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We investigate the properties of a two-dimensional lattice heteropolymer model for a protein in
which water is explicitly represented. The model protein distinguishes between hydrophobic and
polar monomers through the effect of the hydrophobic monomers on the entropy and enthalpy of the
hydrogen bonding of solvation shell water molecules. As experimentally observed, model
heteropolymer sequences fold into stable native states characterized by a hydrophobic core to avoid
unfavorable interactions with the solvent. These native states undergo cold, pressure, and thermal
denaturation into distinct configurations for each type of unfolding transition. However, the
heteropolymer sequence is an important element, since not all sequences will fold into stable native
states at positive pressures. Simulation of a large collection of sequences indicates that these fall into
two general groups, those exhibiting highly stable native structures and those that do not. Statistical
analysis of important patterns in sequences shows a strong tendency for observing long blocks of
hydrophobic or polar monomers in the most stable sequences. Statistical analysis also shows that
alternation of hydrophobic and polar monomers appears infrequently among the most stable
sequences. These observations are not absolute design rules and, in practice, these are not sufficient
to rationally design very stable heteropolymers. We also study the effect of mutations on improving
the stability of the model proteins, and demonstrate that it is possible to obtain a very stable
heteropolymer from directed evolution of an initially unstable heteropolymer. © 2008 American
Institute of Physics. �DOI: 10.1063/1.2909974�

I. INTRODUCTION

Natural proteins possess a well-defined functional native
conformation that is stable within a limited range of tempera-
tures, pressures, and solvent conditions. A characteristic pro-
tein phase diagram showing the effects of pressure and tem-
perature on the native state is given in Fig. 1 for the case of
Staphylococcal nuclease.1 This well-defined native structure
is determined entirely by the protein’s amino acid sequence,
but a detailed understanding of how sequence determines
structure and function remains elusive. Such knowledge
would aid in the design of new proteins for a variety of
applications, including pharmaceuticals, enzyme catalysis,
and biomaterials. However, since there are 20 different natu-
rally occurring amino acids, the number of possible se-
quences for a protein with NMon amino acids is 20NMon. The
majority of globular proteins have between 50 and 400
amino acids and, therefore, an average protein with 200
amino acids has more than 20200�10260 possible sequences
available.2 Because only a very small fraction of these pos-
sible sequences fold into functional native states,3 finding a
sequence to successfully fold into a desired native state is a
significant design problem to overcome.4,5

Atomically detailed models have been extensively used
to investigate the relationship between protein sequence and

native state structure, but computational methods using these
models cannot yet reliably predict structure from sequence.
There are several challenges in this field, including the pro-
hibitive computational cost of these calculations, the need for
effective algorithms to search conformation space, and the
development of accurate force fields to appropriately repre-
sent the molecular interactions between individual amino ac-
ids and their interaction with water. In addition to atomically
detailed models, coarse-grained models are used as a
complementary technique for the study of protein design.
These models reduce the complexity of the protein’s con-
figuration space and sequence space to make a detailed in-
vestigation of the model protein’s properties practical. Mini-
malist protein models have proven valuable in understanding
protein sequence-structure relationships and important ele-
ments of folding.6–20 Minimalist models typically employ
single site representations of amino acid residues, and many
reduce conformational complexity by restricting protein con-
figurations to a lattice.6–14 Many models use simplified de-
scriptions of the intramolecular interactions based on the hy-
drophobicity of the amino acids, often employing a
two-letter7,9,18 or three-letter15–17 amino acid alphabet. Dihe-
dral angle potentials are also used in some off-lattice models
to enforce the structural constraints of the polypeptide
backbone,15–19 a key determinant of a secondary structure.21

In all of these minimalist models, solvent contributions area�Electronic mail: pdebene@princeton.edu.
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captured only through the use of effective potentials describ-
ing the mean forces between residues, which are implicitly
solvent averaged.

One of the most basic of such minimalist approaches is
the HP model,7 a lattice heteropolymer model with hydro-
phobic �H� and polar �P� monomers. This two-letter parti-
tioning reflects a basic property of biological proteins in
which hydrophobic amino acids tend to be folded into the
core of the protein in its native conformation to avoid expo-
sure to water, while polar amino acids reside preferentially at
the surface.22 The HP model implicitly incorporates the ef-
fect of water only through an attraction between hydrophobic
monomers. This interaction drives the formation of a hydro-
phobic core in the model protein’s native state, which is de-
fined as the lowest-energy state. Polar monomers are ener-
getically neutral with respect to their surroundings, and so
have no intrinsic preference to segregate in any region.
While the HP model is a rough approximation of a protein,
and the lack of secondary structural preferences limits its use
as a predictive tool,21 studies examining the design of protein
native states and structures in these models have captured
some critical properties of real proteins. For example, only a
small fraction of HP sequences fold into unique native
states.23 HP sequences with low-degeneracy native states
also have an optimal balance of H and P monomers, and
increasing or decreasing the hydrophobicity destabilizes the
native state.24

Experimental investigators have successfully used re-
duced protein alphabets to rationally design proteins with
specific structures. Hecht and co-workers have taken advan-
tage of recurring patterns of hydrophobic and polar amino
acids common to secondary structural elements such as
�-helices and �-sheets to synthesize large libraries of stable
proteins.25–29 Their technique generates a large body of dis-
tinct protein sequences with the same predesigned sequence
in the reduced protein alphabet �e.g., PHPPHHPP�, while
each has a distinct sequence of amino acids in the 20-letter

alphabet �e.g., KLNDLLED or KLQEMMKE�.29 They have
had particular success in generating sequences of proteins
that fold into four-helix bundles,25,26 and in selecting these
proteins for particular functions.30,31 The �-helices are pat-
terned in the form PHPPHHPPHPPHHP,25 which is based on
the periodicity of 3.6 residues per complete turn of the helix.
Hydrophobic amino acids are placed along the protein chain
according to this periodicity so that when the helix is folded
it has a hydrophobic and a hydrophilic face. When the four
helices in the bundle come together they are able to sequester
their hydrophobic faces by forming a hydrophobic core. West
et al. have also designed proteins with �-sheets based on an
alternating pattern of PHPHPHPHP.27 However, they were
unable to synthesize proteins with nativelike states using this
pattern, since the designed sequences tended to form non-
native fibrillar structures analogous to those observed in vari-
ous degenerative neurological diseases such as
Alzheimer’s.32 They then analyzed a large library of natural
proteins, which revealed that these alternating patterns of H’s
and P’s appear with less frequency than expected by random
chance.28 They concluded that the rarity of alternations is
due to the potentially harmful effects of misfolded proteins
containing these patterns and, consequently, is disfavored by
natural selection. Other studies of patterns in protein libraries
have focused on the physical locations of the patterns in the
protein or the placement of the protein within the cell. Long
blocks of hydrophobic amino acids are common in parallel
�-sheets, which tend to be buried within the core of the
protein, where hydrophobic amino acids preferentially
reside.33 Long blocks of hydrophobic amino acids are also
far more common in membrane proteins, where there is little
water present, than in aqueous proteins.34

Such insights provide clues about which patterns fold
proteins into stable native states. Other studies have focused
on correlating amino acid substitutions with increased stabil-
ity to extreme conditions such as high temperature, high
pressure, or low temperature.35–39 These studies use proteins
from extremophiles, bacteria specifically adapted to survive
in harsh environments. These proteins are often very similar
to proteins with the same function from normal bacteria,
typically sharing the majority of their respective sequences.35

Examining proteins with enhanced thermostability �stability
at high temperatures� shows that only a few mutations are
required to dramatically change the protein’s stability,40 and
some guidelines for the interactions that confer thermostabil-
ity have been put forward.37,39 Proteins that are unusually
stable to low temperature36,41,42 or high pressure43,44 have
also been examined, but less data are available on the se-
quences or structures of these proteins. In spite of this work,
it remains challenging to directly correlate sequence with
overall thermodynamic properties of proteins, such as the
temperature dependence of the free energy of unfolding.39 A
unified picture of how changes in sequence affects the pro-
tein folding phase diagram is still lacking, partly because
experimental studies of cold and pressure denaturation are
hindered by the difficulty of probing protein behavior at low
temperatures and high pressures. Thermodynamic data for a
wide range of temperature and pressures are only available
for a small number of proteins.1,45–49 Understanding how se-

FIG. 1. Phase diagram of Staphylococcal nuclease from a combination of
Fourier transform infrared spectroscopy, small angle X-ray scattering, and
differential scanning calorimetry experiments. Adapted with permission
�Ref. 1�.
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quence affects all aspects of protein thermodynamics, espe-
cially low-temperature and high-pressure stability, would
help to clarify the mechanisms and driving forces of these
processes.

Because of the challenges to computationally determine
the native state stability, little simulation work has been done
to correlate sequence with stability. It is impractical to simu-
late a variety of sequences using atomically detailed models
because of the intense computational effort required to obtain
thermodynamic properties of the system. Coarse-grained
models such as the HP model are more amenable to studying
the effects of sequence but are limited in the properties that
can be examined. The HP model shows only a broad unfold-
ing transition upon increasing temperature, and because the
model protein’s native state is defined as the total system
ground state, it does not cold-unfold upon decreasing
temperature.7 Thus, the HP model has only a single measure
of stability, the unfolding temperature, which is analogous to
a thermal denaturation temperature. A more detailed model
that displays more proteinlike phase behavior �i.e., cold,
pressure, and thermal denaturation� could offer a more real-
istic basis for studying sequence-stability correlations. With
such a model, linking changes in the protein’s sequence di-
rectly to perturbations of its native state stability, as repre-
sented in Fig. 1, could provide insight into designing stable
protein sequences.

Here, we extend a recently developed lattice model of a
hydrophobic homopolymer in explicit water that exhibits
cold-, pressure-, and heat-induced protein unfolding,50 repro-
ducing the shape of the experimental phase diagram in Fig.
1. We incorporate sequence into the model with a two-letter
alphabet of hydrophobic and polar amino acids. While we
employ the same choice of an alphabet as the HP model, our
model explicitly treats the hydrophobic effect through the
enthalpy and entropy of the solvating water molecules. The
flat histogram method used to simulate the model provides
good sampling of rare protein configurations such as the na-
tive state. This approach yields the protein thermodynamics
over a wide range of temperatures and pressures, but it does
not address the kinetics of protein folding. In spite of the
added complexity of including water explicitly, we are able
to simulate a large body of heteropolymer sequences and
relate aspects of the sequence to native state stability.

The outline of the paper is as follows. In Sec. II, we
describe the details of the heteropolymer model. This is fol-
lowed by an explanation of the flat histogram methods used
to estimate the density of states and extract thermodynamic
properties in Sec. III. We also develop the statistical analysis
procedure required to extract meaningful trends from the
simulation data. In Sec. IV, we discuss general observations
on the phase diagram of model heteropolymers, and discuss
how sequence affects stability through the use of statistical
analysis and directed evolution studies. In Sec. V, we close
by presenting the main conclusions and possible paths for
further development of this work.

II. MODEL DESCRIPTION

The protein is modeled as a self-avoiding heteropolymer
composed of hydrophobic �H� and polar �P� monomers on a

two-dimensional �2D� square lattice. The protein is schemati-
cally shown in Fig. 2 by the connected black �H� and gray
�P� beads, with covalently bonded monomers occupying
nearest-neighbor sites on the lattice. The protein has no self-
interaction aside from excluded volume effects. The only in-
teraction of the protein with the water is through its indirect
effect on water-water hydrogen bonding. The presence of
hydrophobic and polar monomers produces different effects
on the hydrogen bonding of the neighboring water mol-
ecules. The interactions described below generalize the im-
plicit attraction of H monomers in the original HP model7 to
an explicit account of the effect of hydrophobic groups on
the solvating water molecules.50 In the original HP model,
the H-P and P-P interaction is zero, so there was no energetic
distinction between P monomers on the surface or in the
interior of protein. With the introduction of an explicit sol-
vent, an appropriate representation must be devised for the
interaction of the polar monomers with the solvent and with
each other. One alternative is to include an attraction be-
tween polar monomers and between polar monomers and
water to mimic the presence of a hydrogen bond. However,
in real proteins, polar side chains can also interact with the
backbone of the protein, and in this model the backbone is
not represented separately from the functional groups. In the
present work, we take a simpler approach which nevertheless
retains the heteropolymer character of the problem.

The water model is adapted from a lattice model devel-
oped by Sastry et al. to investigate the thermodynamics of
supercooled water.51 The model, which also included empty
lattice sites, displays many of the signature anomalies of wa-

FIG. 2. Schematic of the model protein and water. The black circles are
hydrophobic �H� monomers, the gray circles are polar �P� monomers, and
the lines connecting them are covalent bonds. The white circles are water
molecules, and the four arms on each water molecule are the hydrogen
bonding arms. Examples of each of the four types of bonding arms are
shown, along with the variables which count their number: bulk bonding
arm pairs �Npairs,b�, hydrophobic bonding arm pairs �Npairs,h�, polar bonding
arm pairs �Npairs,p�, and unpaired bonding arms �Nu�. This figure shows a
portion of the whole system and, in practice, a much larger box is used to
prevent the protein from interacting with itself across the periodic boundary.
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ter, including the isobaric density maximum,51 and the in-
crease upon isobaric cooling of the isothermal compressibil-
ity, isobaric heat capacity, and the magnitude of the thermal
expansion coefficient.52 Each water molecule occupies one
site on the lattice, and every site not occupied by the protein
is inhabited by water molecules. As shown in Fig. 2, the
water molecules have four hydrogen bonding arms, each as-
sociated with a neighboring lattice site. The variable �ij rep-
resents the orientation of a bonding arm on water molecule i
associated with the neighbor site j. There are q possible ori-
entations for each bonding arm, and �ij can have values be-
tween 1 and q. Bonding arms on the same water molecule
can adopt orientations independently of each other.

A hydrogen bond forms between two adjacent water
molecules i and j when their bonding arm orientations satisfy
the criterion ��ij −� ji���. � is the tolerance for hydrogen
bonding, or alternatively the size of the range of acceptable
bonding arm pair orientations. When the associated hydrogen
bonding arms on neighboring water molecules satisfy the
above criterion, the energy of the system is reduced by an
amount J, the strength of a hydrogen bond. We treat the
lattice as compressible in order to account for the lower local
density associated with hydrogen bonding, and upon forma-
tion of a hydrogen bond, the total volume expands uniformly
by an amount �v. The total volume V is then determined by
the total number of hydrogen bonds NHB from the relation

V = V0 + �vNHB, �1�

where V0 is the volume of the lattice without hydrogen bond-
ing.

We incorporate principles of hydrophobic hydration into
the model by allowing the presence of the protein in the
vicinity of water molecules to affect the parameters of hy-
drogen bonding, as in our earlier work.50 Frank and Evans
surmised that water molecules tend to order around nonpolar
solutes,53 avoiding orientations in which their hydrogen
bonding arms point toward the hydrophobe. In such low-
entropy configurations, these water molecules sample the
distorted and weaker bonding structures present in bulk with
comparatively less frequency and, therefore, form stronger
hydrogen bonds in the first solvation shell than in bulk.54,55

We refer to these phenomena as the entropic penalty and
enthalpic bonus for hydrogen bonding around hydrophobic
solutes, and model them by distinguishing between three
classes of hydrogen bonds: those formed in bulk, those
formed around hydrophobic monomers, and those formed
around polar monomers. Quantities referring to one of these
types of hydrogen bonds use the subscripts b for bulk, h for
hydrophobic, and p for polar.

The criteria for determining whether a pair of bonding
arms belongs in the bulk, hydrophobic, or polar classes are
illustrated in Fig. 2. Each of these classes has a distinct hy-
drogen bonding criterion given by ��ij −� ji���x, where x
=b ,h, or p. A pair of water molecules is subject to the hy-
drophobic bonding arm tolerance �h if either member of the
pair is adjacent to one or more H monomers. A bonding arm
pair is subject to the polar bonding arm tolerance �p if either
member of the pair is adjacent to one or more P monomers
and neither member is adjacent to an H monomer. Finally, a

bonding arm pair uses the bulk bonding arm tolerance �b if
neither member of the pair is adjacent to any protein mono-
mers.

The entropic penalty for hydrogen bonding around hy-
drophobic monomers arises from the relative values of the
bonding arm tolerances �b, �p, and �h, since these param-
eters directly affect the fraction of orientations capable of
bonding. There are q2 possible values for the orientations of
a pair of associated bonding arms on neighboring water mol-
ecules. The total number of orientations satisfying the bulk
bonding criterion is �2�b+1�q because if one of the arms
adopts any of q possible orientations, its partner must assume
one of 2�b+1 orientations in order to form a hydrogen bond.
If �h��b, then there is an entropic cost for hydrogen bond-
ing around H monomers, since there is a smaller fraction of
orientation pairs that satisfy the hydrophobic bonding
criterion ��2�h+1� /q� than the bulk bonding criterion
��2�b+1� /q�.

We model the enthalpic bonus for hydrogen bonding
around hydrophobic monomers by differentiating between
the strengths of the three classes of hydrogen bonds. The
bulk hydrogen bonds form with a base strength J, while hy-
drogen bonds around H and P monomers have strengths J
+JH and J+JP, respectively. When JH�0, there is an enthal-
pic bonus for the hydrogen bonds around H monomers.
While the model does allow for distinguishing the enthalpy
and entropy of the hydrogen bonds around P monomers from
the other classes of hydrogen bonds, in practice, we consider
the entropic cost and enthalpic bonus of hydrogen bonding
around the H monomers to be most important. In the calcu-
lations that follow we do not examine the effect of varying
the hydrogen bonding properties of the water around P
monomers, and use parameter choices JP=0 and �b=�p. The
Hamiltonian is then

H = − J�NHB,b + NHB,p� − �J + JH�NHB,h �2�

where NHB,b is the number of bulk hydrogen bonds, NHB,p is
the number of hydrogen bonds around P monomers, and
NHB,h is the number of hydrogen bonds around H monomers.

The ranges of potential parameters discussed above en-
sure that the solvation of hydrophobic monomers is consis-
tent with the hydration thermodynamics of small hydropho-
bic solutes. For simplicity, the treatment of the “polar”
monomers used here does not incorporate direct favorable
interactions with the solvent. The P monomers are thus better
described as being less hydrophobic than the H monomers,
akin to amino acids such as glycine. For simplicity, we nev-
ertheless refer to such residues as polar throughout this pa-
per. In future studies, the effect of attractions between P resi-
dues and water, possibly including both hydrogen bonds as
well as nondirectional attractions, should be investigated. We
also note that in subsequent versions of the water-implicit
HP model,56 explicit attractions among hydrophobic and po-
lar monomers were introduced. While these could be easily
incorporated into the present framework, they are potentially
confounding because these interactions represent water
implicitly. In contrast, in our work, water is accounted for
explicitly.
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III. METHODS

A. Calculation of the density of states

To determine the folding properties of the model protein,
we used a recently developed method to efficiently estimate
the density of states of binary lattice systems.57 The method
separates the computation of the protein and water contribu-
tions to the density of states �DOS� and reduces the time
required to accurately estimate the combined DOS. This
separation is possible for systems when the degrees of free-
dom of the two components are conditionally independent.
Here, we present the essential features of the method and
extensions that are specific to this implementation.

A binary system with components 1 and 2 directly inter-
acting has some potential

U�	1,	2� = U1�	1� + U2�	2� + Ui�	1,	2� , �3�

where U is the total potential energy, which is a function of
the degrees of freedom of the two components, 	1 and 	2.
The individual energies of the two components, U1 and U2,
are only functions of their own respective internal degrees of
freedom, while the interaction potential, Ui, is a function of
both components’ degrees of freedom. However, in many
multicomponent systems, the interactions are short range and
are dependent on the properties of the interfacial region. Ui

can be expressed as a function of the degrees of freedom of
the interface �	i�, which are a subset of the degrees of free-
dom of the two components. If the appropriate interfacial
degrees of freedom can be found, the calculation of the prop-
erties of individual components can then be separated. For
conditionally independent subsystems, the total DOS �
t�
can be subdivided according to the following relation:


t�	1,	2;	i� = 
1�	1;	i�
2�	2;	i� . �4�

The notation 
1�	1 ;	i� refers to the DOS of component 1 as
a function of its own internal degrees of freedom, given a
specific set of interfacial degrees of freedom. Equation �4�
allows us to express the total DOS in terms of the simpler
component DOSs.

The model of protein and water presented here is well
suited to separate computation because the interactions of the
protein with the water do not extend past the first solvation
shell. The interfacial degrees of freedom required to establish
conditional independence can be simply described in terms
of the properties of the first solvation shell waters: Npairs,h,
Npairs,p, and Nu. Npairs,h is the number of bonding arm pairs
subject to the hydrophobic hydrogen bonding criterion, illus-
trated by the examples labeled “hydrophobic” in Fig. 2.
Npairs,p is the number of bonding arms pairs subject to the
polar hydrogen bonding criterion, indicated by two examples
labeled polar in Fig. 2. Nu is the number of unpaired bonding
arms associated with a nearest-neighbor protein monomer,
labeled “unpaired” in Fig. 2. These three variables contain all
of the relevant information about the interfacial region re-
quired to separate the total DOS into its protein and water
components. Note that the variables Npairs,h and Npairs,p mea-
sure the number of bonding arm pairs, regardless of whether
or not a hydrogen bond is formed.

Since the protein has no self-interaction aside from ex-
cluded volume effects, we need only determine the degen-
eracy of protein configurations for each possible combination
of the values of the interfacial degrees of freedom,

prot�Npairs,h ,Npairs,p ,Nu�, or 
prot�	i� in shorthand notation.
We use the Wang–Landau method58 to estimate 
prot by
simulating the protein in vacuo. Conventional Wang–Landau
simulations perform a random walk in energy �U� in the
range of possible energies with probabilities proportional to
the reciprocal of the DOS, 1 /
�U�. Instead, we perform a
random walk in the interfacial degrees of freedom. In effect,
this determines the degeneracy of protein configurations that
would produce a set of solvation shell conditions if the water
molecules were present. The simulation also determines
which values of the interfacial degrees of freedom 	i are
possible, since this is not known initially.

The density of states is not known a priori, but is ini-
tially set to 
prot=1 for all possible configurational states.
The DOS is then gradually refined during the simulation.
Trial moves from an old configuration �o� with interfacial
properties 	i,o to a new configuration �n� with interfacial
properties 	i,n are accepted with probability

pacc�o → n� = min�1,

prot�	i,o�

prot�	i,n�� . �5�

When a state with interfacial properties 	i is visited dur-
ing the simulation, the corresponding bin in the DOS esti-
mate is updated by multiplying the current value by a modi-
fication factor f , i.e., 
prot�	i�→
prot�	i�f . Initially, the
modification factor is set to f0=e1�2.718 28 to ensure effi-
cient sampling of all possible protein configurations. A his-
togram counting the frequency of visits to each configura-
tional state h�	i� is updated after each trial move in the
simulation, i.e., h�	i�→h�	i�+1. The simulation continues
until h�	i� is sufficiently flat to ensure that there is a rela-
tively even sampling of configurational states. Here, we con-
sider the histogram of visited states to be sufficiently flat if
every bin of h�	i� is at least 80% of the average histogram
value 	h�	i�
. To refine the precision of the DOS estimate, the
modification factor is reduced to fnew=�fold upon satisfying
the flat histogram condition. The histogram h�	i� is then reset
to zero and a new iteration begun. The simulation continues
until the histogram of visited states is again sufficiently flat,
and the modification factor is again reduced according to the
same schedule. This iterative refinement of the DOS is re-
peated until f is less than exp�10−7�.

We use a different approach to compute the water den-
sity of states 
w. The water DOS is composed of configura-
tional �
w,c� and orientational �
w,o� components. 
w,c for a
fully occupied lattice is independent of the degrees of free-
dom of the system and is simply the number of ways of
placing Nw water molecules onto Nw lattice sites, or Nw!.

w,o is dependent on the interfacial degrees of freedom, and
its form can be adapted from Eq. �4� to the notation

w,o�	w ;	i�. This quantity can be exactly computed because
the orientations of the bonding arms on an individual water
molecule vary independently of each other. Based on the
hydrogen bonding criteria described above, there are four
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possible kinds of hydrogen bonding arms, as shown in Fig. 2.
The three types of paired bonding arms, Npairs,b, Npairs,h, and
Npairs,p, can be further subdivided into those that have formed
hydrogen bonds and those that have not. For example, the
total number of bulk bonding arm pairs is the sum of the
number of bulk hydrogen bonds �NHB,b� and the number of
nonbonding bulk pairs �NNHB,b�, or Npairs,b=NHB,b+NNHB,b. If
we define 	w to include NHB,b, NHB,h, and NHB,p, then speci-
fying 	w and 	i describes the orientational state of the water
molecules completely.

The DOS of each of the four kinds of bonding arms can
be analytically calculated from expressions developed in de-
tail in Ref. 57. The orientational DOS of the three types of
bonding arm pairs �bulk, polar, or hydrophobic� follow the
same general form,


w,x�NHB,x,NNHB,x� =
�Npairs,x�!

NHB,x!NNHB,x!

�qNpairs,x�2�x + 1�NHB,x

��q − 2�x − 1�NNHB,x, �6�

where the subscript x=b ,h, or p depends on the class of
bonding arm pairs. The orientational DOS of the unpaired
bonding arms is


w,u�Nu� = qNu. �7�

Because the protein simulation determines which combi-
nations of the variables in 	i are possible, we can then deter-
mine the range of the values of the variables in 	w to com-
pute the water orientational DOS. For a given set of
interfacial conditions, we know the value of Npairs,h, Npairs,p,
and Nu. Specifying Npairs,h and Npairs,p places an upper limit
on the values of NHB,h and NHB,p, since Npairs,h=NHB,h

+NNHB,h. Npairs,b can then be calculated by breaking down the
total number of bonding arms into each of the four classes

4Nw = 2Npairs,b + 2Npairs,h + 2Npairs,p + Nu. �8�

The value of Npairs,b places an upper limit on the value of
NHB,b, since Npairs,b=NHB,b+NNHB,b. The water orientational
DOS can then be calculated as a product of the orientational
DOS of each of the types of bonding arms, or


w,o�	w;	i� = 
w,b�NHB,b,NNHB,b�
w,h�NNB,h,NNHB,h�

�
w,p�NHB,p,NNHB,p�
w,u�Nu� . �9�

Note that the values of NHB,b, NHB,h, and NHB,p can vary
independently of each other because the orientations of
bonding arms on an individual water molecule fluctuate
independently.

Thus, for a protein configurational state given by Npairs,h,
Npairs,p, and Nu, we can determine the upper and lower limits
of the values of the variables NHB,b, NNHB,b, NHB,p, NNHB,p,
NHB,h, and NNHB,h. Then, for every possible combination of
the preceding variables which describe the orientational state
of water, we use Eqs. �6� and �7� to calculate each of the
components of the water orientational DOS. Applying Eq.
�9� gives us the total orientational DOS for water for each of
the possible specifications of water’s hydrogen bonding state

associated with a protein configurational state. Adapting
Eq. �4� to our protein and water system allows for the com-
putation of the total DOS:


t�	w;	i� = 
prot�	i�
w,o�	w;	i�
w,c. �10�

Repeating the procedure for all possible protein configura-
tional states �or all possible values of the variables in 	i�
yields the total DOS for all configurational and orientational
states of the water and protein. This quantity can be used to
calculate the thermodynamics of the system.

In order to extract the protein properties from the simu-
lation data, we must convert the DOS into more useful quan-
tities. Because there are fluctuations in both internal energy
and volume in the simulation, we can reweight the DOS in
the isobaric-isothermal ensemble. For a given pressure P and
temperature T, the probability of a state j, specified by the
water and protein degrees of freedom included in 	w and 	i,
is

pj�P,T� =

t�	w;	i�e−�U�	w,	i�−�PV�	w,	i�

��P,T�
, �11�

where �=1 /kBT and � is the isobaric-isothermal partition
function. The internal energy and volume can be calculated
from 	w and 	i for each state using Eqs. �2� and �1�. Because
we do not specify the values of the model parameters during
the determination of the total DOS, the simulation data can
be analyzed for any parameter set. This is an important ad-
vantage of our method.

The protein native state is identified as the configuration
in which the protein is maximally compact and has the
smallest surface area of hydrophobic groups exposed to the
solvent. In the native state configuration, the protein has
formed a core of hydrophobic monomers, with polar mono-
mers preferentially residing at the surface of the protein. The
change in the free energy upon folding �G can be calculated
from the probability of occupying the native state pn by us-
ing the equilibrium relation of the two-state model of protein
folding

�G�P,T� = Gnative − Gdenatured = RT ln�1 − pn�P,T�
pn�P,T� � .

�12�

The transition between the native and denatured states occurs
when �G�P ,T�=0 or, equivalently, when pn�P ,T�=0.5.

B. Sequence pattern analysis

Inspired by the experimental studies of binary patterning
in secondary structure,25,26 we investigate which patterns of
H’s and P’s may confer stability on heteropolymer sequences
in our model. To accomplish this task, we adapt an existing
technique from genomic analysis that is used for finding con-
served DNA sequences.59 We apply this analysis to deter-
mine if the distributions of various patterns in very stable
sequences are random. We begin with the hypothesis that
there is no correlation between sequence and stability. There-
fore, we assume that any variation in the appearance of pat-
terns in very stable sequences that departs from what is ex-
pected from a randomly generated set of sequences is due
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entirely to random chance. The alternative hypothesis is that
the appearance �or absence� of certain patterns in very stable
sequences is indeed significant, and that some correlations
between those patterns and protein stability exist. In the ex-
planation that follows, we demonstrate how we perform the
statistical analysis to determine that certain patterns are in-
deed important in very stable sequences.

To begin, we must quantify stability in a way that can be
simply measured from the simulation results. Three natural
measures of protein stability are evident in the P-T phase
diagram. One option is the thermal stability �T, which we
define as the range of temperatures at pressure P=0 where
the protein is in its native configuration. This is the differ-
ence between the thermal denaturation temperature TH and
the cold denaturation temperature TC, or �T=TH−TC. An-
other option is the pressure stability Pmax, which is quantified
by the maximum stable pressure of the native protein. Fi-
nally, the aggregate stability A is defined as the area enclosed
by the protein native state phase boundary and the x axis in
Fig. 1. To determine which sequences are “very stable,” we
set a threshold value of one of these metrics �i.e., �T† for
thermal stability�. Sequences with values of �T greater than
�T† are included in the subset of very stable sequences,
while the remainder are excluded. In lieu of setting arbitrary
values for the threshold parameters, �T†, Pmax

† , and A† are
selected such that the subset of very stable sequences always
contains the top 10% of sequences simulated at a given pro-
tein size and composition. For example, for the set of 16-
mers with 50% hydrophobicity, the subset of very stable se-
quences includes the nsample=64 sequences with the highest
�T values out of the full set of 644 sequences simulated.

We then examine the frequencies of each pattern of H’s
and P’s to determine whether they are more or less common
in very stable sequences than expected by random chance.
For a particular pattern, such as PHPP, we scan among the
subset of very stable sequences to count the average fre-
quency of the pattern x̄. For larger proteins �NMon�25�, we
would compare the very stable sequences to the properties of
a random sample of protein sequences with the same size and
composition. However, for the 16- and 20-mers studied here,

it is possible to enumerate the complete population of se-
quences with a given size and overall composition. We then
calculate the mean ��� and standard deviation ��� of the
frequency of a particular pattern in the full population.

If the frequency of a pattern in the population of all
sequences is normally distributed, we can apply a standard
Z-test to determine if deviations from random chance in the
subset of very stable sequences are statistically significant.
This procedure mirrors the conventional method for a Z-test,
as described in standard statistics textbooks.60 The Z-score of
a pattern is calculated as Z= �x̄−�� / �� /�nsample�, and is com-
pared to the standard normal probability distribution to get a
p-value. This p-value is the probability that the deviation of
the pattern frequency in the very stable sequences from the
population is due to random chance. For very low p-values,
our hypothesis that any deviation is due to random chance
will break down, and we can conclude that the appearance or
the absence of the pattern is statistically significant. A cutoff
of p=0.025 is used to determine which patterns are statisti-
cally significant.

In practice, the Z-test is applied to distributions that are
either normal or at least approximately normal. The approxi-
mation of normality holds well for the distributions of small
pattern sizes examined here, but begins to break down for
larger patterns. Patterns of five monomers are at the thresh-
old of what can be tested for these smaller proteins due to the
limited frequency of observing larger patterns in the se-
quences simulated. Visual inspection of the population dis-
tribution of patterns of more than five monomers show that
they are irregular and do not resemble normal distributions.
To check that the results presented here are not heavily af-
fected by the assumption of a normal distribution, we also
used a nonparametric test, the Wilcoxon rank-sum test.60 The
rank-sum test does not require an assumption about the shape
of the population distribution, and any inconsistencies be-
tween the results of the Z-tests and the rank-sum tests would
indicate shortcomings in our analysis. However, for all the
statistical tests applied in this study, both methods come to
the same conclusions about statistically significant patterns

TABLE I. Example 16-mer and 20-mer sequences with their thermal stability ��T�, pressure stability �Pmax�,
and aggregate stability �A� given in dimensionless units for model parameters JH /J=0.05, �b=�p=3, �h=0,
q=70, and �v /v0=0.35. The ranks listed next to each stability measure are the position of that sequence when
ranked among sequences of the same size and composition in order of most stable to least stable for that
stability measure.

No. Sequence �T Rank Pmax Rank A Rank

16.1 H8P8 0.080 77 1 2.101 2 0.087 79 2
16.2 P5HPH3PH3PH 0.079 22 2 2.105 1 0.088 62 1
16.3 PH2P2HPHP3H3PH 0.078 02 3 2.015 5 0.083 67 3
16.4 �P2H2�4 0.076 90 7 1.982 8 0.080 89 8
16.5 HPHPH2PHP2HPHPHP 0.058 20 354 2.050 3 0.068 64 123
16.6 P4H8P4 0.040 86 493 0.792 527 0.018 73 522

20.1 H10P10 0.074 54 1 1.905 1 0.075 54 1
20.2 P5H2P5H8 0.073 15 2 1.859 2 0.072 46 2
20.3 PHP2HP7H8 0.072 73 3 1.853 4 0.072 20 3
20.4 PHP4H4P2H2P3H3 0.072 71 4 1.854 3 0.071 86 4
20.5 P4H3PHP3H4P2H2 0.069 56 6 1.755 8 0.065 74 6
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over 90% of the time, validating the use of the Z-test. In Sec.
IV, the results of the pattern analysis include only the Z-test
data, while complete information on both the Z-test and the
Wilcoxon rank-sum test are included in the Supplemental
Materials.61

IV. RESULTS

A. General model properties

Figure 3 shows the phase diagram for a 16-mer het-
eropolymer with sequence �P2H2�4 �referred to as sequence
16.4�. Table I collects the sequences and properties of the
heteropolymers discussed in this section, including sequence
16.4. The phase diagram in Fig. 3 is representative of a het-
eropolymer that folds into a stable native state at positive

pressures. The native state structure of sequence 16.4 stable
at low pressures and intermediate temperatures is depicted in
Fig. 4�a�. As described in Sec. III A, the model protein in its
native state has a compact configuration with a hydrophobic
core. This structure minimizes the exposed surface area of
the hydrophobic monomers, reducing the number of interfa-
cial hydrogen bonds around hydrophobic monomers that
must pay an entropic cost to form. Increasing temperature
causes the protein to unfold, bringing more hydrophobic
monomers into contact with the solvent. At higher tempera-
ture, the thermal energy can overcome the entropic cost of
forming entropically penalized hydrogen bonds next to hy-
drophobic monomers. There is a large ensemble of confor-
mations sampled in the thermally denatured state, and sev-
eral of these configurations are shown in Fig. 4�c� for
sequence 16.4. Lower temperatures favor the formation of a
cold-denatured state, in which the protein remains compact
but exposes additional hydrophobic monomers to the solvent
in order to form more of the enthalpically favorable hydro-
gen bonds around hydrophobic monomers. Figure 4�b�
shows the configuration of the protein cold-denatured state,
in which the protein’s hydrophobic core is disrupted. Experi-
mentally, cold-denatured states are often characterized as
collapsed configurations with more structure than the ther-
mally denatured states, which constitute an ensemble of un-
folded and partially folded configurations.62,63 Figures 4�b�
and 4�c� show that the model protein approximates this be-
havior well through the ensemble of thermally denatured
configurations and the compact cold-denatured configuration
lacking a hydrophobic core.

Figure 3 also shows that the slope of the cold-
denaturation curve is infinite at P=0. The cause becomes
clear when the properties of the native and cold-denatured
states are considered. Both structures are compact, and the
water around them forms the same number of hydrogen
bonds. Because the system volume, as defined in Eq. �1�, is
only a function of the number of hydrogen bonds, both the
cold-denatured and native states have the same volume.

FIG. 3. The phase diagram of a 16-mer heteropolymer denoted 16.4, with
sequence �P2H2�4, for parameter values of JH /J=0.1, �b=�p=2, �h=0, q
=50, �v /v0=0.35. The inner line marks the region within which the prob-
ability of observing the native state is 60% or greater. In the same way, the
other lines mark the regions within which the native state probabilities are
greater than 50% �bold�, 40%, 30%, 20%, and 10% �outermost�.

FIG. 4. Representative configurations for sequence 16.4 in the �a� native state, �b� cold-denatured state, and �c� thermally denatured ensemble of states.

175102-8 Patel et al. J. Chem. Phys. 128, 175102 �2008�

Downloaded 16 Nov 2008 to 128.112.81.90. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/jcp/copyright.jsp



Since these two states are the only significant states at P=0,
the volume does not change upon cold-unfolding, or
�Vu�TC�=0. The Clapeyron equation describes the slope of a
phase boundary as

dP

dT
=

�S

�V
, �13�

where �S and �V are the changes in entropy and volume
upon undergoing a phase transition. Applying the Clapeyron
equation to the cold-unfolding transition in our model pro-
tein, we observe that the slope of cold-denaturation curve
will always be infinite since there is no difference in the
volume of the cold-denatured and native states. The positive
slope of the cold-denaturation curve at higher pressures re-
flects the fact that other noncompact denatured states are also
observed at these conditions, leading to nonzero volume
changes upon unfolding. The slope remains very high even at
pressures approaching Pmax, indicating that the volume dif-
ference between the native and denatured states is still very
small and that the low-pressure cold-denatured state remains
important at high pressures.

Using physically chosen scaling factors of 23 kJ /mol for
the strength of a hydrogen bond �J� and 18 cm3 /mol for the
molar volume of a lattice site �v0=V0 /Nsites�, we can convert
the phase diagram of the model heteropolymer into physical
units. Figure 5 shows the phase diagram of sequence 16.4
with potential parameters �b=�p=2, �h=0, JH /J=0.1, and
�v /v0=0.35. The model phase diagram has the same general
shape as the phase diagram of Staphylococcal nuclease from
Fig. 1, with minor differences in the ranges of stable tem-
peratures and pressures. The comparison between the model
protein and Staphyloccal nuclease is not based on a direct
correspondence between their respective sequences or com-
positions. Rather, we emphasize that the model heteropoly-
mers exhibit denaturation in the same regions of temperature
and pressure, as experimentally observed in biological pro-

teins. Even without incorporating effects such as internal
protein hydrogen bonding, electrostatics, disulfide bonds or
side-chain packing, the model protein retains the general
thermodynamic characteristics of real proteins with respect
to pressure and temperature.

We vary the parameters determining the strength of the
enthalpic bonus and entropic penalty to examine in greater
detail how the forces stabilizing the native state influence the
shape of the phase diagram. Figure 6 shows the effect of
varying the enthalpic bonus JH on the phase diagram of se-
quence 16.4. The stability of the native state at low tempera-
ture decreases as JH increases because the cold-denatured
state is relatively more stabilized. Increasing JH strengthens
the hydrogen bonds solvating hydrophobic monomers, and
the cold-denatured state exposes more hydrophobic mono-
mers to the solvent than the native state. Above JH=0.14, a
compact native state with a hydrophobic core as shown in
Fig. 4�a� is no longer stable at positive pressures. However,
we find that a minimum value of JH0 is necessary to form
a stable native state, and without an enthalpic bonus, the
protein does not fold into the native state.

The effect of varying the entropic penalty for forming
hydrogen bonds around hydrophobic monomers is shown in
Fig. 7. We tune the strength of the entropic penalty by chang-
ing the values of �b and �p while fixing the value of �h to
zero. By increasing �b and �p relative to �h, we increase the
entropy of hydrogen bonds formed in bulk and around polar
monomers relative to the entropy of hydrogen bonds formed
around hydrophobic monomers. q also varies so that the frac-
tion of total orientation pairs suitable for hydrogen bonding
in bulk, �2�b+1�q /q2 remains fixed. We observe that an en-
tropic penalty is necessary to stabilize the native state rela-
tive to other protein configurations. Figure 7 shows that for a
minimal entropic penalty of �b=�p=1, we observe a stable
native state at positive pressures. Increasing the entropic pen-
alty by increasing �b and �p further stabilizes the protein
native state at the expense of the cold-denatured state. As
noted above, the native state exposes fewer hydrophobic

FIG. 5. Contour of 50% native state probability for sequence 16.4 with
temperature and pressure converted into dimensional quantities using J
=23 kJ /mol and v0=18 cm3 /mol for parameter values JH /J=0.1, �b=�p

=2, �h=0, q=50, �v /v0=0.35.

FIG. 6. Contours of 50% native state probability for sequence 16.4 for
varying values of the enthalpic bonus JH /J. The other model parameters
remained constant at �b=�p=3, �h=0, q=70, and �v /v0=0.35.
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monomers to the solvent than the cold-denatured state. In-
creasing the entropic penalty reduces the entropy of the cold-
denatured state more than that of the native state, which
pushes the transition between the two states to a lower tem-
perature.

Figures 6 and 7 confirm that the model parameters have
the same basic effect on the model heteropolymer as on the
model hydrophobic homopolymer previously studied.50 It is
significant that while the homopolymer model showed cold-
denaturation at ambient pressures for a limited range of val-
ues of JH and �b, the heteropolymer model shows a much
wider range of model parameters that display this phenom-
enon. In the heteropolymer model, as long as JH�0 and
�b ,�p��h, the protein will cold-unfold at ambient pressure.
It is a novel feature of the heteropolymer model that if con-
ditions favor a stable native state at ambient pressure, then a
lower-enthalpy ground state structure also exists, which is
stable at lower temperatures. From consideration of the
structures in Fig. 4, we can see that if there is a native state
configuration in which a minimum number of hydrophobic
monomers are exposed, then there must also be a cold-
denatured configuration in which the maximum number of
hydrophobic monomers are exposed. In contrast, the protein
unfolds into a fully extended configuration in the cold-
denatured state in the homopolymer model.50

The thermodynamic properties of sequence 16.4 provide
a general description of the stability of a characteristic se-
quence. To probe the effect of sequence on stability, we per-
formed simulations of a large number of randomly generated
heteropolymer sequences: 10% of all possible unique se-
quences of 16-mers of 37.5%, 50%, and 62.5% H composi-
tion �6, 8, and 10 H monomers, respectively�; and 1% of all
possible unique sequences of 20-mers of 50% composition.
We limit the investigation to unique sequences, excluding

FIG. 8. Distributions of the range of thermal stability �T of randomly generated sequences for four different sets of sizes and H composition: �a� 16-mers at
37.5%, �b� 16-mers at 50%, �c� 16-mers at 62.5%, and �d� 20-mers at 50%. The number of sequences with thermal stability in the interval 0��T�0.01 in
dimensionless units is shown by the height of the bar marked 0.01. The left axis shows the total number of sequences in each interval of thermal stability,
while the right axis shows that number relative to the total number of simulated sequences in that set. The model parameters values are JH=0.05, �b=�p

=3, �h=0, q=70, and �v /v0=0.35.

FIG. 7. Contours of 50% native state probability for sequence 16.4 for
varying values of the relative entropic penalty for hydrogen bonding around
hydrophobic monomers. The parameter values used were �h=0 and chang-
ing �b�=�p�. To maintain the same bulk water thermodynamics, the total
number of water orientations q increases so that the fraction of bonding
orientations for a pair of bonding arms �i.e., �2�b+1�q /q2= �2�b+1� /q� is
kept constant at 0.1. The other model parameters remained constant at
JH /J=0.05, �v /v0=0.35.
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sequences that are reflections of each other. It is impractical
to simulate all of the sequences in each set, as the total num-
ber of unique 16-mers with 37.5%, 50%, and 62.5% compo-
sition is 4032, 6470, and 4032, respectively, and there are
92 504 unique 20-mers of 50% hydrophobicity. For these
sampled subsets, the distributions of the thermal stabilities of
the simulated proteins are given in Fig. 8, while the distribu-
tions of the pressure stabilities are given in Fig. 9. In all
cases, the sequences show a bimodal distribution in stability,
with a large number of unstable sequences and a large num-
ber of stable sequences distributed around a comparatively
high mean stability. These distributions demonstrate that sta-
bility varies greatly depending on its sequence, even among
sequences with the same size and composition. Figures 8 and
9 also show that the fraction of stable sequences decreases
upon increasing from 16 to 20 protein monomers. However,
the distributions do not clearly show the dependence of sta-
bility on composition.

Table II gives the average values of several measures of
stability among each of the four sets of simulated sequences.
The 16-mers demonstrate that native state stability decreases
with increasing hydrophobicity for all of the measures. With

additional hydrophobic monomers, the protein cannot as ef-
fectively isolate the hydrophobic monomers in the core in the
native state configuration and instead exposes more of them
to water. Thus, proteins with higher average hydrophobicity
have a reduced native state enthalpy and entropy because the
additional exposed hydrophobic monomers create more sol-
vating hydrogen bonds that are stronger, but have fewer
available hydrogen bonding orientations. However, the en-
thalpy of the cold-denatured state decreases more than that of
the native state with additional H monomers, reducing the
native state’s stability to low temperature. The lower entropy
of the native state weakens its stability to high temperature,
since the entropy of the thermally denatured states is not
similarly reduced. The entropic cost of these additional H
monomers does not equally affect the thermally denatured
states and the native state because some of the solvating
hydrogen bonds subject to the entropic cost are broken in the
thermally denatured states. The net effect is that the native
state stability is reduced at high and low temperatures
through two different mechanisms. In contrast, proteins with
more polar monomers have a higher average stability be-
cause water molecules can behave around polar monomers as

TABLE II. Average values of the properties of large sets of simulated sequences for model parameters JH /J
=0.05, �b=�p=3, �h=0, q=70, and �v /v0=0.35. %H is the percent hydrophobicity of the set of sequences.

NMon %H TH TC �T Pmax A

16 37.5 0.092 02 0.037 19 0.054 83 1.353 0.047 66
16 50.0 0.089 40 0.037 67 0.051 74 1.262 0.043 64
16 62.5 0.086 12 0.036 83 0.049 29 1.198 0.041 34
20 50.0 0.057 09 0.030 07 0.027 02 0.628 0.018 51

FIG. 9. Distributions of the pressure stability Pmax of randomly generated sequences for four different sets of sizes and H composition: �a� 16-mers at 37.5%,
�b� 16-mers at 50%, �c� 16-mers at 62.5%, and �d� 20-mers at 50%. The model parameter values are JH=0.05, �b=�p=3, �h=0, q=70, and �v /v0=0.35.
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they do in bulk. Table II also confirms that 20-mers are less
stable than the 16-mers of the same composition. This indi-
cates that the destabilizing effect of adding two hydrophobic
monomers is not balanced by the addition of two polar
monomers, which are effectively neutral in their interaction
with water. It is likely that this destabilizing trend would
continue to larger protein sizes, given the lack of any addi-
tional protein-protein stabilizing interactions in the present
model.

Experimentally, only a small fraction of randomly gen-

erated sequences are expected to fold into functional native
states.3,13 In the case of our 20-mers, 60% of the sequences
fold into stable native states at positive pressures, a majority
of the sequences. However, the fraction of sequences which
fold successfully depends greatly on the choice of param-
eters. Figure 10 shows that for parameter values �v /v0

=0.35, JH /J=0.1, �b=�p=2, �h=0, and q=50, a much
smaller fraction of proteins fold stably. This follows logically
from Figs. 6 and 7, which show that increasing the enthalpic
bonus and reducing the entropic penalty destabilize the na-

TABLE III. Statistically significant patterns between two and five monomers in length from the set of very
stable 16-mers with 50% composition. The frequent patterns appear more often than expected by random
chance in the top 10% most stable simulated sequences, while the infrequent patterns appear less often than
expected by random chance.

�T Pmax A

Frequent Infrequent Frequent Infrequent Frequent Infrequent

HH HP None HHPHP HH HP
PP HPH PP PHP
HHH PHP PPP HPHP
PPP HPHP HHHH HHPHP
HHHH HPPH PPPP HPHPH
HPPP HHPHP HHHHP PHPHP
PPPP HPHPH PPPPP
HHHHH HPHPP
HHHHP HPPHP
HPPPP PHPHP
PHPPP
PPPPP

FIG. 10. Distributions of the range of thermal stability �T of randomly generated sequences for four different sets of sizes and H composition: �a� 16-mers
at 37.5%, �b� 16-mers at 50%, �c� 16-mers at 62.5%, and �d� 20-mers at 50%. The model parameter values are JH=0.1, �b=�p=2, �h=0, q=50, and
�v /v0=0.35.
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tive state. Using this parameter set, only 5 out of the 928
simulated 20-mers have stable native states. These five 20-
mers that are stable for this choice of potential parameters
remain the five most stable sequences for other values of
parameters, including those used in Figs. 8 and 9, and the
relative stability of sequences in a set does not depend on the
choice of parameters. In the following calculations, we will
continue to use the parameter set employed in Figs. 8 and 9
because of the larger number of stable sequences available
under those conditions. This allows us to better discriminate
between the properties of the very stable sequences and the
less stable sequences.

Sequences 16.1–16.5 and 20.1–20.5 listed in Table I are
some of the most stable sequences in the sets of 16-mers and
20-mers with 50% composition. Table I shows the thermal,
pressure, and aggregate stability of these sequences, along
with the rank of each sequence when compared to other se-
quences of the same size and composition. Interestingly, the
most stable sequences of each size were H8P8 and H10P10,
diblocks of H’s and P’s. These were not randomly generated
sequences but instead were specifically selected to see how
they compared to the randomly generated set. However, in
both cases, the diblocks were only slightly more stable than
the most stable randomly generated sequences of those sizes,
sequences 16.2 and 20.2. The factors influencing the model
protein’s stability are not obvious from inspection of Table I.

While blocks of H’s and P’s seem to be important contribu-
tors to protein stability, it is not clear by visual inspection of
Table I that this is the only contributor. In the next section,
we apply the statistical analysis explained in Sec. III B to
probe the connection between sequence and stability more
quantitatively.

B. Pattern analysis

For reference, the Supplemental Materials61 contain the
complete pattern analysis results, including the Z-scores and
p-values of each statistical test applied to every pattern.
Tables III–VI present the final results of the pattern analysis
on each of the four sets of simulated sequences. Each table
lists the patterns which are very frequent and very infrequent
in the subset of very stable sequences, for each of the three
stability metrics, �T, Pmax, and A. The pattern analysis of
thermal stability demonstrates that blocks of H’s or P’s are
more frequent in very thermally stable sequences. This con-
firms the previous observation that the diblock sequences
16.1 and 20.1 are among the sequences with the greatest
stability, and that there is some feature inherent in long
blocks which favors greater protein stability. Alternations in
sequence such as the pattern HPHPH are very infrequent in
the very thermally stable sequences. However, Table III
shows that the significant patterns observed vary depending

TABLE IV. Statistically significant patterns from the set of very stable 16-mers with 37.5% composition.

�T Pmax A

Frequent Infrequent Frequent Infrequent Frequent Infrequent

HH HP HH HP HH HP
PP HPH PP HPHP PP HPP
HHH HPP HHH HPHPP HHH PHP
PPP PHP PPP PHPHP HHP HPHP
HHHH HPHP HHHH PPP HPPH
HHHP HPPH HHHP HHHH PHPP
PPPP PHPP PPPP HHPP HPHPP
HHHHH HPHPP HHHHH PPPP HPPHP
HHHHP HPPHP HHHHP HHHHH PHPHP
HHHPP PHPHP HHHPH HHHHP PHPPP
HHPPP PHPPP PPPPP HHPPP PPHPP
HPPPP PPPPP
PPPPP

TABLE V. Statistically significant patterns from the set of very stable 16-mers with 62.5% composition.

�T Pmax A

Frequent Infrequent Frequent Infrequent Frequent Infrequent

PP HP PP HP HH HP
PPP HPH PPP HPH PP HPH
HHHH PHP HHHH PHP HHH PHP
PHHP HHHP PPPP HHHP PPP HHHP
PPPP HPHP HHHHH HPHP HHHH HPHP
HHHHH HHHPH HPPPP HHPPH PPPP HHHPH
HPHHP HHPHP PPPPP HHPHP HHHHH HHPHP
HPPPP HPHPH HPHPH HPPPP HPHPH
PPPPP PHHHP PPPPP PHHHP
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on the measure of stability used. For the set of 16-mers with
50% composition, the importance of specific patterns is
clearer among the thermally stable sequences than among the
pressure-stable sequences. 22 patterns are statistically sig-
nificant in their appearance or absence in the thermally stable
sequences, while only one pattern is significant in the
pressure-stable sequences. This distinction is evident from
Table I as well, where sequence 16.5 ranks third in pressure
stability but 354th in thermal stability. The analysis gives no
indication that any particular pattern is important for the
pressure stability of these proteins, even patterns which dif-
fer from those observed in the thermally stable subset. Since
the aggregate stability incorporates aspects of both pressure
and temperature stability, the results of the patterns analysis
for aggregate stability in Table III are intermediate between
those for pressure and temperature stability.

The 16-mers with 50% composition have the sharpest
contrast between the pattern analysis results for thermal- and
pressure-stable proteins. Tables IV–VI show that the distinc-
tion breaks down at different compositions and different pro-
tein sizes. For these sets, there is a greater correspondence
between thermally stable and pressure-stable proteins, evi-
dent in the percentage of the subset of most thermally stable
sequences which also belong to the subset of most pressure
stable sequences. Only 66% of the very thermally stable 16-
mers of 50% hydrophobicity show this correspondence with
the pressure-stable subset, while 86% of the very thermally
stable 20-mers also belong to the pressure-stable subset. In
these other cases, all measures of stability show that the very
stable sequences have blocks of H’s and P’s more frequently
than expected and have alternations of H’s and P’s less fre-
quently than expected.

The reasons for the frequency of blocks of H’s and P’s
and the lack of alternating patterns among stable sequences
are apparent upon consideration of the model geometry and
physics. The driving force for folding of the model protein is
to limit exposure of hydrophobic monomers to the solvent
through the formation of a hydrophobic core. It is difficult to
form a hydrophobic core when the protein has long sections
of alternating H’s and P’s because of the geometry of the 2D
square lattice. For example, a fully alternating sequence,
�HP�8, lacks the protein properties characterizing the other

heteropolymer sequences. At low pressures, it does fold into
a compact configuration, but this structure does not have a
hydrophobic core. Because there is no hydrophobic core to
disrupt, this sequence does not have the distinction between
the native and cold-denatured configurations of sequence
16.4 shown in Figs. 4�a� and 4�b�. Therefore, the fully alter-
nating sequence does not cold-unfold at low temperatures,
and the non-native compact structure remains stable. This
extreme example indicates that alternations of H’s and P’s
reduce the differences between the native and cold-denatured
protein configurations and weaken the stability of the native
state. In contrast, long blocks of H’s and P’s allow for greater
flexibility in the configurations which can form a hydropho-
bic core. This increases the difference between the number of
hydrophobic monomers exposed in the native and cold-
denatured states, improving the stability of the native state.
This flexibility provided by blocks of H’s and P’s also in-
creases the configurational degeneracy of the native state
relative to that of denatured states, leading to a greater native
state stability.

In practice, it is difficult to use the results of the pattern
analysis alone to design new sequences. Aside from the
diblock heteropolymers of sequences 16.1 and 20.1, it is dif-
ficult to rationally design a sequence that would be among
the top 10% of stable sequences for any of the three stability
parameters. From the pattern analysis results, we would ex-
pect sequence 16.6, P4H8P4, to be among the most stable,
given its long blocks of H’s and P’s. In fact, sequence 16.6 is
in the bottom quartile of all sequences simulated with that
size and composition. This demonstrates that while the pat-
tern analysis shows general trends in the data, it does not
provide simple absolute rules for designing new sequences.

As noted in Sec. I, significant patterns in naturally oc-
curring proteins are heavily dependent on their location in
the protein and their presence in the secondary structural
elements. Because the model proteins do not reproduce the
secondary structure of biological proteins, we should not ex-
pect a direct correspondence between the important patterns
in our model and those in the naturally occurring proteins.
Indeed, since the native conformations for model heteropoly-
mers do not possess structural subunits resembling �-helices,
we do not observe the patterns used to design, for example,

TABLE VI. Statistically significant patterns from the set of very stable 20-mers with 50% composition.

�T Pmax A

Frequent Infrequent Frequent Infrequent Frequent Infrequent

HH HP HH HP HH HP
PP HPH PP HPH PP HHP
HHH PHP HHH HHPH HHH HPH
PPP HHPH PPP HPHP PPP PHP
HHHH HPHP HHHH HHPHP HHHH HHPH
HPPP HHPHP HPPP HPHHP HPPP HPHP
PPPP HPHHP HHHHH HPHPH PPPP HHPHP
HHHHH HPHPH HHHHP HPHPP HHHHH HPHHP
HHHHP HPHPP PPHPP PHHHP HHHHP HPHPH
HHPPP PPPPP PPHPP HPHPP
PPPPP PPPPP PHHHP
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four-helix bundles. Furthermore, we would not expect the
periodicity of H’s and P’s in helixlike structures on a 2D
square lattice to favor the same patterns as observed in bio-
logical proteins. Some features of binary patterning from
biological proteins are observed in the model heteropoly-
mers, including the prevalence of long hydrophobic blocks in
buried segments.33 While model hydrophobic blocks do not
belong to parallel �-sheet structures like in naturally occur-
ring proteins, the role the of blocks of H’s in stabilizing the
hydrophobic core and the protein is the same. While the lack
of alternating H’s and P’s in the present model heteropoly-
mers is due to features of the model geometry, these patterns
lead to the formation of ultrastable non-native states. This is
similar, in principle, to the formation of non-native fibrils
from the same patterns in biological proteins.27

C. Directed evolution

Directed evolution is experimentally used to optimize
proteins for particular functions through successive genera-
tions of random mutation and selection for specific traits.64 It
is instructive to briefly explore an analog for the present
model. Here, the method is adapted to optimize our model
proteins by improving their stability with respect to one of
the three properties: cold denaturation temperature TC, heat
denaturation temperature TH, and maximum pressure stabil-
ity Pmax. The procedure begins with a starting sequence, and
mutant sequences are then created by performing single
point mutations at each monomer position. Thus, beginning
with a 16-mer heteropolymer, there are 16 mutants, each
with a mutated monomer at one of the positions along the
chain. A point mutation is defined as switching the mutated
monomer’s hydrophobicity, from H to P or vice versa. Each
of these mutant sequences are simulated to determine their
pressure and temperature stabilities. At the end of one round,
three sequences are selected, the most stable for each of the
three different stability measures. A round of mutations fol-
lowed by the selection of the three best mutants is referred to

as a generation. The cycle of mutation and selection is re-
peated for up to four generations and the resulting optimized
sequences and their properties are examined.

Table VII shows the results of multiple rounds of mutat-
ing a 16-mer, selecting for each of the three measures. Ad-
ditional data for the properties of the mutants that were not
selected for future rounds of mutation are available in the
Supplemental Materials.61 The directed evolution began with
a sequence that did not fold into a stable native state at posi-
tive pressures, and only one point mutation was required to
obtain a successful folder. Although the procedure called for
the selection of three different mutants based on TH, TC, and
Pmax, in practice, the most stable mutant for one measure was
often the same as for another measure. After the first round
of mutations, the sequence with the lowest cold-denaturation
temperature also had the highest thermal denaturation tem-
perature and the highest pressure stability. However, the se-
lection for TH reached a dead-end after two generations be-
cause there were no single-monomer mutants that would
improve the high-temperature stability of the sequence. By
the end, the procedure selecting for TH produced a different
sequence than that produced by selecting for TC and Pmax. In
fact, selecting for TC produced the same final sequence
yielded by selecting for Pmax, although through different in-
termediate point mutations. The sequence produced after
four rounds of optimizing for TC and Pmax would rank among
the top 10% in stability of sequences at its size and compo-
sition, demonstrating that the procedure applied here works
effectively to find very stable sequences.

Figure 11 compares the properties of all of the mutants
in each generation by showing the effect of the directed evo-
lution of the 16-mer from Table VII on Pmax. The majority of
the first-generation mutants were improvements since these
changes produced 10 stable mutants out of 16 possible. In
subsequent rounds, only a few mutants improved upon the
previous generation’s most stable sequence, and these im-
provements are small in contrast to the leap in pressure sta-
bility from the initial sequence to the first generation. Desta-

TABLE VII. Results of four generations of directed evolution beginning with an unstable initial 16-mer of 50%
composition, for parameters JH /J=0.05, �b=�p=3, �h=0, q=70, and �v /v0=0.35. The sequence, percent
hydrophobicity �%H�, and properties of the best mutant at each generation are given below. Three different
selection criteria were used to determine the best mutant at each generation: the cold denaturation temperature
TC, the thermal denaturation temperature TH, and the maximum stable pressure Pmax. After two generations of
mutations selecting for TH, none of the mutants improved upon the previous generation’s best sequence.

Generation Sequence %H TC TH Pmax

0 PHPH4PH2P3HP2 50 Unstable Unstable 0

TC 1 PHPH4PH2P2H2P2 56.25 0.036 06 0.108 69 1.747 18
2 PHPH4PH2P2HP3 50 0.033 15 0.106 83 1.827 78
3 PHPH4PH2P2HPHP 56.25 0.032 42 0.106 36 1.864 55
4 PH6PH2P2HPHP 62.5 0.032 32 0.108 71 1.881 36

TH 1 PHPH4PH2P2H2P2 56.25 0.036 06 0.108 69 1.747 18
2 H2PH4PH2P2H2P2 62.5 0.035 85 0.108 86 1.757 27

Pmax 1 PHPH4PH2P2H2P2 56.25 0.036 06 0.108 69 1.747 18
2 PHPH4PH2P2HP3 50 0.033 15 0.106 83 1.827 78
3 PH6PH2P2HP3 56.25 0.032 63 0.108 95 1.866 44
4 PH6PH2P2HPHP 62.5 0.032 32 0.108 71 1.881 36
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bilizing mutations are still possible after multiple rounds,
since the second and third generations also produce unstable
mutants. No unstable mutants are produced in the fourth gen-
eration, indicating that the mutation process by then has
reached a point where it is difficult to drastically destabilize
the protein.

Recall that Fig. 8 suggests that there are two major
groups of sequences separated by a wide gap in stability. If
this is the case, then the number of sequence modifications
separating the two groups is small. In the case of the muta-
tions studied here, only one monomer difference can change
a sequence from the unstable population to the stable popu-
lation. However, within the population of stable sequences
the monomer changes separating sequences with average sta-
bility from those with the highest stability is likely complex.
For example, in the process of mutating and selecting for
Pmax in Table VII, at the third generation we obtained a se-
quence with a higher TH than the sequence yielded by select-
ing directly for TH. This demonstrates that the optimization

of a single parameter by selecting the best mutant at each
generation does not necessarily provide a direct path to the
optimal sequence.

Table VIII shows the results of another directed evolu-
tion of a 20-mer, beginning with 50% hydrophobicity. The
initial sequence is again unstable, and only one monomer
change is required to create a sequence with a stable native
state. The directed evolution of the 20-mer also runs into a
dead-end after three generations and no further mutations
improve stability for any measure. Optimizing for TC and
Pmax yielded the same final sequence and followed the same
path of mutations, further demonstrating the connection be-
tween the two metrics in the model, as noted earlier. Aside
from the cold-denatured state, the maximum stable pressure
is also affected to a lesser degree by the denatured structures
observed at very high pressures. These are likely the cause of
the minor deviations between the paths for optimizing TC

and Pmax in Table VII.
Upon inspection of the selected sequences, it appears

that the directed evolution does elongate blocks of P’s in the
case of the 20-mer or H’s in the case of the 16-mer. How-
ever, just as in the pattern analysis, this elongation of blocks
is not universally favored for the most stable sequences. The
final sequence at the end of the selection for Pmax in Table
VII has actually added an alternation HPH at the end of the
chain instead of creating a block of 9 H’s in its middle be-
cause the former mutation was more favorable. Moreover,
while a fourth generation of mutants of the 20-mer could
create a 10-monomer block of P’s, this mutant is, in fact, less
stable than the best sequence created after three generations.

V. CONCLUSIONS

We have presented a model for a heteropolymer in water
that folds into a stable native state with a hydrophobic core,
and captures the phenomena of cold, pressure, and thermal
denaturation. The model proteins exhibit rich phase behavior
with great variability in the stability of the native state with
sequence. Sequences are generally either unstable or very
stable, with few marginally stable sequences intermediate be-
tween the two groups. Analyzing the patterns significant in
very stable sequences indicates that blocks of H’s and P’s are
preferred, while alternations of H’s and P’s are disfavored.
These observations have the character of guidelines or clues

FIG. 11. Directed evolution of initial sequence PHPH4PH2P3HP2 through
four generations of mutation and selection for optimal pressure stability. The
black circles are the best mutants at each generation that are used for sub-
sequent rounds of mutation, and the line shows the improvement in pressure
stability of the selected sequence. The empty circles show the pressure sta-
bility of the other mutants not selected at each generation for comparison
with the best mutant.

TABLE VIII. Results of four generations of directed evolution beginning with an unstable 20-mer of 50%
composition, for parameters JH /J=0.05, �b=�p=3, �h=0, q=70, and �v /v0=0.35. The selection for TC, and
Pmax proceeded along identical paths. After three generations, none of the subsequent mutations improved
protein stability for any of the metrics.

Generation Sequence %H TC TH Pmax

0 P2HP2H4P2H2P4H3 50 Unstable Unstable 0

TC, Pmax 1 P2HP2H4P2H2P5H2 45 0.033 96 0.104 59 0.617 00
2 P2HP2H4P2H2P6H 40 0.033 24 0.104 75 0.628 93
3 P2HP2H4P2HP7H 35 0.032 80 0.105 06 0.636 51

TH 1 P2HP2H4P2H2P5H2 45 0.033 96 0.104 59 0.617 00
2 PH2P2H4P2H2P5H2 40 0.033 94 0.104 82 0.619 24
3 PH2P2H4P2HP6H2 45 0.034 27 0.104 86 0.614 54
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rather than design principles. Directed evolution of protein
sequences showed that it is not difficult to stabilize and op-
timize an unstable sequences through random mutation, but
that searching for sequences through single point mutations
has limitations on finding the maximally stable sequence.

This model offers many opportunities for future studies
of heteropolymers. The treatment of polar residues and how
they interact with each other and with water is one aspect
that remains unexplored. Also, the two directed evolution
studies performed here barely scratch the surface of the ex-
ploration of the evolutionary landscape of the model pro-
teins. Several investigators have examined the evolutionary
landscape of compact lattice protein models by mutating the
protein sequence while holding the backbone fixed, search-
ing for the lowest energy state of a structure.24,65–68 How-
ever, fixing the protein backbone in these studies restricts the
protein from finding other configurations which have the
same or lower energies than the designed configuration.68

Instead of using energy as a substitute for native state stabil-
ity, our model could be used to connect each sequence to one
of the stability metrics used here ��T , Pmax,A� while allow-
ing for a complete search of conformation space for the true
native state. Although it would be computationally intensive,
it is possible to simulate the complete set of 6470 unique
16-mers with 50% composition to determine each sequence’s
stability. The evolutionary landscape of the model 16-mer
could then be exactly determined and analyzed to determine
its shape and ruggedness. Peaks in the landscape would rep-
resent families of related, very stable sequences, and simula-
tion results could determine how many peaks exist and how
far apart they are. The sequence space could also be analyzed
as a complex network with sequences representing nodes and
a series of mutations representing the links between nodes.69

This analysis could then be used to compute the average
number of mutations required to proceed from an unstable
sequence to the a very stable sequence. Furthermore, since
simulation data can be reanalyzed for different choices of
potential parameters with little additional effort, the effect of
parameter choice on the shape of the sequence landscape
could also be characterized. We also mention the possibility
of designability studies exploring sequence and configuration
space with the explicit water model as an interesting avenue
for future research.56

There are differences between the significant patterns
observed in our model and those observed in the naturally
occurring proteins. These discrepancies exist because the
heteropolymer model lacks secondary structure, and pattern-
ing of hydrophobic and hydrophilic amino acids in biological
proteins is strongly influenced by the secondary structure.
Secondary structure could be incorporated into the model
given the appropriate lattice geometry and meaningful
protein-protein interactions. Lattice approximations of
�-helices have been identified for several different lattice
geometries.9,70,71 These models use torsional potentials or
configuration-specific protein-protein interactions to favor
the formation of these structures. Application of the pattern
analysis developed here to a modified version of our het-

eropolymer model might yield stricter rules for designing
proteins with greater stability and show more correspon-
dence with biological proteins.
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