). Fig. 1 shows the characteristic parabolic shape

of a protein phase diagram, for the specific case of Staphy-

lococcal nuclease (3). The stability of the native state is the

result of several contributions, including van der Waals, elec-

trostatic, and hydrogen-bonding interactions, as well as con-

figurational entropy (4). Walter Kauzmann first suggested

that the hydrophobic effect plays a central role in protein

stability on the basis of several observations (5). First, pro-

teins tend to sequester the majority of their hydrophobic

residues in the core of the molecule, avoiding exposure to

water (6). Second, natural water-soluble proteins are unable

to fold into their native states in nonpolar solvents (7). Finally,

the free energy of transfer of a hydrophobic solute from its

pure phase into water shows the same qualitative temperature

dependence as the protein unfolding free energy. The liquid-

hydrocarbon model of the protein core suggests that the

temperature-dependent behavior of the enthalpy and entropy

of unfolding is due largely to hydrophobic hydration phe-

nomena (8).

The relevance of this simple picture to high-pressure pro-

tein stability is less certain. Kauzmann pointed out incon-

sistencies between the volume effects associated with protein

unfolding and hydrocarbon transfer, thereby questioning

whether the liquid-hydrocarbon picture can account for

pressure denaturation. The volume change of hydrocarbon

transfer is negative at low pressure and generally positive at

high pressure, while the volume change of protein unfolding

is positive at low pressure and negative at high pressure (9).

Calculations from an information theory model of hydropho-

bic interactions have reconciled these pictures by, in effect,

inverting the liquid-hydrocarbon model for pressure effects;

pressure denaturation is viewed as the penetration of the

protein cavities by water molecules, more akin to the transfer

of a water molecule into a pure hydrophobic phase (10,11).

Alternatively, recent theoretical work on the hydration of

hydrophobic solutes of different sizes is also of relevance to

hydrophobic homopolymer collapse (12–15). The hydration

of large hydrophobic solutes is accompanied by density de-

pletion at their interface with water, which can then resemble

the interface between vapor and liquid water (12). Corre-

spondingly, water density fluctuations at the interface would

give rise to bubble formation, and bubbles of a critical size

would span intermolecular distances and induce the collapse

of large hydrophobic polymers (13). From this viewpoint,

the stability of this collapsed state is reduced as the solvent

moves away from vapor-liquid coexistence at low temper-

ature and high pressure, giving rise to cold and pressure

denaturation (12,14). This framework is consistent with the

approach adopted here, in that the complexity of real proteins

is reduced to an exclusive focus on the thermodynamics of

hydrophobicity for the interpretation of the phase diagram of

protein folding. A recent molecular dynamics simulation of a

hydrophobic polymer in water has manifested the existence

of a dewetted polymer-water interface in extended polymer

conformations (15). The polymer also exhibited signatures

of both warm and cold denaturation, with compact states

remaining marginally stable only within an intermediate range

of temperature, while extended configurations predominate at

high and low temperatures.

Atomically detailed simulations of proteins have provided

substantial insight into the mechanisms of protein denatur-

ation and the formation of native-state structure. The choices

of force field and whether to model the solvent implicitly or

explicitly dictate the types of physical situations that these
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simulations can tackle. Explicit-solvent molecular dynamics

simulations are commonly used to study protein dynamics

and hydration for small protein fragments of ,40 residues.

These studies have provided insight into protein folding

pathways and intermediates for several different peptides

and proteins, such as the villin headpiece (16,17), a b-hairpin

(18), and BBA5 (19). Other studies have examined the role

of water in hydrophobic collapse of the protein core and

protein-water hydrogen bonding for larger proteins like the

BphC enzyme (20) and ribonuclease A (21). High-pressure,

explicit-solvent simulations utilizing water insertions into

the protein interior have investigated the effect of water pene-

tration into the hydrophobic core on pressure denaturation (22).

Modeling the solvent implicitly drastically reduces sim-

ulation complexity, allowing larger proteins to be simulated

for longer times. These simulations are used to explore the

folding dynamics of proteins (23–25) and the temperature

dependence of protein folding (26,27). Implicit solvent

approximations are often used in protein structure prediction,

where faster computation is necessary and folding dynamics

are less important (28,29).

In contrast to the wealth of existing simulations to study

short-time dynamics, few detailed simulations have been done

to study protein stability over a wide range of temperatures

and pressures, a limitation resulting from the long times re-

quired to simulate large-scale conformational changes. One

example of such a study is a replica exchange molecular dy-

namics simulation of a small peptide in TIP3P water that dem-

onstrated both pressure and thermal denaturation, but also

showed that pressure did not disrupt the studied a-helical

structures (30,31).

The reduced description of interactions used in lattice

models of proteins offer the opportunity to examine protein

thermodynamics without incurring the large computational

expense of atomically detailed simulations. The HP model

(32) is a lattice heteropolymer model with hydrophobic (H)

and polar (P) monomers. It implicitly incorporates the hydro-

phobic effect through an attraction between hydrophobic

monomers on the protein chain. This approach was used to

study the designability and uniqueness of protein native states

and to explore how sequence affects the folded structure

(32,33). While a broad thermal denaturation transition does

occur in the HP model, it does not manifest cold unfolding.

Inherently, the model’s ground state is also the protein’s native

state, which precludes the existence of a denatured state which is

more stable than the native state at lower temperatures. An

extension of the HP model (34–37) to include water explicitly

(the HPW model) uses the Muller-Lee-Graziano water model

(38,39) to describe the solvent degrees of freedom. The

Muller-Lee-Graziano model uses a bimodal description of

water, distinguishing between bulk and solvation shell waters

in their energy and entropy. From exact enumeration of the

configurations of short heteropolymers, Caldarelli and co-

workers showed that both a warm and a cold denaturation

transition are manifest in the HPW model (34).

Pressure effects have been less commonly treated in theo-

retical models. A mean-field model for heteropolymer col-

lapse by Dill (40,41) was recently extended by Cheung and

co-workers (42) to include pressure-induced weakening of

the hydrophobic association of protein monomers. The model

exhibits cold-, pressure-, and heat-unfolding but, because it

invokes the mean-field approximation, it can only examine

the effect of average sequence hydrophobicity on protein

thermodynamics. Another model dealing with pressure effects

was developed by Marques and co-workers (43). Placing an

all-hydrophobic homopolymer and explicit water on a com-

pressible two-dimensional square lattice, they observed cold,

thermal, and pressure denaturation. However, their Hamil-

tonian coupled the compactness of the protein to the bulk

water structure, linking a local property of the protein to an

average bulk property of water. This feature of the Hamil-

tonian favors compact protein conformations at conditions

where bulk water is highly hydrogen-bonded, in effect forcing

the correct outcome a priori, rather than obtaining folding as

a result of microscopic interactions. Furthermore, the model

predicts that cold-unfolding occurs only at high pressure, a

fact not supported by experiments (3,44).

Here we revise the model of Marques et al., and present a

different lattice model of an all-hydrophobic protein in water.

We distinguish between bulk and interfacial hydrogen bond-

ing, incorporating ideas from Frank’s iceberg model (45).

From this simple treatment of protein-water interactions, we

can investigate how hydrophobic solvation affects the sta-

bility of proteins. A physically meaningful treatment of hy-

drophobic interactions allows us to reproduce many of the

experimentally observed features of protein conformational

stability in the pressure-temperature plane, including cold

denaturation at ambient pressure.

FIGURE 1 Phase diagram for Staphylococcal nuclease from Fourier

transform infra-red (FTIR) spectroscopy, small angle x-ray scattering (SAXS)

and differential scanning calorimetry (DSC) experiments. Adapted with

permission from Ravindra and Winter (3).
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The outline of this article is as follows. We begin with a

description of the microscopic model and discuss the flat

histogram simulation techniques used to compute the model’s

density of states. We then examine the shape of the resulting

protein phase diagrams and discuss the driving forces behind

each of the denaturation transitions. Finally, we present the

main conclusions, as well as possible extensions to the model,

some of which we are currently investigating. The Appen-

dices contain derivations of biased trial moves used in the

simulations and analytical approximations used to interpret

the results as well as illustrative results for the volumetric

properties of small model hydrophobic solutes.

MODEL DESCRIPTION

Each site on a two-dimensional square lattice is occupied

either by a water molecule or a protein monomer. The water

molecules have four hydrogen-bonding arms, each associ-

ated with a neighboring lattice site. The orientation of a

bonding arm on water molecule i associated with adjacent

site j is described by the variable sij. Each bonding arm can

adopt q orientations, thus sij can take on values between

1 and q. The orientations of bonding arms on the same water

molecule are uncorrelated with each other. A hydrogen bond

forms between two neighboring water molecules Æi, jæ when

their bonding arms are properly oriented, satisfying the

condition sij ¼ sji in the original version of the model (46),

or a modified condition (to be described below) in this work.

To account for the lower local density associated with the

formation of hydrogen bonds, we treat the lattice as com-

pressible, and the total volume expands uniformly by an

amount Dy upon formation of a hydrogen bond. The Hamil-

tonian for the hydrogen-bonding interaction in the original

water model (46,47) is

HW ¼ �J +
Æi;jæ

dsij ;sji
¼ �JNHB; (1)

where J is the strength of a hydrogen bond and the Kronecker

delta dsij;sji
¼ 1 when sij¼ sji, and is zero otherwise. NHB is

the number of hydrogen bonds in the system. The hydrogen-

bonding interaction originates from a lattice model of water

used to investigate this substance’s thermodynamic behavior,

especially at supercooled conditions (46,47). The original

model allowed for empty lattice sites unoccupied by either

protein or water, and displays many of the distinguishing

anomalies of water, including the isobaric density maximum

(46), and the increase upon isobaric cooling of the magnitude

of the isothermal compressibility, isobaric heat capacity, and

thermal expansion coefficient (47). The current model

(without empty lattice sites), while displaying anomalous

behavior such as negative thermal expansion, does not

capture all of these anomolies. In this work, as in the original

model (46,47), we consider each of the bonding arms

belonging to the same water molecule to be independent.

This simplification was subsequently removed in a more

realistic model (48). Here we show that even the highly

idealized water model with independent bonding arms gives

rise to realistic folding behavior.

The protein is modeled as a self-avoiding walk with

covalently attached monomers occupying nearest-neighbor

sites on the lattice. The protein is a homopolymer and each

monomer is nonpolar. The protein has no self-interaction

aside from excluded volume effects. The nonpolar protein’s

only interaction with water is through its indirect effect on

water-water hydrogen-bonding.

We redefine the hydrogen-bonding interaction of the pure

water model by differentiating water molecules into two

classes: bulk and interfacial. Frank and Evans identified the

tendency of water molecules to form ordered ‘‘icelike’’

cages around nonpolar solutes (45). These interfacial water

molecules avoid orientations in which their hydrogen-

bonding arms point toward the hydrophobe and remain in

low entropy configurations in the first solvation shell.

However, in these restricted configurations the interfacial

waters form stronger hydrogen bonds than observed in bulk

(49). While a bimodal description of hydrogen bonding was

also used in the HPW model, as already noted, that water

model does not reproduce water’s unusual thermodynamics

nor does it treat pressure effects (34–37).

To adapt these principles to our model, we must first recast

the orientational criteria for hydrogen bonding to generalize

the model. Hydrogen bonding is said to exist when two

nearest-neighbor water molecules have their bonding arms

oriented such that they are within some tolerance l, or

jsij – sjij # l. In the context of this new hydrogen-bonding

criterion, a value of l ¼ 0 is equivalent to the original water

model’s condition of sij ¼ sji. The range of acceptable ori-

entation pairs differs between bulk water (lb) and interfacial

water (lh). A pair of hydrogen-bonding water molecules is

designated as interfacial when either member of the pair is

adjacent to one or more protein monomers. A smaller range of

hydrogen-bonding orientations for interfacial water mole-

cules (lh , lb) is the origin in the model of the lower entropy

of the interfacial hydrogen bonds in hydrophobic hydration.

The tolerances lb and lh directly affect the fraction of

orientation pairs suitable for bonding. The total number of

possible orientation pairs is q2 for a pair of bonding arms on

adjacent water molecules. If one of the bonding arms has any

orientation sij out of q possible orientations, then its partner

must have an orientation from sij – lh to sij 1 lh to satisfy

the interfacial hydrogen-bonding criteria. Thus, there are (2lh

1 1)q possible interfacial bonding pair orientations out of q2

total orientation pairs. Because lh , lb, a smaller fraction of

orientation pairs will satisfy the bonding criteria interfacially

((2lh 1 1)/q), than in the bulk ((2lb 1 1)/q).

Along with the entropic cost of interfacial hydrogen bonds,

there is an enthalpic bonus. Since those hydrogen bonds

formed in reduced orientational entropy configurations around

hydrophobic solutes less frequently sample the more distorted

and weaker bonding structures present in bulk (49,50), they
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are given an additional enthalpic contribution (JH) on top

of the base hydrogen-bond strength J. Thus, the complete

Hamiltonian of our model is

H ¼ �JNHB � JHNXHB; (2)

where NXHB is the number of interfacial hydrogen bonds.

The total volume is calculated as

V ¼ V0 1 NHBDy: (3)

The system volume without hydrogen-bonding is V0, and

V0 ¼ y0Nsites, where Nsites is the number of lattice sites and

y0 is the volume per lattice site.

Our model is related to that of Marques et al. (43), using

the same representation of a protein in water as a hydro-

phobic homopolymer on a two-dimensional square lattice.

However, we use a different Hamiltonian for the protein-

water interactions, incorporating the entropic and enthalpic

characteristics of water hydrogen bonding on a molecular

level into a two-tiered framework. In contrast, as modeled by

Marques et al. (43), the protein has a repulsive interaction

with the solvent given by

HP ¼ Jr

NHB

Nw

ðNc;max � NcÞ: (4)

Nc is the number of intramolecular protein-protein nearest

neighbor contacts, Nc,max is the maximum number of such

contacts, and Nw is the number of water molecules in the

system. The parameter Jr . 0 is the strength of the repulsive

interaction between the protein and water. Marques and co-

workers propose this repulsion as a way to represent the

tendency of an apolar macromolecule to adopt compact con-

formations in the presence of water’s low-density hydrogen

bonded network. They hypothesized that the inability of

water to form a low-density structure at high pressures causes

pressure denaturation by weakening this effective repulsion

between water and the hydrophobic molecule. To incorpo-

rate this effect, the energy penalty term in Eq. 4 becomes

significant either when the protein is not maximally compact

(Nc , Nc,max) or when the bulk water has formed a low-

density hydrogen-bond network (NHB . Nw). The inclusion

of the total number of hydrogen bonds in this term links the

single-protein energetics to the bulk water behavior. It is not

surprising, then, that the system shows unfolding at high

pressures since at those conditions the energy penalty vanishes

as the hydrogen-bonding structure in the system disappears.

METHODS

We used a modified version of the Wang-Landau method to estimate the

density of states, V (51). In the conventional Wang-Landau approach, the

simulation performs a random walk in energy (U) with probability pro-

portional to the reciprocal of the density of states 1/V(U). The random walk

is performed within the range of attainable energies in the model. The

density of states is not known a priori, but is determined on-the-fly during

the simulation. The simulation is initialized at a random configuration with

the density-of-states estimator set at V(U) ¼ 1 for all energy levels. Trial

moves from an old configuration (o) to a new configuration (n) at energy

levels Uo and Un, respectively, are accepted with probability

Paccðo/nÞ ¼ min 1;
VðUoÞ
VðUnÞ

� �
: (5)

Each time a state with energy U is visited in the simulation, the corre-

sponding density of states estimate is updated by multiplying the existing

value by a modification factor f, i.e.: V(U) / V(U)f. An initial value for the

modification factor of f0¼ e1 � 2.71828 is often used to allow the system to

sample all possible energy levels efficiently. Throughout the simulation a

histogram counting the frequency of visits to each energy level h(U) is also

updated, i.e.: h(U) / h(U) 1 1. The random walk proceeds until h(U)

becomes sufficiently flat to ensure relatively even sampling of all energy

levels. At infinite time, the random walk should converge to be 100% flat,

when h(U) has the same value for each energy U. However, for practical

purposes, we allow the simulation to continue until h(U) at each energy level

is greater than some percentage of the average value Æh(U)æ. When this

condition is satisfied, the modification factor is reduced to fnew ¼
ffiffiffiffiffiffi
fold

p
; so as

to refine the precision of the density of states estimation process. The energy

histogram h(U) is reset to zero and a new iteration started. The process

continues until the histogram is again sufficiently flat and the modification

factor is reduced accordingly. This procedure is repeated until f approaches

unity to within some designated tolerance.

In our simulations, we employ a slightly different strategy for determin-

ing the density of states that is adapted specifically to our model (43). Instead

of a random walk in energy space, we perform a random walk in the two

variables in our system Hamiltonian: NHB and NXHB. Any state specified by

these variables corresponds to a specific system energy and volume given by

Eqs. 2 and 3. The outcome of these simulations is the density of states,

V(NHB, NXHB), which can then be translated to V(U, V). The advantage of

performing a random walk in NHB and NXHB, as opposed to U and V, is that

the parameters J, JH, and Dy need not be assigned values during the

simulation. This allows us to gather the system thermodynamics for any

parameter set from a single simulation.

Here we consider the histogram of visited states to be flat if every bin of

h(NHB, NXHB) is at least 80% of the average histogram Æh(NHB, NXHB)æ. The

simulation ends when the modification factor is ,exp(10�8). To improve

sampling of rare protein configurations we also used several biased protein

trial moves in addition to conventional translational and orientational trial

moves. An explanation and derivation of the acceptance criteria for these

trial moves is given in Appendix A.

Due to the large number of system states sampled even for a relatively

small protein (;85,000 for 20 monomers), the density of states was sub-

divided into smaller overlapping regions for expediency. Even with a small

subset of phase space to sample, the system states around and including the

protein native state required that the simulation be run in parallel on multiple

processors. The processors independently performed random walks in the

same subset of phase space and periodically communicated their estimates

for V and h with each other, simultaneously testing whether the criteria for

histogram flatness had been satisfied. The complete simulation of a 20-

monomer protein required nearly 6000 CPU hours. The simulation of

proteins up to 50 monomers is possible with a recently developed method

which decouples the protein and water contributions to the density of states.

This technique will be explained in detail in a forthcoming publication.

Extracting protein properties from the simulation data requires converting

the density of states into more useful metrics. Since the simulation involves

fluctuations in both internal energy and volume, it is natural to reweight the

density of states to represent the isobaric-isothermal ensemble. Given a

pressure P and temperature T, the probability of a state, i, specified by NHB

and NXHB, is

piðP; TÞ ¼
VðNHB;NXHBÞe�bUðNHB ;NXHBÞ�bPVðNHBÞ

DðP; TÞ ; (6)

where b ¼ 1/kBT and D is the isobaric-isothermal partition function. We

define the protein native state as the set of system states where the protein is
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fully compact, when it has formed the maximum number of nearest-neighbor

protein-protein contacts. Summing the probabilities of these compact states

gives the probability that the protein is folded as

pfðP; TÞ ¼ +
compact states

pNHB ;NXHB
ðP; TÞ: (7)

The change in free energy upon unfolding, DG, can then be calculated from

the folding probability by using the equilibrium relation from the two-state

model of protein folding

DGðP; TÞ ¼ Gunfolded � Gfolded ¼ RT ln
1� pfðP; TÞ

pfðP; TÞ

� �
: (8)

The transition between the folded and unfolded states occurs when

DG(P, T) ¼ 0 or, equivalently, when pf(P, T) ¼ 0.5.

RESULTS AND DISCUSSION

Fig. 2 shows the phase diagram of a 17-mer protein,

with contours showing constant probabilities of occupying

the folded state. The model protein exhibits heat-, cold-, and

pressure-unfolding and the dome of stable temperatures and

pressures has the same qualitative shape as observed experi-

mentally. The folded protein is stabilized by minimizing the

exposed surface area of hydrophobic monomers, thereby

limiting the number of interfacial water molecules forced

to pay an entropic cost for hydrogen-bonding around the

protein. This corresponds to the maximally compact con-

formation shown in Fig. 3 a. Upon increasing temperature,

the protein gradually unfolds and exposes more hydrophobic

monomers to the solvent. The thermal energy is sufficient to

overcome the entropic cost of forming additional interfacial

hydrogen bonds around the exposed monomers. The ther-

mally denatured protein is an ensemble of conformations,

with several examples shown in Fig. 3 b. At lower temper-

atures and high pressures the enthalpic benefit of additional

interfacial hydrogen bonds drives the protein to unfold into a

fully extended state, shown in Fig. 3 c. This configuration

maximizes the number of water-protein contacts and allows

for water to form the maximum number of interfacial hydrogen

bonds.

The importance of the entropic penalty and the enthalpic

bonus in cold and pressure denaturation is illustrated in Figs.

4 and 5. When lb ¼ 0, there is no entropic penalty (since

lb ¼ lh ¼ 0 in this case) and one sees that the protein is not

susceptible to cold denaturation. The entropic penalty was

applied by increasing lb while holding lh¼ 0. Increasing the

entropic penalty increases the slope of the cold denaturation

transition line as well as the maximum pressure at which the

protein is stable at any nonzero temperature. This effect will

be explained quantitatively below. Fig. 5 shows that there is

no cold unfolding without the enthalpic bonus. Increasing the

enthalpic bonus increases the stability of the cold-denatured

state at the expense of the folded state. At JH/J ¼ 0.3, the

protein shows cold denaturation even at zero pressure, while

for JH/J . 0.3 the protein no longer folds at positive pres-

sures. The effect of changing JH demonstrates that the for-

mation of stronger hydrogen bonds between the water

molecules close to the protein is also a required driving force

for cold-unfolding in this model.

An analytical expression derived in Appendix B yields

further insight into the mechanism of cold denaturation in

this model. It is shown there that the transition pressure

between the native and unfolded states at zero temperature

can be calculated analytically, and is given by

FIGURE 2 The phase diagram of a 17-mer homopolymer protein for

JH/J ¼ 0.2, Dy/y0 ¼ 0.348, lh ¼ 0, lb ¼ 1, and q ¼ 30. The inner line

demarcates the region within which the probability of observing the folded

state is 87.5% or greater. The other lines similarly demarcate the regions

within which the folded probabilities are .75%, 62.5%, 50% (bold), 37.5%,

25%, and 12.5% (outermost).

FIGURE 3 Representative conformations for a 17-mer model protein in

the (a) native state, (b) thermally denatured ensemble of states, and (c) high-

pressure cold-unfolded state.
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Pt

����
Tt¼0

¼ J

Dy
1

JH

Dy

DNXHB

DNHB

� �
: (9)

DNXHB and DNHB are the differences in the number of

interfacial and total hydrogen bonds between the native and

unfolded states, respectively. When the protein unfolds in

this model, the bulk water must break a few hydrogen bonds

to accommodate the extended protein structure, and DNHB ,

0. The opening of the protein, however, allows more in-

terfacial hydrogen bonds to be formed, and DNXHB . 0. The

factor DNXHB/DNHB , 0, and increasing the enthalpic bonus

JH reduces the transition pressure Pt between the unfolded

and the native states. This effect is the same regardless of

protein size because the behavior of DNXHB/DNHB is inde-

pendent of chain length; DNXHB and DNHB are both size-

dependent quantities, but both scale in the same way with

chain length. The changes in these quantities are directly

connected to the differences between the structures of the

native and unfolded states. Ideally, the native state structure

is maximally compact and the denatured state structure is

fully extended, regardless of protein size, so that the ratio

DNXHB/DNHB in that case is constant.

The effect of the entropic cost on cold denaturation can

be determined from the slope of the cold-denaturation line

given by Eq. 10, also derived in Appendix B,

dP

dT

����
t

¼ DS

DyDNHB

; (10)

where DS is the change in total system entropy upon un-

folding. Since, as already noted, the transition to the unfolded

state involves DNHB , 0, and noting that Dy . 0, then dP/

dTt . 0 when DS , 0 and dP/dTt , 0 if DS . 0. At low

temperatures the enthalpic bonus of interfacial hydrogen

bonding dominates, driving the formation of an extended

structure (Fig. 3 c) with the maximum number of interfacial

hydrogen bonds formed. This cold-denatured state has a

lower degeneracy than the native state (Fig. 3 a) and the

protein transition upon cold unfolding has an inherent nega-

tive contribution to DS. It is an artifact of the model that the

cold-denatured state is not an ensemble of disordered protein

conformations since these are too high in energy to be stable

at low temperatures (unlike for thermal denaturation at higher

temperatures). Because the cold-denatured state has a larger

number of interfacial hydrogen bonds than the native state,

the water has a negative contribution to DS as long as there is

an entropic penalty (lb . lh). Increasing the entropic penalty

for interfacial hydrogen bonds increases the magnitude of

the water contribution to the entropy decrease and thereby

increases dP/dTjt, as seen in Fig. 4.

In contrast to cold unfolding, which is driven both by

entropy and enthalpy effects, thermal denaturation at higher

temperatures is an entropy-driven transition. The partial

opening of the protein upon thermal denaturation breaks a

few bulk hydrogen bonds (DNHB , 0), increasing both the

protein and water disorder (DS . 0). The simulations also

show that the number of interfacial hydrogen bonds remains

generally constant upon thermal denaturation (DNXHB � 0).

The expression for the thermal denaturation temperature at

zero pressure, derived in Appendix B, can be simplified to

Tt

����
Pt¼0

� �J
DNHB

DS
: (11)

Fig. 6 shows the effect of protein size on the thermal de-

naturation temperature. As the number of protein monomers

FIGURE 4 Contours of 50% folded probability for a 20-mer protein for

varying values of the entropic penalty for forming interfacial hydrogen

bonds. Simulations were performed with lh ¼ 0 and changing lb. To retain

the same bulk water thermodynamics, the total number of water orientations

q increases such that the fraction of bonding configurations for a pair of

bonding arms on adjacent molecules (i.e.: (2lb 1 1)q/q2 ¼ (2lb 1 1)/q) is

kept constant, at 0.1. The other model parameters remain constant at

JH/J ¼ 0.2 and Dy/y0 ¼ 0.348.

FIGURE 5 Contours of 50% folded probability for a 20-mer protein for

varying values of the enthalpic bonus for interfacial hydrogen bonds JH/J.

The other model parameters are Dy/y0 ¼ 0.348, lb ¼ 1, lh ¼ 0, and q ¼ 30.
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increases, the protein native state becomes less stable at high

temperature. The destabilization is caused by the increasing

gap between the entropies of the folded and denatured states.

For each additional monomer added to the protein, the folded

state’s entropy will increase only slightly, associated with the

increasing degeneracy of the compact protein configurations.

However, the unfolded states’ entropy will increase faster

with protein size because of the larger number of disordered

but mostly compact protein configurations common in the

thermal-denatured state. DNHB does not change with protein

size because only one or two hydrogen bonds must break to

allow the protein to transition from the compact folded state

to mostly compact states. The net effect is that DS increases

as the number of monomers increases, reducing Tt. This

general trend is also observed experimentally, as the thermal

denaturation of single-domain proteins shows a negative

correlation with protein size (52).

Fig. 7 examines the entropy and volume changes upon

unfolding in our model and in a phenomenological model

based on experimental studies of the most typical proteins

(1). While cold unfolding and high pressure thermal un-

folding in our model show the same denaturation thermo-

dynamics as experiments, it is clear that the model does not

reproduce the typical phenomenological slope of the phase

diagram for thermal denaturation at ambient (low) pressure.

Experimentally, there typically is a point on the denaturation

curve where the slope of the phase transition for thermal

denaturation is nearly infinite, corresponding to a volume

change upon unfolding DV � 0. This point is lacking in our

model, along with regions of positive volume change upon

unfolding. The cause originates in the model, where Eq. 3

directly links the volume of the system to the number of

hydrogen bonds. For our model, denaturation is always

associated with a negative volume change because protein

unfolding involves the breaking of hydrogen bonds. A dis-

cussion of the volumetric properties of small hydrophobic

solutes based on our model and their relation to the volumetric

behavior associated with protein folding is given in Appendix

C. There it is shown that, for small solutes, the model also

correctly mimics most of the trends with temperature and

pressure seen experimentally. Nevertheless, our model does

show a point on the denaturation curve where DS � 0,

allowing for a distinct separation between cold denaturation

(DS , 0) and thermal denaturation (DS . 0).

To relate the model results to experimental protein phase

diagrams, we converted the temperature and pressure into

dimensional quantities. A value of 23 kJ/mol was used in the

temperature scaling for the average strength of a hydrogen

bond, J. To scale the pressure we used 18 cm3/mol for the

molar volume of water. The value of Dy/y0 was chosen to

approximate experimental values of the volume expansion of

a water molecule upon forming a hydrogen bond. Using the

densities of ice and liquid water of 0.917 and 1 g/cm3 at 0�C,

the molar volume change upon freezing is 1.63 cm3/mol of

water. The ratio of the heat of fusion to the heat of sublima-

tion indicates that ;13% of hydrogen bonds are broken upon

ice melting. An individual water molecule in ice has two

FIGURE 6 Thermal denaturation temperature at zero pressure for pro-

teins of various sizes. JH/J¼ 0.2, Dy/y0¼ 0.348, lh¼ 0, lb¼ 1, and q¼ 30

were used for all proteins. The line is a guide to the eye. Irregularities in the

trend of decreasing thermal denaturation temperature with protein size are

due to the discrete nature of the lattice. Equation 11 connects the structure

of the native and denatured states to the thermal denaturation temperature

through the change in entropy upon unfolding. The degeneracy of the native,

compact state does not increase regularly with protein size. For example, a

9-mer or 16-mer has a square-shaped native state, while other protein sizes

have rougher surfaces.

FIGURE 7 A comparison between the ther-

modynamics of unfolding in (a) our model and

in (b) a schematic summary of experimental

results. Panel b was adapted with permission

from Hawley (1).
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hydrogen bonds per molecule, therefore, on average, 0.26

hydrogen bonds per molecule are broken upon melting. Dividing

the molar volume change upon freezing (1.63 cm3/mol) by the

fraction of hydrogen bonds per molecule formed upon freezing

(0.26) gives an estimate for the volume change upon forming a

mole of hydrogen bonds, or Dy ¼ 6.27 cm3/mol.

For a parameter selection of JH/J ¼ 0.4, lh ¼ 0, lb ¼ 5,

q ¼ 110, and Dy/y0 ¼ 0.348, the phase diagram of a model

20-mer is shown in Fig. 8. Pressure denaturation of the

model protein is in the kbar region, of the same order of

magnitude as the experimental results shown in Fig. 1. The

temperatures for thermal and cold denaturation at ambient

pressure are between 20 and 40�C below those seen experi-

mentally. The model underestimates these temperatures because

of the lack of favorable internal protein-protein interactions such

as hydrogen-bonding and electrostatics. Including these forces

might confer additional thermal stability to the protein.

Finally, a comparison between our model predictions and

those of water-implicit protein models yields an interesting

observation. The thermal denaturation of proteins in the orig-

inal HP model is a broad transition, occurring over a range of

dimensionless temperatures of O(1) (32). Our model clearly

exhibits a much sharper transition between the native and

denatured states, as shown in Fig. 2. The explicit inclusion of

water gives rise to sharper phase transitions, in agreement with

experimental observations. It remains to be seen whether

sharp transitions are an artifact of the homopolymer case, or if

heteropolymers would also exhibit this phenomenon.

CONCLUSIONS

We have developed a model for an all-hydrophobic homo-

polymer in water based on the thermodynamics of the

solvation of hydrophobic solutes. The model protein dena-

tures at high temperature, low temperature, and high pres-

sure, showing many of the same denaturation characteristics

observed in experiments. Our model shows sharp unfolding

transitions compared to water-implicit protein models. The

key new feature here is the introduction of additional re-

strictions on the orientation for hydrogen bonding at the

protein interface compared to the bulk. The two-tiered set of

hydrogen-bonding interactions for the water modulates the

cold denaturation transition by balancing between the stability

of the native and cold-denatured states.

Using a homopolymer to describe the protein limits our

study to the effects of protein size and of the water-protein

interaction. The model also shows a decrease in the protein

configurational degrees of freedom upon cold unfolding, an

unphysical feature that we plan to improve upon. Calcula-

tions are in progress on a heteropolymer model, with both

hydrophobic and polar monomers, as in the HP model (32).

Incorporating details of the chemistry of proteins into the

model will allow us to investigate how sequence selection

and composition can affect the range of native state stability.

We also plan to investigate three-dimensional systems, as

well as the impact of correlation among the orientations of

hydrogen bonds on each water molecule.

APPENDIX A: BIASED PROTEIN TRIAL MOVES

In addition to simple one-monomer and two-monomer translation trial moves,

we used biased protein monomer translation moves to improve the sampling

of rare protein configurations. In these biased trial moves, one or two

monomers of the protein are translated without disrupting the hydrogen

bonding structure of the solvent around it. To keep the number of hydrogen

bonds constant, we bias the selection of water orientations for the water

molecule which translates into the site formerly occupied by the protein

monomer. This type of bias allows the protein to effectively explore con-

figurations when the solvent is highly structured. To balance the improved

sampling of biased trial moves with the shorter computation time of un-

biased trial moves, 50% of protein translation trial moves are unbiased and

50% are biased.

The transition matrix that determines the probability to perform a one-

monomer trial move from o to n is

Tðo/nÞ ¼ piðo/nÞpjðo/nÞpwðo/nÞpsðo/nÞ; (12)

where pi is the probability of selecting monomer at site i for translation, pj is

the probability of selecting site j for the monomer to translate into, pw is the

probability of translating water w at site j back to site i, and ps is the

probability of giving water molecule w the set of bonding arm orientations

fsg (fsg ¼ fsi1, si2, si3, si4g). In the biased trial move, all of these

probabilities are symmetric, except ps, as we bias the selection of these

orientations to keep the number of hydrogen bonds formed by water w (NHB)

constant from state o to state n.

Water w has a total of four hydrogen-bonding arms that are faced with

several options in the new site depending on their neighbors. If a bonding

arm points toward the protein it can have one of q orientations since the

water molecule cannot hydrogen-bond with the protein. If a bonding arm

points toward other water molecules the arms can either hydrogen-bond by

matching their orientation to their neighbor or form nonbonding pairs. The

total number of bonding arm pairs irrespective of their bonding status is

denoted by Npairs. To maintain a constant value of NHB for water w, NHB of

the Npairs bonding arm pairs are selected at random to be hydrogen-bonded

FIGURE 8 Contour of 50% folded probability for a model 20-mer with

temperature and pressure converted into dimensional quantities using J ¼
23 kJ/mol and y0¼ 18 cm3/mol. Parameter values are JH/J¼ 0.4 and lb¼ 5,

lh ¼ 0, q ¼ 110, and Dy/y0 ¼ 0.348.
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and the orientations set accordingly. The remaining Npairs – NHB nonbonding

pairs are given nonbonding orientations at random. If NHB . Npairs, the

move is rejected automatically.

Based on these criteria, the probability of selecting orientations for water w is

given by

psðo/nÞ ¼ 1

Npairs

NHB

� �
0
BBB@

1
CCCA
YNHB

i¼1

1

2lh 1 1

� �

3
YNpairs

i¼NHB

1

q� ð2lh 1 1Þ

� � Y4

i¼Npairs

1

q

� �
: (13)

The first term is the probability of selecting a set of NHB bonding pairs out of

the Npairs total bonding arms for hydrogen-bonding. The second term is the

probability of selecting appropriate hydrogen-bonding orientations for those

NHB bonding arms. The third term is the probability of selecting appropriate

nonbonding orientations for the remaining pairs. The final term is the

probability of selecting any orientation for the bonding arms facing protein

monomers.

Detailed balance requires that the opposing fluxes between states o and n be

statistically equal, satisfying the relation

pðoÞTðo/nÞAðo/nÞ ¼ pðnÞTðn/oÞAðn/oÞ; (14)

where p is the equilibrium probability of a state and A is the acceptance

probability of a transition. Since the equilibrium probability of a state is the

inverse of its density of states, we can derive the acceptance criteria:

Aðo/nÞ
Aðn/oÞ ¼

VðoÞ
VðnÞ

NpairsðnÞ!ðNpairsðoÞ � NHBÞ!
NpairsðoÞ!ðNpairsðnÞ � NHBÞ!

3
q� ð2lh 1 1Þ

q

� �NpairsðnÞ�NpairsðoÞ

: (15)

The principle is the same for a biased two-monomer trial move, with some

additions. With two translating water molecules there are now eight bonding

arms that are given biased orientations. Moreover, the translating waters

can be subject to either bulk or interfacial hydrogen bonding criteria. The

probability for selecting a set of orientations is

psðo/nÞ ¼ 1

Npairs

NHB

� �
0
BBB@

1
CCCA
YNHB;i

k¼1

1

2lh 1 1

� � YNpairs;i

k¼NHB;i

3
1

q� ð2lh 1 1Þ

� �
3
YNHB;b

k¼1

1

2lb 1 1

� �

3
YNpairs;b

k¼NHB;b

1

q� ð2lb 1 1Þ

� � Y8

k¼Npairs

1

q

� �
; (16)

where the subscripts i and b denote interfacial and bulk, respectively. The

acceptance criteria for a biased two-monomer move is

where the change in a quantity such as DNpairs is Npairs(n) – Npairs(o).

APPENDIX B: ANALYTICAL APPROXIMATION
FOR TWO-STATE TRANSITIONS

The probability of any state, i, specified by NHB and NXHB can be calculated

from simulation data for any pressure and temperature by

piðP; TÞ ¼
Vi expð�ðUi 1 PViÞ=kBTÞ

DðP; TÞ ; (18)

where D is the isothermal-isobaric partition function and kB is Boltzmann’s

constant; Vi is the degeneracy of state i, while Ui and Vi are the energy and

volume of state i, calculated from Eqs. 2 and 3. At a two-state transition

between states 1 and 2, p1 ¼ p2. Equating p1 and p2 and taking the natural

logarithm gives the relationship

ln V1 � ðU1 1 PtV1Þ=kBTt ¼ ln V2 � ðU2 1 PtV2Þ=kBTt

(19)

where Pt and Tt are the transition pressure and temperature. Using

Boltzmann’s relation Si ¼ kB ln Vi to replace the density of states with

the entropy of state i and multiplying by kB reduces the equation to

S1 � ðU1 1 PtV1Þ=Tt ¼ S2 � ðU2 1 PtV2Þ=Tt: (20)

Substituting for the energy and volume using Eqs. 2 and 3 and rearranging

yields the relation

TtDS ¼ �JDNHB � JHDNXHB 1 PtDyDNHB: (21)

DNHB, DNXHB, and DS denote the difference in the respective property

between states 1 and 2. Recall that Dy is not the change in a property

between states 1 and 2, but instead the model parameter describing the

uniform expansion of the lattice upon hydrogen-bond formation.

Equation 21 explicitly links the system states specified by NHB and NXHB,

the model parameters J, JH, and Dy, and the macroscopic variables Tt and Pt.

An adaptation of the Clapeyron equation for this model can be derived by

solving for Pt in Eq. 21 and taking the derivative with respect to temperature:

dP

dT

����
t

¼ DS

DyDNHB

: (22)

Equations 21 and 22 allow us to examine the shape of the protein phase

diagram in greater detail and to investigate more deeply which mechanisms

contribute to cold-, pressure-, and heat-denaturation. Two limiting cases are

used to study the effects of model parameters on the thermodynamics. We

derive the pressure at which a transition occurs between two ground states

by solving for Pt in Eq. 21 when Tt ¼ 0:

Pt

����
Tt¼0

¼ J

Dy
1

JH

Dy

DNXHB

DNHB

: (23)

This expression gives the transition pressure between two ground states: the

cold-denatured state stable at high pressures and the native state stable at low

pressures.

We can also use the transition temperature at zero pressure to study thermal

denaturation:

Aðo/nÞ
Aðn/oÞ ¼

VðoÞ
VðnÞ

NpairsðnÞ!ðNpairsðoÞ � NHBÞ!
NpairsðoÞ!ðNpairsðnÞ � NHBÞ!

2lh 1 1

q� ð2lh 1 1Þ

� �DNHB;i

3 ðq� ð2lh 1 1ÞÞDNpairs;i

3
2lb 1 1

q� ð2lb 1 1Þ

� �DNHB;b

ðq� ð2lb 1 1ÞÞDNpairs;b q
�DNpairs ; (17)
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Tt

����
Pt¼0

¼ �J
DNHB

DS
� JH

DNXHB

DS
: (24)

This analysis is an approximation valid for a two-state transition without

significantly populated intermediate states. The simulation results presented

in this article show that this approximation is essentially exact during cold

denaturation at low temperatures because both the native and cold-denatured

states are well-defined and are the only highly populated states. Because

thermal denaturation involves a transition into an ensemble of denatured

states, the analysis is a less exact description at higher temperatures.

APPENDIX C: PARTIAL MOLAR
VOLUME CALCULATIONS

As noted by Kauzmann (9) and mentioned in the Introduction, the volume

change of transfer of hydrophobic solutes into water and the volume change

of protein unfolding typically exhibit different dependences on pressure.

Simulations of small hydrophobic solutes in water were performed to probe

the model’s ability to describe volumetric properties and to determine if the

discrepancies pointed out by Kauzmann are observed. The solutes examined

were smaller versions of the model homopolymer: one-site, two-site, and

flexible three-site hydrophobic solutes in a fully occupied lattice of water.

Changing the solute concentration by replacing water molecules with solute

molecules on the lattice induces changes in the system volume at any given

temperature and pressure. From the slope of this trend, we can calculate the

quantity (@V/@N1)T,P,N, where N1 is the number of solute molecules, N2 is

the number of solvent molecules, and the N subscript denotes a fixed number

of occupied lattice sites. Note that this quantity is not the partial molar

volume of the solute, but a relationship between the two can be derived by

examining the total differential for the volume,

dV ¼ @V

@T

� �
P;N1;N2

dT 1
@V

@P

� �
T;N1 ;N2

dP

1
@V

@N1

� �
T;P;N2

dN1 1
@V

@N2

� �
T;P;N1

dN2; (25)

where the solute and solvent partial molar volumes (y1 and y2; respectively)

appear as

@V

@N1

� �
T;P;N2

¼ y1;
@V

@N2

� �
T;P;N1

¼ y2: (26)

The solute’s partial molar volume can be related to the quantity estimated

from simulation results by taking the partial derivative of Eq. 25 with respect

to N1 while fixing the temperature, pressure, and total number of lattice sites,

which yields the relation

@V

@N1

� �
T;P;N

¼ y1 1 y2

@N2

@N1

� �
T;P;N

: (27)

The quantity (@N2/@N1)T,P,N is �1 for a one-site solute, �2 for a two-site

solute, and so forth. At infinite dilution Eq. 27 reduces to

@V

@N1

� �
T;P;N

¼ y
N

1 � y2; (28)

FIGURE 9 Partial molar volumes of the model hydro-

phobic solutes in water, in units of y0. Data from graphs a,

c, and e are at constant P ¼ 0. Data from graphs b, d, and

f are at constant T ¼ 0.108. Parameter values are JH/J ¼
0.2, lb ¼ 3, lh ¼ 0, q ¼ 70, and Dy/y0 ¼ 0.348.
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for the case of a one-site solute, where yN
1 is the partial molar volume of the

solute at infinite dilution. y2 is the molar volume of the solvent, which we

can calculate from pure water simulations.

The temperature and pressure behavior of the partial molar volume of our

model solutes in water correspond qualitatively to experimental trends for

small apolar solutes. Fig. 9, a, c, and e, show that the partial molar volumes

of each of the model solutes increases with increasing temperature. This

trend matches the experimental observations of Masterton, who observed

increasing partial molar volumes with increasing temperature for methane,

ethane, propane, and benzene (53). The calculations also show that partial

molar volumes decrease with increasing pressure (Fig. 9, b, d, and f), con-

forming to the trends observed experimentally for methane (54), benzene,

and toluene (55).

As stated in the Introduction, the measured volume change upon transfer

from a hydrophobic phase into water typically, although not always, exhibits

a different pressure dependence than the volume change upon protein

unfolding. The volume change upon hydrophobic transfer for a model solute

can be estimated as the difference between the partial molar volume of the

solute in water and the molar volume of the pure solute,

Dytransfer ¼ y1 � y1: (29)

The model definition for the molar volume of the pure solute is Nsitesy0,

where Nsites is simply the number of sites comprising the solute (i.e.: 1, 2, or

3 in our case). In units of y0, it reduces simply to the number of monomers in

the solute, i.e., 1 for a one-site solute, 2 for a two-site solute, etc. We note

that y0 is a temperature- and pressure-independent parameter, and hence our

model for a hydrophobic homopolymer in water is not designed to predict

the thermodynamic properties of a pure hydrophobic species.

Given this definition, we observe negative values of Dytransfer for each solute

over the ranges of temperature and pressure shown in Fig. 9. The partial

molar volume of the solutes under these conditions remains less than the

molar volume of the pure solute. This behavior at low pressures matches the

observed experimental transfer volume changes, where the transfer of

methane from liquid hexane into water at 1 bar corresponds to a molar

volume decrease of 22.7 cm3/mol (5). However, at high pressures where

small hydrophobic solute transfer volumes are positive (9), this model

predicts negative transfer volumes.

The behavior of Dvtransfer for model solutes is consistent with the volume

change upon unfolding for the model protein. As shown schematically in

Fig. 7 a, the model protein exhibits a volume decrease upon unfolding at low

and high pressures. While this does not conform to Kauzmann’s assertions

about the pressure dependence of protein volume changes (9), nor to ex-

perimental observations of many proteins such as chymotrypsinogen (1),

some proteins such as staphylococcal nuclease (3) show a volume decrease

upon thermal denaturation at low pressures. The factors that determine

whether a protein has a positive or negative volume change upon unfolding

are still a matter of some debate (56). The model protein presented here

captures the correct volumetric properties of a subset of real proteins.
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