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A physical-cluster theory of condensation and critical phenomena is developed in which primary emphasis 
is placed on collective modes of oscillation of clusters under the restoring force of their surface tension. A 
procedure is advocated for self-consistent inclusion of surface mode interaction leading to a nonlinear 
integral equation whose solution yields a wavelength-dependent surface tension. An explicit expression is 
derived for the physical-cluster-size distribution near condensation, and from it follows prediction of critical 
exponents {j (critical isotherm degree), -y' (initial compressibility below Tc), p' (correlation length), and '1 

(deviation from Ornstein-Zernike pair distribution at the critical point), in terms of the phenomenological 
coexistence curve (fJ) and surface tension (u) exponents, as well as a parameter v, which is not directly 
measureable. The predictions are not consistent with the so-called "scaling laws," except for special v values 
that seem experimentally unacceptable. Reasons are listed indicating fundamental differences between the 
critical phenomena in lattice gases enjoying high current theoretical fashionability, and continuum fluid 
models. For a range of v values, the physical cluster theory predictions agree well with experiment. 
Appendices are devoted to an interfacial fluctuation theorem, and to an outline of the present physical-cluster 
theory in two dimensions. 

I. INTRODUCTION 

Although quite a few years have passed since the 
original formulations of physical-cluster theore were 
exposed for public scrutiny,l-3 only recently have the 
implications of this approach for the mathematical 
structure of condensation4.5 and critical phenomena6•7 

been probed at all deeply. This developmental lag un­
doubtedly resulted from the pre-eminence accorded the 
alternative and more elegant Ursell-Mayer cluster 
theory8.9 during the intervening period. However, the 
physical cluster theory may be placed on as systematic 
a basis as its rival, and it has as well the virtue that its 

1 J. Frenkel, J. Chem. Phys. 7, 200, 538 (1939). 
2W. Band, J. Chem. Phys. 7,324, 927 (1939). 
3 A. Bijl, "Discontinuities in the Energy and Specific Heat," 

doctoral dissertation, Leiden (1938). 
4 A. F. Andreev, Soviet Phys.-JETP 18, 1415 (1964) [Zh. 

Eksperim. i Teor. Fiz. 45, 2064 (1964)]. 
6 J. S. Langer, Ann. Phys. (N. Y.) 41, 108 (1967). 
6 J. W. Essam and M. E. Fisher, J. Chem. Phys. 38, 802 (1963). 
7 M. E. Fisher, "The Theory of Condensation," in the Pro-

ceedings of the Centennial Conference on Phase Transformation, 
University of Kentucky, 1965; Physics (to be published). This 
chapter comprises a convenient review, with relevant literature 
references, of most of the mathematical aspects of the cluster 
theory of condensation. 

S J. E. Mayer and M. G. Mayer, Statistical Mechanics (John 
Wiley & Sons, Inc., New York, 1940), Chaps. 13 and 14. 

~ G. E. Uhlenbeck and G. W. Ford, in Studies in Statistical 
Mechanics (North-Holland Publ. Co., Amsterdam, 1962), Pt. B, 
Vol. 1. 

quantitative pronouncements are directly amenable to 
intuitive physical understanding. In the very difficult 
field of critical phenomena, this latter aspect provides 
especially valuable guides. 

It is our intention here to pursue several aspects 
of the physical cluster theory relevant to the liquid­
vapor condensation process in simple real fluids, such 
as the noble gases, as well as other substances with 
small, nearly spherical, nonpolar molecules (N2' ClL, 
SF 6, etc.) . We utilize throughout the techniques of 
Gibbsian classical statistical mechanics, so that it is 
necessary to exclude from consideration helium and 
molecular hydrogen, for which quantum-mechanical 
effects are important. 

In the analysis below considerable emphasis is placed 
on the surface free energy of the roughly globular 
clusters, and on the surface wave cluster oscillations 
for which it provides the restoring force. Such droplet 
oscillations have been considered before in connection 
with estimation of capture cross sections in nucleation 
kinetics. lO The particular application in this paper is 
new, however, and the specific scheme for self-consistent 
inclusion of surface mode interaction is to the author's 
knowledge advocated here for the first time. 

10 R. A. Lovett, "Statistical Mechanical Theories of Fluid 
Interfaces," doctoral dissertation, University of Rochester 
(1965) . 
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The natural starting point is provided by the formally 
exact relation between distribution of molecules among 
clusters in an open system at equilibrium, and chemical 
potential iJ. that was derived in our earlier investigationll 

of the rigorous basis of physical cluster theory. In a 
vessel of volume V, the mean member of molecules N 
may first be regarded as composed of subsets belonging 
to clusters of s= 1,2, "', molecules present in average 

number N.: 
N(T, iJ.) = r.sN.(T, iJ.). (1) 

.=1 

Then the mean cluster numbers N. may be found in 
principle by computing suitable cluster partition func­
tions Z.(T, iJ.) : 

N.(T, iJ.) = exp(siJ./kT)Z.(T, iJ.) ; (2) 

Z.(T, iJ.) = Jr3s(S!)-Ij .. 'f exp {- (kT)-I [t PI- +V.(rI'''r.)+W.(rl'· ·r.; T, iJ.)]} drl" ,dr.dpl·· ·dp •. 
(oonn) ... 1 2mo 

V. is the interaction energy when the s particles 
forming the cluster are at rI' , . r., and PI' , 'p. are the 
respective momenta. The configuration integrals in 
Eq. (3) are restricted by the condition that the volumes 
interior to spheres of diameter b drawn about the 
centers of all s particles overlap to produce a connected 
region. W. contains the entire effect of cluster inter­
ference; it equals the reversible work required at T, iJ. 
to empty a cavity of all other particles so as to accom­
modate the s cluster's b-sphere envelope. 

Although b is nominally arbitrary in definition of 
cluster-forming particle overlaps, we adopt in the 
following a particularly convenient choice mentioned 
in Ref. 11, which follows from the demand that the 
thermodynamic critical point lie on a certain critical 
percolation process locus. The resulting unique b value, 
comparable in range to intermolecular forces, permits 
identification of the condensation phenomenon as 
change in mean cluster size on a per-particle basis, 

HT, iJ.) = [r.s2N.(T, iJ.) ]/[r.sN.(T, iJ.)], (4) 
... 1 ... 1 

from order-one magnitude to order-V magnitude at all 
temperatures below the critical temperature To. 

Before embarking on the detailed asymptotic evalu­
ation of Z. required for understanding of critical 
phenomena we dispose of several preliminary matters 
in the next two sections. Section II reports some general 
observations and relations in the theory which not only 
serve to introduce our particular Z. computation 
scheme, but may also be useful in future work in the 
field. Section III contains a rough calculation of physi­
cal cluster free energy based upon the van der Waals­
Cahn-Hilliard inhomogeneous-fluid theory which is not 
in itself sufficiently powerful to give Z. to the requisite 
precision for analysis of critical phenomena, but which 
nevertheless serves to justify later important simplifi­
cations equivalent to neglect of surface free-energy 
curvature dependence. 

Our central Z. calculation begins in earnest in Sec. IV, 

11 F. H. Stillinger, Jr., J. Chern. Phys. 38, 1486 (1963). 

(3) 

with a canonical transformation to isolate the surface­
wave collective variables. It is pointed out that for 
large clusters, the principal manifestation of the 
excluded volume effects in the W., so far as the collec­
tive variables are concerned, is a renormalization of the 
surface tension tending to produce spherical clusters. 
The large-s collective coordinate oscillator frequencies 
are then identified with the known hydrodynamic 
oscillation frequencies of a spherical incompressible 
droplet with surface tension. 

Although these cluster oscillations may properly be 
regarded as independent at low temperature (i.e., just 
above the thermodynamic triple point), the same is 
scarcely true near To. Thus a self-consistent approach 
is developed in Sec. V for incorporation of interference 
between the droplet surface modes, which automati­
cally decouples them at low temperature. The result 
constitutes use of separate surface tensions for surface 
modes of separate wavelength (that is, surface tension 
displays dispersion), with infinite wavelength corre­
sponding precisely to the experimental surface tension 
in the absence of external gravitational fields.lo •12 

Section VI proceeds to establish the large-s asymp­
totic behavior of Z. along the condensation curve. It is 
demonstrated that the nonlinear surface tension self­
consistency requirement produces a discontinuous 
change in functional form for the asymptote at To, 
compared with lower temperature. 

The problem of predicting critical-region exponents 
from Z. is taken up in Sec. VII. It is presumed that the 
phenomenological exponents {3 (for the coexistence 
curve shape) and CT (for surface tension) are known. 
Then after introduction of hypothetical but plausible 
interpolation functions for cluster bulk and surface 
free energy in the critical region homogeneous in 
t::.T=To-T and t::.iJ.=iJ. (condensation, T) -iJ., expres­
sions are produced for the critical isotherm degree (0) 
and low-temperature initial compressibility index ('Y') 
in terms of {3, CT, and a third parameter II. Although II 

cannot be deduced in the present analysis, it may be 

12 F. P. Buff, R. A. Lovett, and F. H. Stillinger, Jr., Phys. Rev. 
Letters 15, 621 (1965). 
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assigned a numerical value which simultaneously fits 
experimental 0 and -y' values for real three-dimensional 
fluids. The physical cluster theory is also applied in 
Sec. VII to the pair-correlation function, with the result 
that the low-temperature correlation range index v' is 
identified as !cr (confirming a result obtained by 
WidomI3 previously). Also, the pair-correlation index 1/ 
(measuring deviation from the Ornstein-Zernike theory 
at Tc) then follows from the -y' and v' predictions, and 
is numerically very acceptable. 

The discussion in final Sec. VIII first points out that 
the exponent predictions obtained here fail to satisfy 
the currently fashionable "scaling laws"I4.I5 for experi­
mentally acceptable v values. It is then remarked that 
lattice-gas models of condensation (which may well 
obey scaling laws in both two and three dimensions) 
probably exhibit analytically different critical-point 
singularities from continuum fluids because of the 
fundamentally different character of surface free 
energy. 

Two appendices are included. The first is devoted 
to a surface-fluctuation theorem closely connected with 
the surface tension self-consistency considerations in 
Sec. V. The second outlines application of the theory in 
the paper's main text to continuum fluids in two 
dimensions. 

Although the material in Sec. II and III constitutes 
an essential ingredient in the over-all logical develop­
ment of the physical-cluster theory, its character is 
somewhat supportive to the primary specific argument 
of this paper. For this reason the reader may find it 
useful to skip to the beginning of Sec. IV. 

II. SOME GENERAL CONSIDERATIONS 

The normalized configurational probability for a 
single s cluster, corresponding to Eqs. (1), (2), and (3), 
is the following: 

P(') (rl· • ·r.) = (}..3·s !N.)-I 

X exp{ [S}l- V.(rI· •• r.) - W.(rI· •. r.; T,}l) J/kT} , 

}.. = hi (27rrrtQk T)1/2 (5) 

defined only for valid cluster-forming configurations. 
Unless S is so large that the cluster fills a significant 
fraction of the vessel volume V, pes) will reflect in­
variance with respect to translation of the cluster 
center of mass. In order to study nontrivial average 
properties of clusters it is therefore convenient to 
remove center-of-mass motion by a transformation of 

13 B. Widom, J. Chem. Phys. 43, 3892 (1965), Eq. (14). 
14 B. Widom, ]. Chem. Phys. 43, 3898 (1965). 
16 L. P. Kadanoff, Physics 2, 263 (1966); also L. P. Kandanoff, 

D. Aspnes, W. G6tze, D. Hamblen, R. Hecht, J. Kane, E. Lewis, 
v. Palciauskas, M. Rayl, and J. Swift, Rev. Mod. Phys. 39, 395 
(1967). 

variables to barycentric coordinates: 

rr'= (rI+·· .+r.)/s, 

One finds for the transformation Jacobian 

a(rl·· ·r.)/a(rI'·· ·r.') =s3. 

By means of the inverse transformation 

(6) 

(7) 

(8) 

the configurational probabilities may be expressed as 
functions of the new coordinates. Since rI' is nothing 
but the center-of-mass position (of which the prob­
ability is independent for s not macroscopically large), 
the transformed probability may be written simply as 
P(') (r2' ••• r,') . We can subsequently impose the 
normalization 

as before, the integration spans only those particle 
configurations leading to b-sphere cluster connectivity 
in the original space of rl· •• r •. 

A direct measure of the average matter distribution 
in an s cluster may immediately be obtained from Pcs). 

Since all s particles are equivalent, the function 

h.(r) =f ... jo(r2'-r)p(,) (r2'·· • r.')dr2'· • ·dr.' 
(conn) 

(10) 

is proportional to the matter density of the cluster at 
position r relative to the center of mass. Obviously 

1= jh.(r) dr. (11) 

If the temperature is only slightly above the thermo­
dynamic triple-point temperature, and if s is larger 
than 102, say, one can reasonably expect the physical 
cluster to resemble closely a liquid droplet. In other 
words, it should remain compact and nearly spherical. 
Then h, would depend only on the magnitude of r, and 
should equal a constant value essentially within the 
droplet, and fall relatively rapidly to zero beyond the 
mean surface radial position. This mean radius may be 
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o i· . . 
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l = +1 (=0 ( =-1 

(a) 

t =+ tWAX 

FIG. 1. Schmatic diagram of the process shown in Eq. (14). 
(a) exhibits the uniform cluster contraction and inversion 
through the center of mass as ~ diminishes from + 1 to -1. 
In (b), the corresponding point in star-shaped region <R. of 
the 3 (s-1)-dimensional configuration space traces a straight line 
segment contained entirely within <R •• 

obtained from h,(r) by computing moments of r, 

(rn)s= r"rnhs(r) (47rr2) dr, 
o 

(12) 

and comparing with the result for a perfect sphere 
(i.e., a step-function density h.). In this low-tempera­
ture liquid-droplet regime, the moments (rn). are surely 
asymptotically proportional to sn l3, for large s. 

One of the central features in this paper is the 
manner in which thermally induced fluctuations 
destroy the compactness and sphericity of the clusters 
as temperature increases toward Te. A measure of the 
mean-square fluctuation in radial position of the 
droplet surface is provided by the following combi­
nation of moments which vanish identically for a 
step-function h.: 

(13) 

One of the results of examining droplet surface modes 
as we do in the following section, is the conclusion that 
this quantity should be asymptotically proportional to 
Ins for large S.lO 

The connectivity requirement for the cluster we have 
seen limits the integrals in Eqs. (9) and (10), for 
instance, to a specific region in the full 3 (s -1) -
dimensional space of r2'·· ·r.', whose properties we now 
examine. Let <St, denote this closed region. Obviously 
the point 0: r2' =ra' = ..• =rs' =0 lies within <St,. Let 

r2*" ·r.* be some other point P* in <St.; then settin?: 

r2'=~r2*, 

(14) 

we see that the effect on the cluster in the P* con­
figuration of reducing ~ continuously below + 1 is to 
shrink the physical cluster uniformly (that is, without 
shape change) toward its center of mass. Certainly the 
b spheres continue to overlap for all 0::; t~ + 1. The 
image point in <St. as ~ runs over this interval is a 
straight line connecting 0 to P*, and it lies entirely 
within <St •. 

Changing the sign of ~ in (14) has the effect of 
inverting the cluster through its center of mass. 
Accordingly, the extended line segment -1::;~::; + 1 
also lies entirely within <St •. Actually one can expect 
to expand this segment symmetrically even further 
(the precise amount depending on the initial choice of 
r2*" ·r.*) to include all -~max::;~::; +~m.x within <St., 
the endpoints now lying on <St.'s boundary hyper­
surface. Since this procedure connects the image point 
in <St. for any cluster configuration to 0 by a straight­
line segment entirely within <St" we conclude not only 
that <St. is simply connected,l6 but that it is star-shaped 
with 0 a center of inversion symmetry. Figure 1 pro­
vides a rough illustration. 

However we can easily establish, at least for s larger 
than 4, that <St. is definitely not convex. Consider the 
class of configurations shown in Fig. 2, for which the 
cluster particles are strung out roughly into the shape 
of the letter "U." The two end particles may be moved 
symmetrically toward one another along the initial line 
of centers without disturbing the cluster's center of 
mass, and eventually they will end up in each other's 
original positions. The image point for this process 
then traces out a straight line segment in the configu-

FIG. 2. U-shaped cluster configuration employed in proving that 
<R. is nonconvex. In order that the end particles necessarily dis­
connect from the remainder during their symmetrical linear ex­
change, there must be a total of four or more particles. 

16 Although the b-sphere domain in ordinary space need not be! 

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

128.112.66.66 On: Tue, 24 Dec 2013 08:49:43



P H Y SIC A L C L U S T E R S, SUR F ACE TEN S ION, AND C R I TIC ALP HEN 0 MEN A 2517 

ration space of r2'· .• r.', both ends of which lie in <R •• 
But it is clear that if s;:::4 the cluster can become 
disconnected at an intermediate stage of the exchange, 
so the center of the line segment in configuration space 
will fall outside <R •. This feature of course indicates 
nonconvexity. 

The transformation (6) is not the only linear trans­
formation which isolates the center of mass. Another 
choice would be Helmert's orthogonal transformationP 
Any pair of such coordinate systems are themselves 
related by a linear transformation, under which the 
properties deduced for <R. remain invariant. 

As a final matter in this section, we note that cluster 
configurations, and hence <R., may be divided into 
classes in such a way as to establish a connection with 
the general theory of polymer statistics with excluded 
volume. The physical cluster connectivity condition is 
equivalent to the condition that between any pair of 
particles in set 1· .. s there exists a path of straight-line 
segments connecting particle centers in the set, with 
each center-center segment length less than or equal 
to b. For given rl·· ·r., let dl•· ·dM denote all distances 
between pairs of centers less than or equal to b. Of 
course not only the magnitudes of these distances, but 
their number M will depend on the cluster configura­
tion, but in any event connectivity obviously requires 
M;:::s-1. We may disregard that zero-measure set of 
configurations for which any pair of the d/s are acci­
dentally equal. Then without loss of generality it may 
be presumed that the di form on ascending sequence 

One may imagine that the d/s comprise a sort of 
"framework," which for typical cluster configurations 
will be highly crosslinked. However, there is an obvious 
unique prescription for selecting a subset E of the d/s 
which still connects all particle centers, but has no 
closed polygons within it. This subset thus may be 
regarded as the backbone of a sort of branched 
"polymer" or, in the language of the theory of graphs, 
a Cayley tree.9 Set 

(16) 

then for the third member ea of the desired subset 
choose d3 unless dl, d2, and da form a triangle, in which 

FIG. 3. Distances diSb drawn between particle centers in a 
cluster of nine particles. The solid lines are the distances e;, 
numbered according to ascending length (i.e., by their order of 
selection upon use of the algorithm cited in the text). 

case choose ea=d4• Generally, with 

M>m;:::n-1, (17) 

the choice for en is then to be the smallest di, M;:::i>m 
which forms no closed polygons with any of the e/s 
already chosen. Figure 3 illustrates this selection pro­
cedure, which will automatically terminate with e.-I' 

Let us suppose that the particles are restricted just 
to those configurations '1· . ·'8 which induce some given 
backbone structure of linkages ei between the particles 
regarded as distinguishable. No two "monomer" par­
ticles, which have no direct ei between them, can be 
permitted to approach one another more closely than 
the largest of the ei bonds (el' say) along the unique 
indirect backbone path between them, for this would 
have implied that that direct distance would have been 
in the e set instead of el. This requirement of avoidance 
constitutes a special sort of excluded volume between 
"monomers," and indeed it may conveniently be 
expressed in terms of a potential-energy function 
<p(rl··· r81 E), for any backbone structure. Simply 
stated, 

<p(rl· .. r8 I E) =0 if rl··· r8 consistent with E, 

= 00 if rl··· r. inconsistent with E. 

(18) 

Finally, this singular excluded volume potential func­
tion may be incorporated into the cluster partition 
function in Eq. (3), by summing over all possible 
unlabeled backbones: 

Z.(T,Jl.)=I)-3S[r(E)jlj ···fexp {- (kT)-l[t£ +Vs(rl···rs)+<p(rl···r.1 E)+W.(rl···r.; T, Jl.)]} 
(E) tE) >=1 2mo 

Here, symmetry number r(E) is defined by the re­
quirement that s !fr(E) be the number of distinguish­
able ways of labeling 1 to s the vertices of structure E. 

17 M. G. Kendall, A Course in the Geometry oj n Dimensions 
(Hafner Publishing Co., New York, 1961), p. 12. 

drl" .dp8' (19) 

Although this formally exact equivalence between 
the physical cluster problem and a special polymer 
excluded-volume problem yields no particularly valu­
able insights at low temperatures where the clusters 
are compact and essentially spherical, the contrary 

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

128.112.66.66 On: Tue, 24 Dec 2013 08:49:43



2518 F RAN K H. S TIL LIN G E R, rR. 

FIG. 4. Total mean density through a physical cluster immersed 
in vapor with density P •• The cluster's centroid is fixed at r=O. 
Though the broken line represents the constant P. at all r, the 
density of vapor included as bubbles within the cluster is smaller 
as exhibited by the dashed curve, which follows from Eq. (24). 

may well prove to be true at high temperature. There, 
it is no longer attractive forces which hold the cluster 
together, but just the connectivity requirement alone. 
Clusters presumably will have evaporated out of the 
compact droplet into very extended spongy entities,!1 
with radial cluster density h.(r) and moments (rn ). 

undergoing corresponding qualitative changes. It is 
attractive to speculate that variants of the recently 
emerging mathematical techniques that Edwards18 has 
successfully applied to polymer excluded-volume prob­
sems will eventually describe high-temperature physical­
cluster behavior. 

III. CRUDE CLUSTER PROFILE CALCULATION 

It is our purpose now to provide a preliminary 
assessment of the free energy and density distribution 
for a cluster with fixed center of mass, while it is 
actually immersed in the remainder of the fluid system 
(assumed to be in the vapor state at the condensation 
curve). Below Te, the mean particle density along a ray 
through the fixed cluster's center would appear essen­
tially as shown in Fig. 4; out to the droplet radius the 
density per) would approximately be the liquid density 
then, after a rapid monotonic decline, the constant 
vapor density P. obtains. 

For T well below Te, the cluster compactness implies 
that virtually all material inside the interfacial zone 
shown in Fig. 4 in fact belongs to the cluster. But as T 
increases toward Te, bubbles of vapor will be found 
with increasing frequency encased within the cluster of 
interest. Since these vapor molecules will not be con­
nected by b spheres to the cluster, we see that a smaller 
and smaller fraction of the interior density can actually 
be imputed to the cluster. 

Near Te it is possible to make a rough estimate of 
this effect. Let p* denote the high density of particle 
centers occurring in compact, low-temperature clusters. 
An included bubble at higher temperature falls outside 
the connected total interior of all s-cluster b spheres 
(call it h('», so we presume that 

(20) 

regardless of the size and concentration of bubbles. If 
r(r) stands for the mean volume fraction of h(') at 
radial distance l' from cluster controid, then 

sh.(r) =r(r) p* (21) 

18 S. F. Edwards, Proc. Phys. Soc. (London) 85, 613 (1965); 
88,265 (1966). 

gives the actual density of particles belonging to the 
cluster. The function per) comprises two parts; they 
are respectively sh,(r), and the vapor of density P. 
occupying the remaining volume fraction 1-r(r) : 

per) =r(r)p*+[l-r(r)]pv. (22) 

Therefore r(r) is the following: 

r(r) =[p(r) -P.]/(P*-P.) , (23) 

so from Eq. (21) we have 

s=fsh.(r)dr= +- f[p(r) -p.]dr. (24) 
P -Pv 

The factor preceding the integral in the last member 
always exceeds unity, and in the critical region where 
Pv is approximately the critical density Pc, it might 
reasonably be taken as about two. Figure 4 shows 
pictorially how this enhancement factor divides interior 
material between cluster and included vapor. 

The Cahn-Hilliardl9 variational principal for finding 
the density distribution in inhomogenous fluids affords 
now a convenient descriptive approach from which we 
deduce a rough density profile p(r). It suffices to 
approximate per) by a trapezoidal shape, as shown in 
Fig. 5, with constant interior density Pi out to a linear 
transition zone between 1'1 and 1'2: 

per) =Pi (0:::;1':::;1'1), 

=P.+(Pi-P.) (1'2-1')/(1'2-1'1) 

=P. (25) 

Although each of Pi, 1'1, and 1'2 are variable, for given s 
they are connected by a constraint fixing the number 
of particles in the cluster: 

s/X=}1I'(Pi-P.) (1'18+1'121'2+1'11'22+1'23); (26) 

here X is the enhancement factor just discussed which 
we assume can be taken in leading order as the constant 

(27) 

The central idea of the Cahn-Hilliard approach 
consists in minimizing a functional for the Helmholtz 
free energy F with respect to all possible density 
variations at fixed volume and total number of particles: 

F[p] = fU[p(r)]+!B[Vp(r)]2}dr. (28) 

FIG. 5. Trapezoidal density profile utilized in the crude variational. 
calculation of Sec. III. 

18 J. W. Cahn and J. E. Hilliard. J. Chern. Phys. 28,258 (1958). 
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( is the homogeneous-fluid Helmholtz free energy per 
unit volume at density p, and the positive coefficient B 
for the squared-gradient term in Eq. (28) may, for 
our purposes, be treated as independent of density. In 
view of the simple trapezoidal-shape assumption, and 
Condition (26), we employ Eq. (28) variationally only 
to determine two scalar parameters, rather than an 
entire function p(r). 

In that part of the critical region just below Te, we 
use a simple approximate free-energy density which is 
designed to reproduce the experimental nonclassical 
coexistence curve and compressibility: 

f(p, T)"'jo(T)+/t(P-Pe) -/2(Tc-T)"I'(P-Pe)2 

+j4(Tc-T)"I'-2fJ(P-Pe)4, (29) 

by means of a simple extension (involving fractional 
exponents "(' and "('-2{3) of the multinomial develop­
ment traditionally invoked for classical critical point 
analysis.20 We leave the temperature dependence of 
(o(T) unspecified, but /t, /2, and /4 are positive con­
stants.21 Coexistent liquid and vapor densities are 
located by the Maxwell double tangent construction22 

carried out on a plot of f(p) vs p, or equally well 
j(p) / P vs 1/ p. The coexisting liquid and vapor 
phase densities are thus found to be: 

PI = Pe+ (/2/2f4) 1/2(Tc- T)f3, 

P.=Pc- (/2/2/4)1/2(Tc-T)fJ, (30) 

thereby justifying use of the conventional coexistence 
index symbol f3 in (29). Likewise, since 

ap/ap=p(aj.l./ap) =p(a2f/ap2) , (31) 

index "(' may be identified as the one appropriate to the 
initial compressibility at coexistence, 

For notational simplicity let 

rl=R-l, 

r2=R+l, 

(32) 

(33) 

so that the restraint condition (26) may be written 

(34) 

We are required to minimize f:l.F(R, i), the difference 
in free energy between the system with and without 
the trapezoidal inhomogeneity, with respect to inde­
pendent variables Rand 1. By using Eq. (34) to 

20 J. S. Rowlinson, Liquids and Liquid Mixtures (Butterworth's 
Scientific Publications Ltd., London, 1959), p. 82. 

21 Expression (29) is intended only as an asymptotic repre­
sentation valid in the immediate neighborhood of the critical 
point, and for certain more demanding purposes than envisioned 
here would require further terms in the development. Equation 
(29) does not imply (but is implied by) the scaling laws of 
Refs. 14 and 15. 

22 Reference 20, pp. 79-80. 

eliminate Pi, we find 

f:l.F(R, l) = f {f(p) -j(P.) + (B/2) [VpJ2}dr 

= ~7r (R-Z)3[j(pv+ 47rA(~~Z2R)) -f(pv) ] 

3Bs2(3R2+Z2) ,[+i( X)2 
+ 167rA2Z(R3+l2R)2 + 47rR2LI 1+ R 

{[ 
3s(i-X)] -f( )}d (35) 

X j P.+ 87rAl(R3+l2R) p. x. 

We can still recognize these three terms in the last 
member, respectively, as the free energy of the droplet 
interior, the surface-zone gradient free energy, and the 
"unnatural density" (Le., not PI or Po) free energy of 
the surface zone. 

The complete variational expression is too compli­
cated to permit a closed from minimization, but it is 
well suited for asymptotic expansion of droplet free 
energy for large s, which is our main objective. We 
proceed iteratively. At the least accurate level of com­
putation, appropriate in the limit of large s (and hen~e 
large R at the f:l.F minimum), only the p.rst f:l.F term m 
Eq. (35) needs to be considered, with l disregarded: 

47rR3 [( 3S) J f:l.Ft"<oJ -3- j P.+ 47rAR3 -j(P.) . (36) 

At this first level of approximation the free energy of 
the interfacial zone, and thus also any appearance of 
its width 2Z, are totally suppressed. Then minimization 
of Expression (36) with respect to R leads to the 
condition 

O=j (po+ :v) -j(P.) - :/' (P.+ :v) , 
(37) 

This is merely an algebraic statement of Maxwell's 
double-tangent construction, so we can immediately 
infer that the minimum occurs for that R which gives 
droplet volume v consistent with Pi equal just to the 
equilibrium liquid density PI shown in Eq. (30). This 
is the inevitable result of course, since the interior and 
exterior of the droplet are treated at this approxi­
mation level merely as distinct bulk phases. From 
Eq. (34) we have at the f:l.F minimum 

R"'[3s/47rX(p,-po) J1/3 = Rco (s/X)1/3 (38) 

upon neglect of Z again relative to quantities retained. 
By combining Eqs. (36) and (38), we find the corre­
sponding free-energy estimate for the droplet to be 

f:l.F"'{ [j(PI) -j(pv) J/(pz-P.) }(s/X). (39) 

In the case of a very large droplet, the interfacial 
zone will be locally effectively planar. The width 
parameter l then should have attained some finite 
limiting value independent of s, and should be instru-
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mental in producing a planar surface tension, or free 
energy "YOO" In order to pass on to the next order of 
precision in which llF must exhibit surface contribu­
tions to leading order (R may be considered the large 
parameter near llF's minimum), take now the first 
term in the last member of (35) to one further order 
and include the latter two terms to leading order 
(IlT= Tc- T) : 

(40) 

j P! 

J(IlT) = ,I f(p) -f(p.) Jdp. 
p. 

( 41) 

Here the integral has been simplified somewhat by 
conversion to density as an integration variable, and 
in the surface terms containing [ we have permitted 
the replacement of Pi by PI without error in the requisite 
order. From Eq. (29) one calculates 

f f 23/2f5/2 
J(IlT) = .2...3 (IlT)2P+ __ 2_ (IlT)"(I+3f3. (42) 

f4 15NI2 

The minimization of llF in Eq. (40) with respect 
to l is especially simple: 

0= (allF/a[)R 

= -41I-R2[f(PI) -f(p.)] 

9Bs2 327r2XR5J(IlT) 
167rX2R4[2 + 3s (43) 

In solving this last equation for [2, it suffices to use the 
previous-order estimate (38) to eliminate R. Thus we 
obtain 

[2= B(PI-Pv)3 
8J(IlT) -4(PI-Pv) [f(PI) -f(pv)] 

= 15B/8/2(IlT) "(I. (44) 

When [is fixed at this value, the free energy (40) may 
be put into the following suggestive form: 

F(R) = 47rR3 [f(pv+~) -f(pv)] +47r1'",R2, (45) 
3 47rXR3 

"y",= (8Bfij15N)1/2(IlT)hl+2fJ. (46) 

Indeed "Yoo may properly be identified as the (planar) 
surface tension since the remaining variational problem 
is the one encountered before except for inclusion now 
of an extra surface (i.e., R2) term tending to reduce 
the equilibrium radius. One easily finds the corrected 
radius to be 

R(s) =R",(s/X)1/3 - oR, 

oR= [21'",/3 (Pl-Pv)2j" (PI)] = (B/270h) 1/2 (IlT)-,,(1/2, 

( 47) 
up to terms which vanish as S-H~ • 

Now that the interfacial zone has explicitly been 
taken into account (at least in the locally planar 
approximation), it is clear that the free energy must 
now be correct both for cluster bulk contributions 
proportional to s/X [already given correctly in Eq. 
(39)], and for surface contributions varying as (S/X)2/3. 
Actually, the variational stationariness property of llF 
implies that the [ and R results (44) and (47) will 
even correctly give llF through (s /X) 1/3 order. At the 
llF minimum, the free energy may be expressed as a 
quadratic form in Rand l variations: 

1l(IlF)"" A1(S) (IlR)2+A2(s) (IlR) (Ill) +A3(S) (Ill) 2. 

(48) 

Since extension of our iterative procedure would result 
in development of both R(s) and lCs) in series of 
descending powers of (S/X)1/3, and since (s/X)-1/3 is the 
first order so far neglected for both, we may interpret 
llR and III as the errors in Rand [ of this order com­
mitted in Eqs. (44) and (47). Since [ variations at 
constant R change interfacial structure, A3(S) must be 
proportional to s2/3 for large s. Similarly, the thermo­
dynamic assessment of pure R variation assures that 
the large-s behavior of A1(S) is proportional to S1/3. 
Because Expression (48) must be positive definite, 
A 2(s) can diverge at large s no faster than s2/3. There­
fore with the cited llR and Ill, Eq. (48) predicts that 
at large s, the error in llF obtained by simply substi­
tuting our earlier Rand [ results into Eq. (35) will be 
bounded, i.e., will not affect sl/3 terms in llF. 

The manipulative details in the actual substitution 
are tedious, so we merely exhibit the result: 

llF = F1(s/X) +F2(s/X)2/3+F3(s/X)1/3+"""; (49) 

F1=[f(Pl) -f(Pv)]/(PI-Pv) , 

F 2 = 41I-"y ooR", 2, 

F3=41r"YcurvRco· (50) 

The F1 and F2 coefficients were already obtained, and 
F3 has been cast into the form of a surface-tension 
curvature correction with 

(51) 

The whole point of this Section's calculation is to 
extablish that the third term in (49) does not dominate 
the second, for clusters of average size, in the llT ~O 
limit. In the detailed analysis to follow, we actually 
find that the large-s cluster free energy contains terms 
of form Ins, which cannot arise in the present context, 
and these logarithmic contributions are decisive in 
determining critical phenomena. Although formally sl/3 
dominates Ins as s-'>oo, it proves especially useful to 
disregard the very large number of sl/3 terms that arise. 
The justification for this seemingly inconsistent pro­
cedure rests upon the observation that a simple change 
of variable, 

(52) 
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with properly chosen So can annihilate the one-third 
power term, while at the same time leaving two-thirds 
power and logarithic terms unchanged so far as coeffi­
cients are concerned. Since s or s' occur below merely 
as summation variables of which only very large values 
are of importance, we see that disregard of SI/3 terms is 
justified if So remains bounded as AT -to, and this 
criterion is equivalent to 

. FS(S/X)I!3i 
11m 2/3 < 00. 
~T-O F2(s/X) 8='(~T) 

(53) 

s(AT) stands here for the mean cluster size at the 
given temperature. 

Later (Sec. VII) we justify identification of the mean 
cluster diameter with the so-called correlation length 
varying as (AT) v,, v'>O. Thus 

R",(s/X) l/3,-...,(AT) v', 

The left member of Eq. (53) is 

sl""-' (AT) tHv'. (54) 

).Ji3 lim 'Yourv = (const) lim (AT),'--h'. (55) 
~T-O 'Y coR", (s) 1/3 ~T-o 

We wish therefore to have the exponent v'-!'Y'>O. 
Although expressions for / and 'Y' are derived below, 
we may tentatively test the exponent by use of three­
dimensional Ising-model results23

: 

'Y' "" 'Y"" 1.25, 

/""v.......,0.645. (56) 

By a small margin the desired inequality is satisfied. 

We therefore proceed under the assumption that indeed 
SI/3 free-energy contributions are negligible. 

IV. SURFACE-WAVE COLLECTIVE COORDINATES 

We begin now in earnest the detailed microscopic 
theory of condensation and critical phenomena via 
physical clusters. At first we exploit simplifications 
available at low temperatures, so as to establish the 
trend of development in the most straightforward 
terms. Subsequently the elaborations required by in­
creasing T to To will be incorporated. 

Around the thermodynamic triple-point tempera­
ture, the vapor phase will be sufficiently dilute that the 
cavity free energy W. appearing in the exact cluster 
partition function should be very small; i.e., the 
clusters will be essentially isolated and independent. 
We shall therefore temporarily disregard this function. 
Also in this low-temperature regime, the physical 
clusters should manifest only minor deviations from 
the ideal spherical shape assumed by a liquid droplet 
under the influence of its surface tension. 

For reasonably large numbers of molecules in the 
cluster, certain motions of the cluster should be accu­
rately described by macroscopic hydrodynamics. Indeed 
our point of view is simply that oscillations of the drop­
let about the spherical shape constitute an important 
class of collective coordinates. Formally let us perform 
a canonical coordinate transformation from the con­
ventional particle positions rl'" r. and momenta 
PI' , , P. to collective coordinates ~l' , , ~3. and canonically 
conjugate momenta 1]1" '1]38' Thus 

(27rsmokT)3/2V j f {-H.(~4" '1]38)} = 3 ' • • exp d~4.· •• d1]38. 
s!h· (conn) kT 

(57) 

We have let H. stand for the s-particle Hamiltonian 
expressed in the new variables, and have exercised the 
option of identifying ~1, ~2, and ~3 as the center-of-mass 
coordinates and 1]1, 1]2, and 1]3 as the total momentum 
components. 

The computation of the oscillation frequencies of an 
incompressible liquid droplet with surface tension 
acting as restoring force is a standard textbook exer­
cise.24 The normal modes correspond to radial devia­
tions of the sphere that are spatially the individual 
spherical harmonics YI,m(ll, cf», and whose frequencies 
depend on 1, but not m: 

w(l, m) = [1(l-1) (l+2) (41ryl/3mos) J1/2• (58) 

'Yl is the undisturbed droplet's mechanical surface 
tension, which we do not attempt to evaluate in this 
work, but which will ultimately be superseded by the 

23 M. E. Fisher, Natl. Bur. Std. Misc. Publ. 273, 23 (1966). 
The unprimed indices refer to the same quantities abQ'Ue T,. 

II. H. Lamb, Hydrodynamics (Cambridge University Press, 
Cambridge, England, 1930), p. 450. 

measurable surface tension of the planar liquid--vapor 
interface. 

The next step consists in identifying a subset of the 
remaining collective variables with these droplet oscil­
lations. It is clearly desirable to limit " 

(59) 

so as to prevent the surface distortions from having 
wavelengths less than the distance between neighboring 
molecules in the droplet, for otherwise the hydro­
dynamic calculations could hardly apply. This requires 
that Imax vary essentially as sl/a for large droplets, so 
that accounting for degeneracy 21+ 1 of the frequencies 
(58), the number of surface normal modes will vary 
asymptotically as a2s2!3=t, with a2 a suitable positive 
constant. 

The presumption of independent normal modes of 
surface oscillation is equivalent to a splitting of Hamil­
tonian H. into two distinct parts, 

H.(~4·"1J3s) =H.(1){~'···lJ,)+H.(2)(~t+l"·1]3s)' (60) 
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the former of which has independent harmonic-oscil­
lator form for the surface modes: 

H.(1)(~4·· ·1/t) = 1: - w;~;+ ~ t 1 ( 11) 
i=4 2 m· 

(61) 

(mi is the "mass" of the ith mode) and the latter of 

which contains only the remammg collective coordi­
nates. H.(2) may therefore be identified as the droplet 
bulk-phase Hamiltonian. 

The surface mode coordinates may now be integrated 
in expression (57) to yield a product of classical 
harmonic-oscillator partition functions: 

= (2'lTSmokT )3/2V [rrt kT]f ••• fex {_H8(2)(~t+l ••• 1/3')} ••• 
Z. Ih3..-t+3 . ~ . P kT d~t+l d1/38' s . >=1 nW, (conn) 

(62) 

For large s, the dominant fraction of the collective coordinates are bulk, not surface, modes. The free energy 
of these bulk modes (with all surface modes constrained to zero amplitude) should have a large-s development of 
the following type: 

(s!h3..-t)-lf • •• f exp {_H8(2)(~t+l •• • 1IS.)} d~t+l·· ·d1/3. 
(conn) kT 

I"V exp{ -[ao(T)s+ (6'lT1/2VO) 2/3'Yl(T) s218+Cl (T)sI/3+kTao(T) Ins+C2(T) J(kT)-I). (63) 

The terms have been arranged in descending order, with the extensive bulk free energy of the cluster-forming 
liquid first followed by (a) the surface free energy of the undeviated spherical surface, whose area is (6'lTI/2vo)2/3 S2/3 
when expressed in terms of the volume per molecule Vo of the droplet liquid; (b) the surface-tension curvature 
correction; (c) possible logarithmic terms as arise for example even from asymptotic expansion of s! by Stirling's 
formula; (d) an s-independent constant term. 

The entire cluster free energy, including center-of-mass motion and surface modes, follows from insertion of 
frequencies (58), and bulk free energy (63), in to Z. in Eq. (62), 

- kT lnZ. = aos+ (6'lTl /2vo) 2/3'YlS2/3 + ClSl/3 + kTao lns+C2 

-kTln [(2'lTSmokT)3/2V] +HkT) i!:(21+1) In [4'lT')'11(l-1) (l+2) (~)2]. (64) 
k3 l=2 3moS kT 

We see that the center-of-mass term contributes both 
to the Ins and the constant (i.e., SO) parts of the free 
energy. The I sum in Eq. (64), arising from the surface 
modes, will contribute to order S2/3 and lower orders in s, 
since these modes are S2/3 in number substantially. 

Although this last expression seems complicated, 
while at the same time to contain several unevaluated 
quantities, we emphasize that important simplifications 
are available for the present inquiry. It has already 
been remarked that the totality of SI/3 terms should be 
negligible in passing to the critical point. Furthermore, 
along the coexistence curve the bulk free energy aos in 
Eq. (64) will be precisely canceled in the fundamental 
density expression (2) by sp" this being in fact the low­
temperature criterion for condensation. Finally the 
magnitude of constant terms such as C2 will have no 
bearing upon the critical region exponent relations to 
be derived below. 

In the light of these considerations, then, the surface­
mode sum in Eq. (64) becomes elevated to a position 
of special prominence in probing condensation and 
critical phenomena. Considerable care therefore must 
be exercised in developing that sum in an asymptotic 
large-s series so as to capture the correct S2/3 and Ins 
contributions to cluster free energy that it generates. 
Of course our considerations thus far have been re­
stricted to the low-temperature region, and in fact two 
modifications of Eq. (64) are required at elevated 

temperature. We reserve the asympototic development 
of the surface-mode sum in Eq. (64) until the next 
section, so as simultaneously to incorporate the modi­
fications. 

Since surface tension decreases as temperature in­
creases, while at the same time the mean energy of the 
surface modes increases, it is certain that these modes 
will no longer act as independent oscillators. The next 
section contains details of a proposal for treating this 
mode interaction in a self-consistent fashion. The other 
requisite high-temperature modification is inclusion of 
the now nonnegligible cavity free energy W. in the 
cluster partition function which we now attempt to 
assess. Reference 11 contains an exact cluster expansion 
(of the Mayer type) for W •. 26 In order to account for the 
leading order effects, and therefore to establish the 
qualitative trend as T approaches T e, we can treat the 
assembly of clusters surrounding the s-cluster of interest 
as a dilute set of spheres, each of which is excluded 
from the neighborhood of the s-cluster by the non­
overlap restriction. Details of the calculation, which 
entails the differential geometry of a perfect-sphere 
rolling on another sphere with surface-mode distortion 
are far too tedious and uninformative to include here. 
The result for W. may be developed in descending 
powers of SI/3 (without a logarithmic term); for our 

26 Reference 11, Eqs. (27) and (29). 
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purposes, only the contributions proportional to sand 
S2/3 need be retained: 

[ 

00 N ,] 
W.'" kTL: v· (voS) 

.'-1 

[ (
3VO)1/3 00 (s') 1/3 N .,] + kT 4n- .t V (S.+AS.). (65) 

S. is the surface area of the droplet in its undistorted 
state, (611"1/2voS) 2/3, and AS. its increase due to the 
surface-mode distortions. The two terms shown for W. 
thus have an obvious interpretation: the first is the 
pressure-volume work (in the free-cluster ideal-gas 
approximation) that would macroscopically be required 
to empty the s-cluster's cavity, and the second is a 
positive surface-tension contribution arising from 
cluster interference at the cavity surface. If a more 
accurate calculation of W. were made, an improve­
ment of the ideal-gas pressure would surely result, as 
well as a more complicated surface-tension contribution. 

If W. in form (65) is inserted into Zs, the result is 
first to shift the bulk free energy aos in Eq. (64) to 
(ao+pvo)s, and so condensation would now be predicted 
to occur when f,LS equals this shifted bulk free energy. 
Furthermore, the cluster-surface-area increment is a 
diagonal quadratic form in surface-mode amplitudes, 
so not only does the second term in (65) "renormalize" 
'Y1 in the second term of Eq. (64) but it also modifies 
in the same way the 'Y1 that establishes surface mode 
frequencies which occur in the last term of Eq. (64). 
Both 'Y1 occurrences may therefore be replaced by a 
new surface tension 'Y2, which now may be considered 
to properly account for cluster interference effects on 
the surface-mode spectrum; the approximate cluster 
exclusion calculation estimates 

'" ( 3VO)1/2 00 (s')1/3N., 
'Y='Y1 + A- L: V . 

'rIf .'-1 
(66) 

V. SURFACE-TENSION INTEGRAL EQUATION 

The contribution of order S2/3 to the cluster free 
energy (64) provided by collective surface modes 
should be small at low temperature (the I sum is 
multiplied by T). However as T is raised, the effect of 
these modes likewise increases to produce a substantial 
shift of the surface tension 'Y2. To suppose on the one 
hand that surface modes remain decoupled, while at the 
same time using them to predict a large surface-tension 
effect on 'Y2 is in fact inconsistent. Surely the proper 
surface tension to utilize in the frequency formula (58) 
for long-wavelength oscillations of a large droplet 
would be the measurable surface tension, which in­
cludes the effect of the oscillations themselves. We now 
construct a self-consistent scheme for such high­
temperature effects which implicitly accounts for 
normal-mode interaction near Te, but reduces auto­
matically at low T to an independent surface-mode 
description. 

(a) (b) 

FIG. 6. (a) Slightly distorted sphericalldroplet surface at low 
temperature with single-valued radius £function R(IJ,rp). (b) 
Highly contorted, multiple-valued surface structure near Te. 

The central concept we use concerns sequential 
placing of surface mode distortions on an initially 
spherical droplet, starting at the large-l end of the 
spectrum, and working downward to the smallest l's. 
The appropriate frequency-determining surface tension 
at the beginning of this process is 'Y2, but as it proceeds 
'Y2 is modified by virtue of modes already placed to 
'Y2q2(1/lmax) [where of course q.(l) = 1J, and where the 
function q.(x) must be self-consistently determined. 
The macroscopic surface tension 'Y 00 may then be 
identified as 

(67) 

and so involves the effects of the full surface-mode 
spectrum. If we now set, for s-cluster surface-mode 
frequencies, 

w.(l) = [I(l-1) (1+2) 4n-"{2~::max) J'2 (68) 

as is required by the previous hydrodynamic result 
(58), then the self-consistent requirement which deter­
mines q. is the following (2'5:1<lmax): 

[ 
-'Y2q. (l/lmax) (611"1/2voS) 2/3] 

exp kT 

= { lrrm 
.. [ _kT, ]21'+1} exp {-'Y2(611"1/2VoS)2/3} • 

1'=1+1 1iW.(l) kT (69) 

One of the requirements posed by the presumption 
of independent surface modes is that droplet radius 
must be a single-valued function of angles so as to 
permit an unique spherical harmonic resolution. This 
will surely be valid at sufficiently low temperature, but 
as To is approached, it is reasonable instead to expect 
that the droplet surface should become extremely 
convoluted with irregular fissures and filaments as 
shown in Fig. 6. The sequential mode addition pro­
cedure permits these complicated surface structures 
to form as the result of local addition of many surface 
perturbations, no one of which need be very large. The 
idea therefore is that imposition of a long-wavelength 
(i.e., small 1) disturbance locally stretches and tips the 
cluster surface with whatever fine-grained convolutions 
it had to that point already accumulated. 

A nonlinear equation for q. results from taking 
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logarithms in Eq. (69), after insertion of w.(l) from Eq. (68): 

q. C:ax) = 1+ (67r1/2~~)2/3.y2 [(lmax+ 1)2- (1+ 1)2J In [k~ (;:2t
2
J 

+ kT lI:' (21'+ 1) In [1' (l' -1) (l' +2)] + kT lI:' (2l' + 1) lnq. (Y...-) . 
2 (67r1/2VoS) 2/3"(2 1'~1+I S 2 (67r1/2VoS) 2/3"(2 /I~l+l lmax (70) 

In order to observe the implications of our sequential one finds 
mode addition procedure for surface tension in the [ 1 ] 

planar macroscopic limit, set q(O, T) =1+AT - In(DT) + ~ y lnq(y, T)dy , 

X=lllmax, Ql(T) =!AT, 

q(x) = lim q.(X). (71) 
.~CO 

Then upon permitting s to go to infinity in Eq. (70), 
the l' sums pass into integrals to yield finally a non­
linear)ntegral equation for q(x) : 

q(x) =1+AT 

X [In(DT) (xL 1) -!x2Inx+ lly Inq(Y)dY] , (72) 

where 

A = [a2kl (67r1/2vo) 2/3"(2J, 

D= (ke3/4/ha3/2) (3mo/47r"(2) 1/2. (73) 

Although the quantities A and D will be somewhat 
temperature dependent, it should be permissible to 
regard them essentially as constants for inquiry into 
the nature of the solution to (72). In the low-tempera­
ture limit, then, the bracketed term in this integral 
equation is greatly diminished by the factor AT pre­
ceding it, so an iteration should be valid. In the low-T 
regime, we thus conclude 

q(x, T)"-'1+AT{ln(DT) (x2-1) -!x2lnx) 

+O(P InT). (74) 

Therefore the x variation of q, resulting from mode 
coupling in the sequential addition scheme, declines in 
magnitude as T approaches zero to leave q(x, 0) == 1, 
corresponding precisely to independent surface modes. 

The low-temperature form shown in Eq. (74) indi­
cates that although the initial effect of mode coupling 
is to raise q(O, T) above unity, eventually it begins to 
decline (when T exceeds Ir 1), and since we know that 
surface tension vanishes at the critical point, Te must 
be identified as that temperature at which q(O, T) =0. 
The expected behavior is shown qualitatively in Fig. 7. 

For all T< Te, we have the small-x asymptotic 
behavior: 

q(x, T)"-'q(O, T) -Ql(T)x2Inx+Q2(T)x2; 

If this is substituted into the integral equation (72), 

Q2(T) =ATln{DTI[q(O, T)JI/2). (75) 

However, at Te one easily obtains 

(76) 

The discontinuous jump in Ql(T) at Te, as well as the 
change in functional form, is heralded by the divergence 
in Q2(T) as T approaches Te. 

The aptness of different surface tensions for different 
disturbance wavelengths is intimately related to the 
surface fluctuation theorem derived and discussed in 
Appendix A. Because this theorem represents an inter­
facial analog of the familiar fluctuation-compressibility 
relationship for homogeneous fluids,26 it is hardly 
surprising that q(x, T) should be singular at Te, since 
the homogeneous-phase susceptibilities are singular. 

The sequential mode addition approach may be con­
sidered an alternative to the temperature-dependent 
cutoff suggestion proposed earlier in Refs. 10 and 12 
for rough assessment of critical-region-mode interaction. 

VI. ASYMPTOTIC FORM OF Z. 

Although the 1 = 2 modes are those of smallest 1 for 
physical clusters, it is convenient to extend Eq. (69) 
to the case 1= 1. Indeed we see from Eqs. (62) and (63) 
that the surface-mode contribution to Z. is equivalent 
to 

[ 
-"(2q. (1/1max) (67r1/2voS) 2/3] 

exp kT 

= {10/ [ _kT, ]2l'+I} exp {-"(2 (67r1/2VoS) 2/3} . 
b~ hw.(l) kT (77) 

It will be required to evaluate this quantity to the 
correct power of s in the large-s asymptotic regime, or 
equivalently the correct coefficient of S-2/3 Ins in asym­
to tic evaluation of q. (1/1max) . 

In order to effect the necessary accurate calculation, 

26 L. S. Ornstein and F. Zernike, Koninkl. Ned. Akad. Wetens­
chap. Proc. Ser. B 17, 793 (1914): ]. Yvon. Fluctuations en 
Densite, Actualites Scientifique et Industrielles, No. 542 (Hermann 
& Cie., Paris, 1937). The generalization to finite wavelength 
fluctuations and external perturbations was p3inted out by P. G. 
deGennes, Nuovo Cimento 9, Suppl. 1, 240 (1958). 
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first rewrite Eq. (70) as follows: 

[( 1)2 ( 1 )2J [h (41l''Y2)1/2] 
q,(x) =1+AT 1+ as1/3 - x+ as1/3 In kT 3m 

AT { j""iS+! [l'(l' 1) (l'+2)]} AT I .. + - d(s,l)+t d1'(21'+1) In - + --I !: (21'+1) Inq,(l'/lmax). 
a2s2/3 !+! s 2a2s2 3 1'-!+1 

(78) 

The quantity des, 1) stands for the error incurred in replacement of the first 1 sum in Eq. (70) by an integral: 

deS, 1) =t II: (21'+ 1) In [I' (I' -1) (I' +2) J-t j! .... +i d1'(21' + 1) In[l' (1'-1) (l'+2) J . (79) 
1'-1+1 s!+! s 

It is a relatively easy matter to obtain the large-s behavior of d by breaking the integral into a sum of integrals 
over unit intervals, and Taylor-expanding the integrands about the midpoints, through quadratic order: 

(80) 

Here, the function do(l) is independent of s and of little importance in the following. We see therefore that even 
replacement of sums by integrals can produce contributions of the important "Ins" type. 

Next calculate the integral remaining in Eq. (78): 

j ",1/.+! [1'(l' 1) (l'+2)J 
I (s, 1) =t I+! dl' (21' + 1) In s 

{j

"+(1/2B1/.) 1,,-(1/281/') 1"+(5/281/,) } 
=s2/3 y lnydy+ y Inydy+ y Inydy 

(Hi)8-1/3 (!--l).-1/3 (!H).-1/3 

{
11"+(1/28113

) 1,,-(1/2,11,) 1,,+(5/28113) } 
+s1/3 - Inydy+t Inydy-t lnydy . 

2 (IB)8-1/3 (1-;).-1/3 (IH)8-1/3 

When 1 is of order 1, we find by performing the integrals here that the large-s form of I(s, 1) is 

I(s, 1)"-'ta2(lna-t)s2/3+ (3a Ina-ta)sl/3+(t12+1-~) Ins+lo(l), 

(81) 

(82) 

where Io(l) is an s-independent function of 1. We note in passing that a different asymptotic development is 
necessary for large s if x=l/asl/3, rather than [, is held fixed: 

I""-'{ta2[lna-tJ-ta2x2[ln(ax) -tJls2/3+{3a Ina-ta-3ax In (ax) +Hax) Isl/3+I1(a, x), (82') 

where now II is s independent. The nonoccurrence of a Ins term may be attributed to the fact that the fixed-x 
limit operation avoids the previous fixed-1 feature that the lower integration limit converges to a logarithmic 
infinity of the integrand.27 

In order to evaluate the quantity (77), we must examine Eq. (78) for x of order S-1/3. For this purpose we use 
results (80) and (82) to obtain 

q8(X) =l+AT {(1-X2) In [k~ (::~2r2] +t In(a-t) } + :S~3 {(2-2X) In [k~ G:~2r2J +3Ina-t} 

AT AT 1m .. 
+ 22i3 nt2+l-iJ lns+ 22i3 :E (l'+t) Inq8(l'/lmax). 

as as lb!H 
(83) 

Here we have dropped some s-2/3 terms in the interest 
of relative compactness, since they would provide only 
constant multipliers for Z. which are of no direct 
interest in the present context. 

Below Te, Inq(x) is smooth and bounded over 
0:::; x:::; 1, so for sufficiently large s the same should be 

27 The Ins term found in Eq. (80) for fixed I is likewise associated 
with the logarithmic divergences of the summand and integrand of 
A (s,l) near the origin. 

true of Inq8(x). Therefore below Te, the [' sum in (83) 
should be sufficiently regular to give rise to no Ins 
terms. Then Eq. (83) predicts 

( 1) UT oo~ g. - "-'g(O) + (const)s-1/3+ --lns+ --. (84) 
lmax 6a2s2/3 a2s2/3 

We have already argued that terms of the same type 
as the second in the right-hand member here could be 
disregarded. Consequently, Eq. (84) in connection with 
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T, 

~~~------------------------~ 
x 

FIG. 7. Qualitative trend of surface-tension dispersion function 
q(x,T), resulting from the sequential-mode addition procedure, 
for an ascending set of temperatures, 0 < Tl < T2 < T. < Te. 
For all temperatures q(l,T) =1. 

Eqs. (77), (63), and (62) imply for large S that 

exp (:T) Z.(T, J.!),.....,(const) VSl/3--aO 

X exp[ -'Y(}O(T) (6lrl/2VoS) 2/3] (85) 

along the coexistence curve. 
Next, we examine the situation at Te. Now the 

possibility arises for additional Ins terms to be generated 
by the I' sum in (83), since lnq(l'/lmax) at the critical 
temperature has a logarithmic infinity at I' =0 accord­
ing to Eq. (76). It should suffice, for estimation of this 
extra Ins contribution in the asymptotic large-s limit, 
to replace q.(l'/Imax) by q(l'/lmax).28 Since q(x, Te) 
varies as x2 nears x=O, to the nearest power of x, the 
Ins terms may equally well be estimated by using 
simply x2 in place of q(x, Te). Therefore examine the 
following sum: 

[ f lmu+l/2 ( I') ] 
X .6q (s, 1) + 3/2 (2/'+1) In lmax dt' . (86) 

The defect .6q arises in passing from summation to 
integration, and can be evaluated in the same way as 

28 It should be remembered here that the argument in Sec. III 
essentially shows that difference between q(x) and q.(s) for 
x of order r1/3 is itself of order s-1/·, being essentially surface­
tension curvature correction, and can be annihilated by innocuous 
variable change. It may furthermore be shown that the next­
order difference between q(x) and q.(x) varying as S-'l./3 Ins, 
is too small to affect estimation of the new Ins droplet free-energy 
contribution at Te. It may be worth noting here that an alter­
native to the curvature-correction annihilating variable shift 
would be inclusion of an order S1/3 correction in cutoff parameter a, 
whose coefficient could be selected in principle to produce the 
same effect. 

was .6 in Eq. (80): 

.6q (s, 1) = IE (21'+1) In (~) 
1'-2 lmax 

/.

lmartlJ2 
( l' ) 

- (21'+1) In -I - dl' 
3/2 max 

rv const- (1/36) Ins. (87) 

The I' integral in Eq. (86) is elementary, and gives a 
result of the form 

(const)s2/3+(const)sl/3+i Ins+ const. (88) 

We can combine the Ins coefficients in these last two 
equations to obtain a new factor S-11/9 in the Z. asymp­
tote which discontinuously arises at Te. Thus in place 
of Eq. (85) we find 

exp(sJ.!e/kTe)Z.(Te, J.!e)"-'(const) VS-(8/9)-ao. (89) 

The exponential factor in (85) of course disappears 
due to vanishing of the experimental surface tension 
'Y",(T) at Te. 

For fixed cluster size s there is of course no dis­
continuity in exp(sJ.!/kT)Z. at Te. In order to reconcile 
this fact with the exponent shift from (85) to (89), we 
observe that very close to Te, the logarithmic summand 
factor in the key equation (83) roughly behaves for 
large s near I' = 0 as follows: 

where kl is a positive constant. This expression inter­
polates the facts that (a) at t'~0, the q.~q must be 
proportional to the actual surface tension 'Y (}O ( T), and 
(b) when T is sufficiently close to Te there can be a 
substantial l' interval over which q is varying (to the 
nearest power) just quadratically with l'/lmax, and yet 
far exceeds in magnitude the value of q(O). If 'Y(}O(T) is 
sufficiently small, then for a given s, the summand in 
Eq. (83) may behave as though only the second term 
in brackets were present for all I'?, 2, so for this s, 
Eq. (89) would apply. But at the same temperature 
[i.e., at the same small 'Y",(T)], the two bracketed 
terms in Eq. (90) are comparable at the lower sum­
mation limit (l' = 2) when 

kl'Y",(T)~ (2/1max) 2 = 4/ a2s2/3, 

or in other words when 

For even larger s, the subdivisions implicit in the 
I' /lmax sum are so close to one another that the full 
form (90) is required, and since this latter is smooth and 
bounded near 1'/lmax=O, Eq. (85) applies. The smooth 
transition around s values shown in (91) may in 
sufficient accuracy be exhibited by the following 
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interpolation formula valid along the coexistence curve: 

exp(sp.fkT)Z.(T, p,) 

,-.J ( const) V slf3--aob ex> ( T) + krI3]1l/6 

X exp[ -'Y",,(T) (6,r12VoS)2/3J, (92) 

where k2 is another positive constant. The equations 
(85) and (89) respectively correspond to allowing 
s--"'oc) at fixed T<Tc, and to allowing T--"'Tc at fixed s. 

Formula (92) is central to derivation of the several 
critical region exponent relations in the next section. 
However it still contains the unknown index ao. 
Because ao arose from the cluster bulk, and because 
the principal change in cluster morphology in approach­
ing To results from sudden increase in just surface mode 
amplitudes, we can reasonably suppose ao is substan­
tially a constant in the critical region. This constant 
value may then be evaluated easily from the phenome­
nological surface tension and coexistence-curve laws. 
From Eqs. (1) and (2) along the coexistence curve, we 
obtain an expression for the saturated vapor density: 

~ ) Z.(T, P,.at) () 
P. = ~s exp (sP,s"t! kT V ' 93 

where p, has been set equal to its value p.at on the 
coeAistence curve. One can see from the asymptotic 
estimate (92) that the small-s terms in this last sum 
will be essentially unchanged if T is only slightly less 
than Te, but the exponential term effectively provides 
an upper cutoff on the sum at the value shown in 
Eq. (91). Thus 

:::P. - ( const) f: s(119)-aods 

= pc- (const) (5*) (10/9)-"0 

=pc- (const)C'Y",,(T) J(3<10/2)-(513>' (94) 

Equation (46) in Sec. III exhibits an estimate of 
the power law for surface tension vanishing at the 
critical point. Without for the moment entering into 
consideration of the merits of that specific estimate, 
we now simply write 

'Y",(T),....,(const) (AT)", (95) 

where (f is the phenomenological critical-region expo­
nent, known29 to be close to 1.29. If this surface-tension 
form is inserted into expression (94), and the result 
required to yield the coexistence curve exponent fl, 
then ao can be equal only to a single possible value: 

ao=2,8/3o+10/9. (96) 

:l9 R. A. Lovett and F. P. Buff, in Simple Dense Fluids; Data 
alld Theory, Z. W. Salsburg and H. L. Frisch, Eds. (Academic 
Press Inc., New York, to be published). 

We use this phenomenological determined value in the 
following section. 

VII. CRITICAL EXPONENTS 
One of the key quantities which arises in the study 

of critical phenomena is the range of molecular correla­
tion. If g(2) (rj T, /-I) stands for the molecular correlation 
function (which has value unity at infinite distance r) , 
then Fisher3° has proposed a convenient form for 
representation of the large-r approach of g(2) to its 
limit in the one-phase portion of the critical region: 

exp( -Kr) 
g(Z)(r; T, p,) -1",(const) + [1+Q(Kr)]. (97) 

r1 ~ 

Here, Q(x)""'x~ as x becomes large. The phenomenon 
of critical opalescence is a direct result of the fact that 
the exponential decay parameter " goes to zero at the 
critical point, and the inverse of " is obviously a meas­
ure of the spatial extent of local density fluctuations in 
the system. The sequence of moments of g(Z)(r)-1 
clearly reflect this identification near the critical point: 

Irn[g(2)(r) -1Jdr 
I[g(2) (r) -1Jdr "'( const) K-n. (98) 

The general approach to understanding of critical 
phenomena through physical clusters suggests a means 
of determining K. Below Tc the system consists of an 
assembly of nearly spherical droplets, whose interior 
liquid is substantially higher in density than the 
ambient fluid. In adequate approximation we may 
suppose that these spherical clusters have positions 
that are independent of one another to the extent that 
outside of any given cluster the local molecular density 
rapidly drops to the macroscopic average. For distances 
r larger than typical molecular dimensions, g(Z) (r)-1 
for the random droplet medium will consist of a sum 
of structure factors S. for the individual droplets31: 

g(2) (r) -1 = Ew(s) Sa(r) 
0=1 

"" lCDw(s)S(r113r)ds. (99) 
o 

Here we introduce a common cluster-structure function 
S, appropriately scaled; w is the requisite weight for 
size-s clusters, which is proportional to the product of 
cluster volume and cluster density. Along the coexist­
ence curve the latter is just V-I times our previous 
result (92). Substitution into (99), followed by recal­
culation of the moments of r" now yields 

fr"[g(2)(r) -1Jdr 
f[g(2)(r) -1Jdr = (const) ['Y",(T)J-n12. (100) 

10M. E. Fisher, J. Math. Phys. 5, 944 (1964). 
at This result is easily justified by the picturesque Debye 

procedure of repeatedly throwing a stick of length r into the 
random medium, and measuring the densities at its ends at 
each trial; a clear description appears in P. Debye, in Non­
CrystaJUn6 Solids, V. D. Frechette, Ed. (John Wiley & Sons, 
New York, 1960), p. 6. 
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Upon representing the temperature variation of the 
range parameter K along the coexistence curve by 

(KO, v'>O), (101) 

the exponent v' is required to satisfy 

V' =!O" (102) 

to ensure that Eqs. (98) and (100) are consistent. 

This last relation has been previously deduced by 
Widoml3 from a rather different analysis. 

In order to extract further information about critical 
phenomena from the theory, it is necessary to specify 
the cluster distribution away from the coexistence 
curve. In this more general circumstance, 'Y co fails to 
be identifiable as an experimentally measurable 
quantity, and the ambient chemical potential is no 
longer large enough to cancel exactly the cluster bulk 
free energy. These extensions now impel us to write the 
critical-region density expression thus32: 

p(AT, AIJ.) = (const) I:s(4/3)-ao[ 'Yoo(AT, AIJ.) +k2s-2/3]1l/6 
... 1 

where 
(104) 

is the chemical potential change measured from the 
coexistence curve. For a-IJ. and 'Yoo in the extended 
regime, we adopt simple homogeneous functions of AT 
and AIJ. as suitable extrapolations: 

'Yoo(AT, AIJ.) = ["(TAT + ('YI'+r''YT) AIJ.]"-[ 'YI'AT]"; 

(105) 

a(AT, AIJ.) -IJ.= (aTAT+aI'AIJ.)"- (aTAT)". (106) 

'YT, 'YI" r', aT, and a!, are all positive constants, and the 
new power v is of course to be positive. 

The justification of the 'Yoo expression (105) lies first 
in its proper reduction to the measurable surface tension 
when AIJ. = O. In addition, it provides for linear variation 
of 'Y 00 with chemical potential at fixed T < Te, reflecting 
the corresponding linear density change in the medium 
surrounding a given cluster.33 Finally the AT, AIJ. locus 
defined by setting 

'Yoo(AT, AJ1.) =0 

generates the expected boundary in the phase plane 
across which physical clusters have evaporated out of 
an asymptotically compact, roughly spherical form to 
an open spongy network, as remarked at the end of 
Sec. II. 

The bulk free-energy assumption (106) likewise 
behaves properly at AJ1.=O (for the trivial reason that 
it vanishes identically), and for fixed positive AT it 
exhibits the linear increase to be expected with in­
creasing AIJ.. The same linear increase also would be 
expe~ed at AT=O if the droplet were incompressible. 

(103) 

However it is precisely at the critical point that the 
droplet-forming liquid becomes especially compressible, 
so the possibility exists that the pressure decrease 
resulting from AIJ. increase might be accompanied by 
droplet expansion "to take up the slack." Accordingly, 
along the critical isotherm it is reasonable to anticipate 
bulk free energy varying with a higher power of AIJ. 
than the first. Equation (106) with v> 1 permits 
inclusion of this possibility. 

The specific expressions shown in Eqs. (105) and 
(106) are but the simplest of a variety of homogeneous 
functions of AT and AJ1. that could be considered. 
Actually the critical-region exponent relations about 
to be derived are only sensitive to the degrees of 
homogeneity 0" and v, but not otherwise on the specific 
choice of functions. 

In order to obtain the degree of the critical isotherm, 
substitute (105) and (106) for AT=O into Eq. (103). 

p(O, AIJ.) = (const) I:s(4/3)-ao[(AIJ.)"+k2'r2/3]11/6 
.... 1 

X exp[ - (const) (AIJ.)"s2/3- (const) (AIJ.) us]. 

(107) 

We later see that experimental critical-region measure­
ments do not warrant consideration of v larger than 
30"/2, and for the range 

1::=;v::=;3o/2, (108) 

the last term in the exponent in Eq. (107) for small AIJ. 
effectively provides an upper summation limit at s = 
(const) (AIJ.)-v. Furthermore in the summation range 
we may take 

32 In the strict sense, of course, this equation is not correct on account of its use for all s ~ 1 of the large-s asymptotic Z. 
expression. However the error is substantially only an additive constant, and does not affect our subsequent predictions of changes 
in density with AT and Ai-< which result strictly from rapid variations of the large-s tail of the sum shown. 

33 Signs haye been chosen f<!r constants in Eq .. (!05). so 'Yo> increases as gas density decreases. This is to be expected on the 
basis of any inhomogeneous-flwd theory such as utIlized m Sec. III. 
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Therefore Eq. (107) may be approximated by 

(AI')-V 

P (0, Ll,u)""'" (const) L S(1/9)-ao 
8=1 

= pc - ( const) I: s(1/9)-ao 
8~(AI')-v 

The exponent shown must be -,,{', so using Eq. (96) 
for 0:0, we have found 

(117) 

It may be shown30 from the general fluctuation­
compressibility theorem that the two exponents v' and 
71 appearing in the pair correlation function asymptote 
(97) are related to "{' by the equation = pc- (const) (Ll,u) v[a<r(10/9)] 

= pc - (const) (Ll,u) 2v{3/3u • (110) 71=2- ("{'/v'). (118) 

By virtue of the isothermal Gibbs-Duhem equation 

pd).! = dp, 

we identify the critical isotherm exponent 0 in 

Pc-p'"'-'(const) (Pc-p)6 
as 

0=3a/2v{3. 

(111) 

(112) 

(113) 

A similar argument applies to deduction of the 
compressibility exponent "('. On account of the Gibbs­
Duhem equation again, it suffices to examine the 
isothermal derivative of p with respect to Ll).!, evaluated 
at Ll).! =0, since this should diverge at the critical point 
with the same inverse power of LlT as the initial 
compressibility. Once again utilizing expressions (105) 
and (106) in Eq. (103), we find that the derivative 
has the following structure: 

(
ap(LlT, 0») 

aLl).! T 

= (const) I:s(4/8)-aO exp[ - (const) (LlT) uS2/3] 
8=1 

x { - (const) [(LlT)o+k2" S-2/3]11I6 

x[ (const) (LlT)u-1S2/3+ (const) (LlT) v--1s] 

+ (const) (LlT)u-l[(LlT)u+k2"s-2/3]6/6). (114) 

The exponential factor in the summand may now be 
reckoned as equivalent to an upper cutoff at s = 
(const) (LlT)-3U/2. The v restriction, Eq. (108), there­
upon permits selection of the dominant term in each 
square-bracketed binomial factor, so 

p , "-' - (const) L (LlT) v-ls(10/9)-ao 
(
a (LlT 0») (AT)-"'/2 

aLl).! T 8~1 

(AT)-"'/2 

+ (const) L (LlT)u-1s(7/9)-ao. (115) 
8=1 

For the v range in Eq. (108), the negative first sum 
diverges, as LlT goes to zero, more rapidly than the 
positive second sum. We may therefore disregard the 
second sum, and estimate the first by integration to 
obtain 

[
ap(LlT, 0)] ::: _ (const) (LlT) (3u/2)[a<r(19/9)]+v--1. (116) 

aLl).! T 

Our v' and "(I results (102) and (117) lead then to 

1/= (2/u) ({3+v-1)-1. (119) 

The main results of this paper are Eqs. (102), (113), 
(117), and (119) expressing JI', 0, "{', and 1/ in terms of 
the phenomenological surface tension and coexistence 
curve exponents, and the parameter v. If the value 
a = 1.29 of Ref. 29 is accepted, then the predicted v' is 
in perfect accord with the three-dimensional Ising 
model prediction quoted in Eq. (56). Although the v 
uncertainty generates sets of predictions for the other 
indices, depending on the particular value selected for 
this parameter, we stress that such a choice produces 
satisfactory agreement with the presently rather poorly 
defined experimental results for condensing fluids. If {3 
is taken to be t, then the choice v = 1.35 yields the 
following predictions: 

0=4.30, "{' =1.25, (120) 

The first of these straddles the value 4.4 measured for 
Xe by Habgood and Schneider,34 and the value 4.2 
daimed for CO2 by Widom and Rice.35 The latter two 
agree with values proposed for the Ising model.23 

VIII. DISCUSSION 

We have just seen that our physical-duster-theory 
critical-exponent predictions can fit the behavior of 
three-dimensional gases reasonably well. However the 
"scaling-law" approach14.16 provides another scheme in 
which the dassical fluid exponents may be accommo­
dated. Indeed the "scaling laws" provide in some ways 
a more powerful tool than the present theory, since 
they encompass the entire critical region (rather than 
just the vapor side of the coexistance zone), as well as 
produce predictions for specific heats which cannot be 
done in an obvious way with our physical duster 
theory. Nevertheless, an interesting relation may be 
established between the two approaches, starting from 
one of the deductions of the "scaling laws"14.16: 

"{' =(3(0-1). (121) 

Substituting our v-dependent "{' and 0 results, we find 
that 

(3u/2) +1-v=3u/2v. (122) 

34 H. W. Habgood and W. G. Schneider, Can. J. Chern. 32, 
98 (1954). 

ali B. Widom and O. K. Rice, J. Chern. Phys. 23, 1250 (1955). 
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The two roots of this quadratic equation in v are 1 
and 3u/2, precisely the endpoints of the interval shown 
in Eq. (108). Therefore we may say that special 
scaling laws can occur in physical-cluster theory as 
isolated cases, but generally they are not implied. 

It should be stressed that the present theory is 
intended to apply only to classical continuum fluids, 
and makes no pretense at direct prediction of critical 
properties for the theoretically convenient, but un­
realistic Ising-model lattice gases. We have assumed of 
course spherical-droplet shape to be the mechanically 
stable form at all temperatures, but with lattice gases 
on a cubical lattice for example, surface tension must 
be expected to depend on direction in such a way as to 
produce cubical "droplets." Even if it is valid to assume 
hydrodynamics applies to the lattice fluid so as to 
provide surface normal modes analogous to the ones 
considered here, the low-frequency spectrum should be 
strongly affected by droplet shape.36 In addition we 
remark that the critical points investigated for lattice 
gases invariably occur for half-filled lattices regardless 
of interaction range, whereas the critical point for a 
lattice-gas model, which actually corresponds to a real 
fluid as the model potential range increases indefinitely 
(so as to "wash out" the lattice granularity), occurs 
asymptotically at zero density on a per-lattice-site basis; 
there is no a priori reason to expect identical exponents 
for these distinct critical points. 

Essam and Fisher6.7 have proposed an alternative 
physical cluster theory which is strongly motivated by 
lattice-gas considerations. Both the implementation and 
results of their work differ from that reported here, 
yielding in fact a scaling law. The fundamental differ­
ences between the two versions are 

(a) Essam and Fisher disregard cluster excluded 
volume (or "interference"), whereas we have accounted 
for it through the cavity free energies W.; 

(b) Droplet surface tension vanishes linearly with 
AT in the Essam-Fisher formalism, whereas we have 
retained the (AT)" power law required phenomeno­
logically; 

(c) No discontinuous jump in the power of s entering 
into the large-s cluster partition function occurs in the 
Essam-Fisher theory, as it does in the present develop­
ment; 

(d) Essam and Fisher permit the possibility that 
surface free energy of droplets might asymptotically 
vary as some power of s other than j, but we do not. 

It will perhaps eventually develop that these alterna­
tive approaches are not so much in conflict if their 
respective domains of applicability, lattice gases, and 
continuum fluids are not construed as overlapping. 

If one is willing to reach outside the present cluster 
theory's domain, the three independent input indices 

sa It may happen that the lattice-gas surface tension becomes 
isotropic at the critical point, so as to permit in that limit spherical 
droplets. However the rate of attainment of isotropy would be 
decisive in determining whether or not the continuum approach 
used in this paper would apply. 

q, (3, and v may be related to one another. For example, 
Eq. (46) displays the surface-tension index required 
by the Cahn-Hilliard inhomogeneous fluid theory: 

q=h'+2{3. (123) 

By inserting our result (117) for 'Y', the unmeasurable 
cluster expansivity index v may be expressed in terms 
of q and (3: 

v =3{3-tu+ 1. (124) 

In addition Stell37 has obtained a relation between '1/ 
and Ii from a functional Taylor-expansion theory of the 
molecular correlation function with a truncation that 
should be suitable in the critical region: 

'1/ =2-3(0-1) / (0+1). (125) 

If our '1/ and 0 results are inserted here, and v eliminated 
by Eq. (124), a quadratic equation for q is obtained 
with coefficients depending on {3: 

(!-~{3)q2+ (25{32-5{3)q- 24,83_8{32=0. (126) 

The appropriate solution is 

q= [{3! (3-7{3) ][(289(32-218{3+ 73) 1/2_ 25{3+5]. (127) 

The value of q corresponding to {3=! in this expression 
is 1.18, only in fair agreement with the experimental 
value 1.29.29 However the predicted u is very sensitive 
to {3 in this range, and a slight increase in {3 to 0.384 will 
reproduce the experimental u. One hopes of course that 
yet another exponent relation will be eventually un­
covered so that even the remaining single free exponent 
could be predicted! 

As a final matter we recall that the droplet oscillation 
spectrum (58) used in this paper is strictly speaking 
appropriate only to incompressible liquids. Although 
the incompressibility assumption must surely be accu­
rate at low temperature, one might easily question its 
validity in the critical region where droplets are very 
spongy. The result of the more complex hydrodynamic 
problem with finite compressibility reveals a balance 
between vanishing surface tension 'Y (0 and the diverging 
adiabatic compressibility K.. Since the product 'Y (OKs 

however still vanishes at Te, }.Ie, the spectrum (58) is 
automatically recovered in this more general calcula­
tion, and one is indeed justified in disregarding cluster 
compressibility in the critical region. 
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APPENDIX A 

We consider a vessel in a gravitational field g, filled 
with a sufficient number of molecules so as to exhibit 
coexisting liquid and vapor. Let the z axis of a Cartesian 

;(1 G. Stell, Preprint. 
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coordinate system point "upward," i.e., out of the 
liquid phase and into the vapor. It will be presumed 
that g is sufficiently weak that density variations within 
the bulk phases due to hydrostatic compression are 
negligible. Let p(l) (rl) and p(2) (rl' r2) be the molecular 
distribution functions in the inhomogeneous fluid 
system. 

Next consider application of a weak sinusoidal 
external field to the system, of the form 

u(r) =~ sine q. r), (AI) 

so that the system of N molecules receives an increment 

The amount of reversible isothermal work done on the 
system in applying external potential u is 

(AS) 

involving the spatial average of the susceptibility 

(x(q, Zl)= V-1lvx(q, Zl)drl' (A6) 

If our vessel were filled with just an homogeneous 
vapor phase (v), the susceptibility function would be 
independent of height Zl, and would be given by a 
simplified version of (A4) appropriate to the isotropic 
homogeneous phase: 

x.(q) = (kT)-l 

X {pv+ Iv [p.(2) (r12) - (Pv) 2] cos( q. r12) dr12} , 

(A7) 

in which P. is the uniform density and p.(2) (r12) the 
radial distribution function. Obviously a similar ex­
pression obtains for Xl( q), the homogeneous liquid­
phase susceptibility. Analogous to Result (AS) further­
more, the reversible isothermal works that u(r) would 
perform on the systems containing just homogeneous 
vapor or liquid would be respectively: 

_ly~2X.(q) and _tV~2XI(q). (AS) 

Following Gibbs' approach38 to the study of equilib­
rium interfacial phenomena, introduce an equimolar 
dividing surface in the inhomogeneous system at 
height Zo, parallel to the interface. Denote by V. and 
V I the volumes above and below this mathematical 

of potential energy 

N N 
Lu(ri) =~L sin(q·r.). (A2) 
;"'1 ;"1 

We will allow only q's parallel to the interface, so q.=O. 
It is a straightforward matter to calculate the density 

variation linear in ~ induced by u(r) ; the new singlet 
density is 

(A3) 

where the position-dependent susceptibility X (q, Zl) is 

(A4) 

dividing surface, respectively, the vapor- and liquid­
phase volumes. The standard subtractive procedure 
then identifies the superficial excess susceptibility 
X(8) (q) for the surface region by setting 

V(x(q, Zl»- V.xv(q) - VIXI(q) =SX(8)(q), (A9) 

for interfacial area S. By utilizing (A4) and (A7), we 
now obtain a pair-distribution-function integral expres­
sion for the interfacial susceptibility: 

x(s) (q) = (kT)-lL:"" dZ1! dr12 cos( q. r12) 

X {p(2) (rl' r2) - U (Zl- zo) p. (2) (r12) 

-[1- U (Zl-Zo) ]pl2) (r12) _p(l) (Zl) p(l) (Z2) 

+U (Zl-Zo) (p.)2+[1- U(Zl-Zo) ](PI)2}, 

(AIO) 

where U(z) is the unit step function. We have here 
presumed that the system is sufficiently large, and the 
contribution to x(s) sufficiently well localized around 
the interfacial zone, that the spatial integrals could be 
taken between infinite limits. 

Consider now the dynamical quantity 

N 

Seq) = L sin(q ·r.), (All) 
;"1 

proportional to potential energy (A2). In the absence 
of external potential u(r), the mean expectation value 
of S, (S), will vanish due to translation invariance 
parallel to the interface. However by direct calculation 
in the canonical ensemble one establishes that 

(52 ( q) ) = i Iv drl {p(1) (rl) + Iv dr2[P(2) (rl, r2) _p(l) (rl) p(1) (r2)] cos( q. rl2) } 

=!VkT(x(q, Zl». (A12) 

Again, (52) for either pure vapor or liquid could similarly have been written in terms of the bulk-phase 
susceptibilities Xv or XI. Consequently the procedure of subtracting bulk-phase contributions results in a 

38 J. O. Hirschfelder, C. F. Curtiss, and R. B. Bird, Molecular Theory of Gases and Liquids (John Wiley & Sons, Inc., New York, 
1954), p. 339. 
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surface-zone fluctuation-susceptibility theorem: 

(S2(q) )(8)= (S2(q) )-t(kT) [V.X.(q) + VIXI(q)] 

= !k TSx (8) (q) . (A13) 

It was one of the major points of Refs. 10 and 12 
that an elementary assessment of surface fluctuations 
in terms of surface waves and an intrinsic surface 
tension 'Yo could be carried out with valuable physical 
implications. Classical energy equipartition among the 
independent surface modes in this method leads 
directly to the evaluation of (S2( q) )(8), and in turn one 
obtains the surface susceptibility 

x(s) (q) = I (Pl-p.)2/[mog(Pl-P.) +'Yoq2]1. (A14) 

We remark here that since the quantity 

(A1S) 

analogous to (AS) and (A8) , must represent the excess 
surface zone contribution to isothermal reversible work 
done on the system by u(r), X(·) (q) as shown in (A14) 
can equally well be established by calculating the 
sinusoidal dimpling effect of u(r) on the liquid surface. 

The important point to make now is that expression 
(A14) is the surface analog of the Ornstein-Zernike 
bulk phase susceptibility (i.e., pair-correlation-function 
Fourier transform). Since the quadratic-denominator 
behavior of the latter is known to be deficient in the 
critical region, the strong implication exists that the 
former should require revision. Arguing by this analogy, 
the effective surface tension appearing in a X(B) denomi­
nator in the double limit g~O, T~Tc should exhibit a 
fractional-power behavior as a function of q, there­
by providing "nonclassical" critical-point surface 
phenomena. 

Although we cannot immediately identify this 
wavelength-dependent effective surface tension with 
the quantity 'Y2Q(X) for the same wavelength appear­
ing in our cluster theory, it seems likely that a quanti­
tative connection could be made through consideration 
of the average extent of local surface "tipping" from 
the horizontal in the sequential-mode addition proce­
dure. 

APPENDIX B 

We now sketch the two-dimensional version of the 
physical cluster theory, with the sequential-mode 
addition procedure. As before, the central problem 
consists in evaluation of the s-particle cluster partition 
function, which in two dimensions will adopt the form 

exp (SfJ.) Zs(T, fJ.) ,",",(const) A s1-ao [it :.~J 
kT <=1 fWJ, 

X expl-[(a(~T, ~fJ.) -fJ.)s+2 (1rbO)1/2'YooS1/2](kT)-1). 

(B1) 

A stands here for the area of the two-dimensional 
vessel. 'Yoo must now be interpreted as a line tension at 
the boundary of the essentially circular cluster, and bo 

is the area per molecule in the dense cluster-forming 
fluid. 

In this two-dimensional sequel, the analog of surface 
tension curvature corrections (which gave S1/3 free­
energy contributions in three dimensions) are only of 
order so. Since they do not formally dominate Ins terms 
as before, there is no need to redo the crude density­
profile calculation of Sec. III to justify their neglect. 

The main issue concerns the vibration frequencies 
Wi of the two-dimensional droplets. Figure 8 shows a 
droplet, with undistorted radius R, whose distortion 
may be described by radius 

reO) =R+w(O). (B2) 

Let the flow for oscillatory motion of the droplet under 
the influence of its boundary tension be described by 
flow potential if;(r, 0, t), satisfying the two-dimensional 
Laplace equation 

(B3) 

We can reasonably anticipate that individual modes of 
oscillation will correspond to separate circular har­
monics, with 

1 
Sin(l8») 

if;(r, 0, t)=A' exp[iw.(l)t] rl. 
cos(l8) 

(B4) 

The eigenfrequencies w8 (1) are determined by the 
boundary condition on if; at the droplet's edge. One 
may easily adapt the corresponding three-dimensional 
development39 to two dimensions to conclude that if; 
must satisfy 

?!!!! a2if; _ 'Y2q8(ljlmax) ~ (if;+ a2if;) =0 (BS) 
bo af2 R2 ar a02 

at r=R. Here we have utilized 'Y2q8(1/lmax) as the 
appropriate boundary tension provided as in the three­
dimensional case by a self-consistent sequential mode 
addition procedure. Substituting (B4) into Boundary 

FIG. 8. Two-dimensional droplet distortion. R is the radius of 
the circular undistorted droplet, and w(O) measures the radial 
distortion for varying angle. 

3i L. D. Landau and E. M. Lifshitz, Fluid Mechanics (Addison­
Wesley Publishing Co., Reading, Mass., 1959), p. 239. 
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Condition (BS) yields the following spectrum: 

[W.(l)]2= 7r
3/2

'·(2q.(l/lmax)l(l-1) Ct+1). (B6) 
mobol/2s3/2 ' 

in obtaining this result we have used the obvious 
identity 7rR2 = boS. For given l the frequencies are 
doubly degenerate, corresponding to independence of 
the sine and cosine solutions in (B4), and an upper 
cutoff lmax r-v asl/2 must be applied. 

The condition of self-consistency which determines 

akT { li2~/2'Y2 } 
q8(X) =1+ (47rb

O
)1/2'Y2 (l-x) In k2Pmobol/2 

the two-dimensional line tension 'Y2qs(l/lmax) 
obvious analog of Eq. (69) in the text: 

[
-'Y2q.(I/lmax) (47rboS) 1/2] 

exp kT 

= IT -- exp {
1m .. [ kT ]2} [-1'2(47rboS) 1/2] 

I/=IH 1iW.(l') kT' 

IS an 

(B7) 

If we take logarithms in this equation, and set x=l/lmax, 
the determining equation for q8 becomes 

+ kT {A(S,l)+j",lI'Hdl/ln[II(lI-l)(lI+l)]}+ kT II: lnq.(~), 
(47rboS) 1/2'Y2 1+1" Sl/2 (47rboS )1/2'Y2 1'=1+1 lmax 

(BS) 

where 
1m.. [II Ct' -1) (l' + 1)] j"sll'+t [I' (I' -1) (I' + 1)] 

A(s, I) = L In / - dl' In . 
1'=1+1 s3 2 I+! Sl/2 

(B9) 

The infinite-s limit of q., denoted as before by q, now 
satisfies 

q(x) =1+A2T 

X [In (DzP) (x-l) -!x lnx+ illnq(Y)dY] ; 

(BlO) 

From this equation one verifies that for all T<Te, q(x) 
possesses the following small-x development 

q(x, T),-vq(O, T) -Ql(T)x lnx+Q2(T)x; 

q(O, T) =1+A2T [ - In (D2P) + f lnq(y, T)dy l 
Ql(T) =!A2T, 

Q2(T) =A2T In[D2T/q(O, T)]. (Bll) 

The leading x dependence near x = 0 is now linear (to 
the nearest power of x) rather than quadratic as in 
three dimensions, so the wavelength dependence or 
dispersion is relatively more pronounced. At Te, the 
small-x development shifts to 

q(x, Tc),-v-iA2Tcx Inx-A2Tex In In(l/x) +O(x). 

(B12) 

The deduction of the Z. asymptote proceeds substan­
tially as before from the q. functional equation, except 
that now A(s, I) gives rise to no Ins contributions. One 
finally obtains, below Te, 

Z8(T, ~),-v(const)Ar8-"o 

X exp(-[a(T, ~)s+(47rbo)l/2'Y",SI/2](kT)-11, (B13) 

whereas the correct large-s asymptote at the critical 
point is 

Z.(Te, ~e)"""(const)Ar(35/4)-"0 exp[ -a(Te, ~e)s/kT]. 

(B14) 

These two expressions may be interpolated along the 
coexistence curve by 

exp(s~8at!kT)Z.(T, ~8at) 

'"'-'(const) Ar8-ao[ 'Y",(T) +k2rI/2]3/2 

X exp[ - (47rbo)1/2'Y",(T)SI/2/kT]. (B1S) 

The previous strategem of selecting ao so as to reproduce 
a given coexistence-curve index {3 gives 

ao= ({3/2a-) - (27/4), (B16) 

where (J is the index for line tension 'Y w 

The identification of the correlation range exponent 
/I' in terms of (J may be implemented by the means used 
at the beginning of Sec. VII. However now the common 
structure factor is size-scaled as S(s-1/2r). The result 
finally is that 

/=(J. (B17) 

The line tension and cluster-bulk-free-energy inter­
polations, in terms of the simple homogeneous forms 
(105) and (106), may be carried over to the two­
dimensional regime without change. Then when v is 
confined to the range 

(B1S) 

the previous manipulations in Sec. VII may readily be 
adapted to give 

0=2(J/v{3, 

'Y' =2(J-{3-v+ 1, 

7]= (1/(J) ({3+v-l). (B19) 

Although (B 17) appears to be exactly satisfied by the 
two-dimensional Ising models (both / and (J are 
unity40) , no single v value will yield the accepted 0, 'Y', 
and 7] values for these models (with (3=i). However 
in view of the comments in Sec. VIII, this fact need 
not be viewed with alarm. 

40 C. Domb, Advan. Phys. 9, 196 (1960). 
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