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The physical properties of a classical many-particle system with interactions given by a repulsive
Gaussian pair potential are extended to arbitrarily high Euclidean dimensions. The goals of this
paper are to characterize the behavior of the pair correlation function g2 in various density regimes
and to understand the phase properties of the Gaussian core model �GCM� as parametrized by
dimension d. To this end, we explore the fluid �dilute and dense� and crystalline solid phases. For
the dilute regime of the fluid phase, a cluster expansion of g2 in reciprocal temperature � is
presented, the coefficients of which may be evaluated analytically due to the nature of the Gaussian
potential. We present preliminary results concerning the convergence properties of this expansion.
The analytical cluster expansion is related to numerical approximations for g2 in the dense fluid
regime by utilizing hypernetted chain, Percus–Yevick, and mean-field closures to the Ornstein–
Zernike equation. Based on the results of these comparisons, we provide evidence in support of a
decorrelation principle for the GCM in high Euclidean dimensions. In the solid phase, we consider
the behavior of the freezing temperature Tf��� in the limit �→ +� and show Tf���→0 in this limit
for any d via a collective coordinate argument. Duality relations with respect to the energies of a
lattice and its dual are then discussed, and these relations aid in the Maxwell double-tangent
construction of phase coexistence regions between dual lattices based on lattice summation energies.
The results from this analysis are used to draw conclusions about the ground-state structures of the
GCM for a given dimension. © 2008 American Institute of Physics. �DOI: 10.1063/1.2928843�

I. INTRODUCTION

The statistical mechanics of many-particle systems play
a central role in the design and control of materials. The
thermodynamic and transport properties of a material system
are determined by the interactions among constituent par-
ticles, and these interactions are intimately related to the
short- and long-range order in the system. Although many-
body interactions certainly influence the determination of
physical properties in these systems, one may generally ob-
tain an accurate approximation to the underlying physics by
considering pair interactions ��r� ,r= �x−x��, between par-
ticles. Systems of particles interacting via either inverse-
power-laws �e.g., ��r��1 /rn ,n�N� �Refs. 1–3� or hard
core ���r�= +�, 0�r�D; ��r�=0, r�D� �Refs. 4–6� pair
potentials have been extensively studied in this regard.

For interacting polymers, however, each of the spatially
extended macromolecules has a significant number of de-
grees of freedom. Modeling the pairwise monomer interac-
tions in this system can rapidly become computationally pro-
hibitive. Fortunately, the problem may be simplified

immensely by considering instead the interactions among the
centers of mass of the polymers. This assumption is equiva-
lent to enforcing an effective interaction among the macro-
molecules. However, since it is certainly possible for the
centers of mass of any two polymers to overlap, this effec-
tive potential must contain the essential property of being
bounded. The Flory–Krigbaum pair potential �FK�r�, intro-
duced in 1950, provides the following form for the effective
interaction between the centers of mass of two polymer
chains:7

��FK�r� = N2� Vseg

Vsolv
�� 3

4�Rg
2�3/2

�1 − 2	�exp	− 3r2

4Rg
2 
 ,

�1�

where Vseg and Vsolv denote the volumes of a monomer seg-
ment and a solvent molecule, respectively, N is the degree
of polymerization, Rg is the radius of gyration of the chains,
	 is a parameter that controls the solvent quality �0�	
�1 /2 denotes a good �i.e., conducive to repulsion� solvent
and 	�1 /2 a poor one �conducive to attraction��, and �
=1 / �kBT� denotes the reciprocal temperature scaled by Bolt-
zmann’s constant kB.

The form of Eq. �1� suggests that we consider as a gen-
eral form of the effective pair potential for this system,
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��r� = 
 exp	− � r

�
�2
 , �2�

which is the pair interaction for the so-called Gaussian core
model �GCM�, originally introduced by Stillinger.8 Here, 

and � determine the energy and length scales, respectively,
for the system. The physical properties of this model have
been well documented up to three dimensions; it is known
that the system may undergo a fluid-solid phase transition for
sufficiently low temperatures �kBT /
�0.01�, and within the
solid-phase region there exists a face-centered cubic �FCC�–
body-centered cubic �BCC� �d=3� transition as the system
passes from low density to high density.9 Furthermore, the
GCM displays reentrant melting, in which the melting tem-
perature Tm��� as a function of density ��=N /V� approaches
0 in the limit �→ +�; in other words, a crystal in the GCM
at positive temperature can always be made to melt by iso-
thermal compression.8 Similarly, Tm���→0 as �→0; this be-
havior directly follows from the reduction of the GCM to a
system of hard spheres in this limit.8 Recently, Prestipino et
al. have utilized Metropolis Monte Carlo techniques in con-
junction with the Frenkel–Ladd algorithm for the calculation
of “exact” free energies to trace the phase diagram of the
GCM in three dimensions with high numerical accuracy.3,10

Their results predict a FCC/BCC/fluid triple point at kBT /

�0.0031,10 which is slightly lower than the approximate
value of 0.008 753 reported by Lang et al.9 Of particular
significance in the results of Prestipino et al. is the prediction
of a fluid-BCC-FCC-BCC-fluid series of isothermal phase
transitions with respect to increasing density for tempera-
tures slightly above the triple point, a property which had not
previously been reported.3,10

Despite the extent of research currently being pursued in
this field, little is known about the high-dimensional proper-
ties of the GCM. This gap in knowledge is in spite of the
recent interest in the physics of high-dimensional systems of
particles; for example, Stillinger and co-workers have previ-
ously examined the question of packing hard spheres in high
dimensions.11–13 This problem has applications to abstract
algebra, number theory, and communications theory, where
the optimal method of sending digital signals over noisy
channels corresponds to the densest sphere packing in a
high-dimensional space.14 Besides providing an improve-
ment on the Minkowski lower bound on the maximal pack-
ing density in d-dimensional Euclidean space Rd, Torquato
and Stillinger were also able to provide evidence for a deco-
rrelation principle of disordered packings in high
dimensions.11 This principle states that as the dimension d
increases, all unconstrained correlations vanish, and any
higher-order correlation functions g�n��x1 , . . . ,xn� may be
written in terms of the number density � and the radial dis-
tribution function g2�r� within some small error. For equilib-
rium systems, this simplification implies that g2�r� ap-
proaches its low-density limit as its dimensional asymptotic
limit; i.e., the high-dimensional behavior of g2�r� is similar

to its low-density behavior for any finite d. Even more re-
cently, Cohn and Kumar have considered points on the sur-
face of a high-dimensional unit sphere interacting via a com-
pletely monotonic potential and have proved the existence of
energy-minimizing configurations.15 They also formulated
conjectures for such interactions in Euclidean space.

With regard to classical fluids, Frisch and Percus16 have
examined the Mayer cluster expansions for a pair-interacting
system in high dimensions and have shown that for repulsive
interactions, the series are dominated by ring diagrams at
each order in particle density �. Resummation of the series
leads to an analytic extension in density from which the sec-
ond virial truncation remains valid at densities higher than
the density at which the series diverge. Doren and
Herschbach17 have previously developed a dimensionally de-
pendent perturbation theory for quantum mechanical systems
from which they draw conclusions about the energy eigen-
values in “physical” dimensions from the information ob-
tained for values of d where simplifications in the behavior
of the systems may occur. The development of a statistical-
mechanical analog of this work would certainly provide a
novel route to the study and design of novel material systems
exhibiting unique thermodynamic and transport properties.
Of particular interest in this regard is the notion of an iso-g2

process, whereby a realizable radial distribution function is
held fixed over some region in a parameter space via pertur-
bations in the pair interaction governing the system.18 How-
ever, it is essential to characterize the physical properties of
high-dimensional many-particle systems, including, for ex-
ample, ground-state structures and pair correlations, in order
to understand both the feasibility and applicability of such
methods. Nevertheless, it is clear that one may obtain keen
insight into the physical nature of a many-body system from
an exploration of its high-dimensional analogs.

As a result, our focus in the present study is on the phase
properties of the GCM in arbitrary Euclidean dimension d.
We make the preliminary disclaimer that when we hence-
forth speak of arbitrary dimension d, we imply a Euclidean
geometry �d�N�. It is significant to note that the GCM is
ideal for this analytical study since it has the property that
��Lp�Rd�∀ p� �1,��. Therefore, � is absolutely inte-
grable, and the Fourier and inverse Fourier transforms �FTs�
are uniquely defined and constitute an isometry.19 We utilize
the following definition of the FT of a function f�x�:

f̂�k� = �
Rd

exp�− i�k,x��f�x�dx , �3�

where f̂ denotes the FT of f and �k ,x�=
i=1
d kixi denotes the

inner product of two �real-valued� d-dimensional vectors.
Similarly, the inverse FT is defined as

f�x� = � 1

2�
�d�

Rd
exp�i�k,x�� f̂�k�dk . �4�

For radial functions �i.e., f�x�= f��x��= f�r��, Eqs. �3� and �4�
take the following form:20
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f̂�k� = �2��d/2�
0

+�

rd−1f�r�
J�d/2�−1�kr�

�kr��d/2�−1 dr , �5�

f�r� = � 1

2�
�d/2�

0

+�

kd−1 f̂�k�
J�d/2�−1�kr�

�kr��d/2�−1 dk . �6�

The FT �̂�k� of the pair potential ��r� in the GCM is
given for all d by

�̂�k� = ���2�d/2
 exp	−
�k��2

4

 , �7�

and the integral of � over Rd is �for x ,x��Rd�

�
Rd

���x − x���dx = 
���2�d/2. �8�

We immediately see that the dimensionality of the problem is
contained entirely in the factors ���2�d/2, facilitating the gen-
eralization of the model to arbitrary dimensionality. Our goal
is to characterize the fluid and solid phases of the GCM in
high dimensions.

With regard to the fluid phase, Stillinger had developed
high-temperature expansions for the excess free energy21

f��� and radial distribution function22 g2�r�, the former for
arbitrary d and the latter for d=3. The convergence proper-
ties of the free-energy expansion have been previously
explored;21 although the series for f��� is divergent, it may
be formally evaluated via the use of Borel resummation.
However, similar convergence properties for the g2�r� series
remain unestablished even for d=3. Furthermore, while com-
parisons in three dimensions have been drawn between exact
representations of g2�r�, either from molecular
simulations9,23 or the aforementioned expansions,22 and nu-
merical approximations, little is known of the high-
dimensional applicability of numerical methods. Of particu-
lar interest is the validity of the “mean-field approximation”
�MFA� to the direct correlation function c�r� that arises from
a density functional description of the GCM.2,9,23 By extend-
ing the temperature expansion of g2�r� and generalizing to
arbitrary dimension, we attempt to elucidate the relationship
among the MFA, hypernetted-chain �HNC� approximation,
and the Percus–Yevick �PY� approximation to the GCM and
relate the results to a decorrelation principle. Simultaneously,
we explore the convergence properties of the high-
temperature expansion of g2�r� in arbitrary dimension and
relate the results to the phase behavior of the model.

Prior work on the solid phase of the GCM involving
lattice summation energies calculated in d=3 for simple cu-
bic, BCC, FCC, hexagonal close-packed, and diamond struc-
tures indicates a transition in the minimum energy of the
system at ���−3/2 from FCC to BCC.8 This conclusion has
been supported and expanded to d=1, 2 via the calculation of
duality relationships relating the energy per particle �� /N�


at low density of a lattice 
 to the corresponding �� /N�
* of
the dual lattice 
*.24,25 However, there remains an open
question of the relative stability of lattices in higher dimen-
sions with respect to minimization of the lattice summation
energy. This problem becomes especially apparent for d�6,

where the family of lattices Dd to which FCC belongs no
longer represents the densest known sphere packing among
lattices.14 Worthy of mention in this regard is the correspond-
ing conjecture by Torquato and Stillinger26 that the Gaussian
core potential and any other sufficiently well-behaved com-
pletely monotonic potential function share the same ground-
state structures in Rd for 2�d�8 and d=24 although not
necessarily at the same densities; more specifically, they
claim that these ground states are the Bravais lattices corre-
sponding to the densest known sphere packings for 0��
��1 and the corresponding reciprocal Bravais lattices for
�2��� +�, where �1 and �2 are the density limits for the
phase coexistence region of the lattices.26 We seek to provide
numerical support for the latter part of this conjecture with
respect to the GCM.

To these ends, we begin in Sec. II by developing the
requisite high-temperature cluster expansion in � for
ln�g2�r�� and explore the convergence properties of the series
for arbitrary d. At low densities for which the series is ap-
propriate, information about the behavior of the dilute fluid
regime of the GCM may be thus obtained. In Sec. III we
explore the dense fluid regime of the GCM using the three
numerical approximations listed above in order to obtain in-
formation about g2�r� and the associated structure factor S�k�
for the system. The validity of these approximations for ar-
bitrary d is then evaluated. It may be shown that S�k� ap-
proaches a step function with discontinuity at k= +� in the
infinite-dimensional limit; we use this information to provide
analytical support for a decorrelation principle in the fluid
phase of the GCM. We devote Sec. IV to the solid phase of
the GCM. The behavior of the melting temperature Tm��� in
the limit �→ +� is generalized with respect to d, providing
evidence for a fluid-solid phase transition at high density and
sufficiently low temperature. We then calculate lattice sum-
mation energies for the Ad , Dd , Ed, and Zd lattice families
and their duals in various dimensions. After establishing du-
ality relationships for these lattice families, we explore the
phase coexistence regions between the lowest-energy lattices
and their duals via Maxwell double-tangent constructions
and show that the width of these regions increases with re-
spect to the self-dual density �̄* as the dimensionality in-
creases. The information gathered from this analysis pro-
vides evidence for the Torquato–Stillinger conjecture26

mentioned above concerning the ground states of certain
classical many-particle systems. Concluding remarks are
given in Sec. V.

II. DILUTE FLUID-PHASE VIRIAL BEHAVIOR
OF THE GCM

Although there is no evidence for a conventional gas-
liquid phase transition in the GCM, it is mathematically con-
venient to consider the “dilute” and “dense” fluid regimes
separately; the reasons for this distinction will become clear
momentarily. Our understanding of the dilute �i.e., low den-
sity� fluid phase will involve the analytical determination of
the radial distribution function g2�r� in terms of an infinite
series in �. We recall that the radial distribution function is
defined as being proportional to the conditional probability
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density that a particle will be found at radial distance r given
that another is at the origin. Equivalently, �g2�r� is the aver-
age particle density at radial separation r given that a particle
is located at the origin.

Since for a general fluid the correlations in the system
will diminish with increasing radial separation r, we have the
asymptotic behavior g2�r�→1 as r→ +�. It is conventional
also to introduce the so-called total correlation function h�r�,
defined by

h�r� = g2�r� − 1. �9�

It follows from the properties of g2 that h�r�→0 as r→ +�.
It has been well documented that the radial distribution

function g2 may be expanded as an infinite series in the den-
sity �; this expansion has the following form:27

g2�r� = exp�− ��1,2�

��1 + 

m=1

+�
�m

m!
� 	 


Gm+2
� �

��Gm+2

f��
�
i=3

m+2

dxi� ,

�10�

where Gm+2 denotes the graph containing m integrable verti-
ces and two stationary vertices which becomes biconnected
when an edge is added between the two stationary vertices.
The parameter �= �i , j� corresponds to an edge in the graph
Gm+2, and f�=exp�−����−1 denotes the Mayer f function
with �� representing the pair potential governing the inter-
action between particles located at xi and x j. A biconnected
graph is a collection of vertices and corresponding edges
such that one may trace a path between any two vertices
even upon the removal of an edge. We define an integrable
vertex to be any vertex in the graph G with a corresponding
variable of integration xi in Eq. �10�; a stationary vertex has
no corresponding variable of integration. Unless otherwise
stated, vertices 1 and 2 will always be defined as the station-
ary vertices of any graph Gm+2, meaning that g2 remains a
function of r= �x1−x2�. For example, the expansion of g2 up
to O��2� is

g2�r� = exp�− ��1,2�	1 + �� f1,3f2,3dx3 + O��2�
 . �11�

We note that in the limit �→0, g2�r�→exp�−���r��, which
is the Boltzmann factor for the pair potential �. For the
GCM, it is more useful to pass to an expansion of g2 in
reciprocal temperature �; this conversion is accomplished by
a Taylor expansion of each of the f� as follows:

f� = exp�− ���� − 1 �12�

=− ��� + �1

2
��− ����2 + ¯ . �13�

Subsequent multiplication of the f functions and recollection
of orders of � leads to the desired expansion. The reason
for passing to the reciprocal temperature expansion is that
each of the integrals in Eq. �10� reduces to an integral over

products of Gaussians, which may usually be evaluated ana-
lytically by repeated use of the relation

�
Rd

�i,j
m � j,k

n dx j = � �

m + n
�d/2

�i,k
�mn/�m+n��. �14�

Equation �14� follows directly from Eq. �8�. Here we men-
tion that we have chosen reduced units such that �=1 and
have coupled the energy scale to the reciprocal temperature
� in the Boltzmann factor, and we will continue to adopt this
convention throughout the remainder of this section.

Although, as mentioned above, it is possible to analyti-
cally evaluate each of the terms in the � series derived from
Eq. �10�, the mathematical complexity of the problem in-
creases significantly around O��6� due to the increasing
number of integrals to evaluate. However, it turns out that
several of the graphs from this expansion may be “removed”
by passing to the expansion of ln�g2�r��, which may be suit-
ably derived from Eq. �10� by a Taylor expansion. The ad-
vantages of the logarithmic expansion are that �a� it contains
the entire exp�−��1,2� term from Eq. �10� in −��1,2 and that
�b� it removes all parallel graphs from the expansion, thereby
drastically reducing the computational cost of analytical
evaluation. In general, this series takes the following form:

ln�g2�r�� = 

n=1

+�

�− ��nfn�r� . �15�

An investigation of convergence properties of the � se-
ries in Eq. �15� may be done via reference to the ratio test for
infinite series.28 We consider the ratios defined by

�n+1�r� = � fn+1�r�
fn�r�

� =
fn+1�r�
fn�r�

. �16�

The radius of convergence � of the series is then given by

lim sup
n→�

�n+1�r� =
1

�
. �17�

We note that the left-hand side of Eq. �17� is guaranteed to
exist ∀r� �0,�� although it may be ��. It is important to
note that the proof of convergence of the density expansion
�10� is well known and can be found, for example, in the
work of Ruelle.27 All that is required is to show that the
GCM pair interaction is stable and regular. Borrowing the
definitions from Ruelle,27 a k-body interaction ���k��k�2 is
stable if there exists a B�0 such that

��x1, . . . ,xn� � − nB �18�

for all n�0 and x1 , . . . ,xn�Rd. A pair interaction � is regu-
lar if it is bounded from below by a finite constant K and
satisfies

C��� =� �exp�− ���x�� − 1�dx � + � �19�

for some ��0 and hence for all ��0. An outline of the
proof that the GCM pair potential is regular can be found in
Appendix A.

We have successfully evaluated each of the fn�r� in Eq.
�15� up to O��−��5� with the following results:
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f1�r� = � , �20�

f2�r� = ���

2
�d/2

�1/2, �21�

f3�r� = ���

3
�d/2

�2/3 + �2��2

3
�d/2

�1/3, �22�

f4�r� = ��1

3
���

4
�d/2

�3/4 + ��1

4
���

4
�d/2

� + �2�3

2
�

���2

5
�d/2

�2/5 + 2�2��2

5
�d/2

�3/5

+ �3��3

4
�d/2

�1/4, �23�

f5�r� = �� 1

12
���

5
�d/2

�4/5 + ��1

6
���

5
�d/2

�6/5 + �2�1

2
���2

7
�d/2

�3/7 + �2�3

4
���2

8
�d/2

�1/2 + �2��2

7
�d/2

�5/7 + �2��2

7
�d/2

�6/7

+ 2�2��2

8
�d/2

�5/8 + 2�3��3

7
�d/2

�2/7 + �2�1

2
���2

8
�d/2

� + 3�3��3

8
�d/2

�3/8 + 2�3��3

7
�d/2

�4/7 + �3��3

8
�d/2

�1/2

+ �4��4

5
�d/2

�1/5, �24�

where, as above, �=��r12� denotes the pair interaction be-
tween two particles in the GCM. Using the results in Eqs.
�20�–�24�, we may obtain an approximate plot of g2 in the
limit of high temperature and low density, indicative of a
dilute fluid. Such a plot is included in Fig. 1 for various
values of d.

Note that the value of g2�0� is nonzero in each case; we
expect this result since the bounded nature of the potential
allows for a finite probability of particle overlap. Further-
more, the fact that the potential is repulsive suggests the
presence of negative correlations near the origin, which we
also observe. Correlations in the dilute fluid phase rapidly
diminish as r increases; what is perhaps most significant
about g2 in this case, however, is that the correlations also

diminish as the dimensionality of the system increases; i.e.,
g2→1 more quickly as d increases. This observation pro-
vides the first suggestion �but of course does not prove� that
a decorrelation principle applies for the GCM. We will return
to this point in the study of the dense fluid regime.

To help us understand the high-dimensional behavior of
g2, we examine more closely the expansion in Eq. �15�. Let
Cn+1 denote the unique chain diagram contribution �contain-
ing n+1 total vertices� to the order �n factor in the g2 high-
temperature expansion, namely,

Cn+1 = �n−1� �
i=1

n

�i,i+1�
i=2

n

dxi, �25�

where for notational convenience we have chosen vertices 1
and n+1 as the stationary vertices in the graph. We show in
Appendix B that

Cn+1 = �n−1��n−1

n
�d/2

�1/n, �26�

∀n�2.
The argument used to prove Eq. �26� elucidates a central

property of the cluster integrals: the exponential order of � is
solely determined by the number of integrable vertices in the
corresponding cluster diagram. This statement is not exclu-
sive to the chain diagrams. Since the dimensionality d is
contained only in the factors ��� /��d/2 that appear for each
cluster integral, we see that those diagrams that maximize
the value of � for � of order n will dominate the g2 cluster
expansion. Note that for n�N \ �1�, �n−1�n, which may eas-
ily be proved by mathematical induction. Since the chain
diagram for the �n contribution to the cluster expansion con-
tains the greatest number of integrable vertices, we expect
this diagram to maximize the quotient ��� /�� and thus domi-
nate the expansion at any order �n for � of order n. This
conclusion is in agreement with previously reported results

FIG. 1. �Color online� The radial distribution function g2 for �=0.1 and
�
=0.1 as obtained from the summation in Eq. �15� to O��−��5�.
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for classical pair-interacting repulsive fluids by Frisch and
Percus.16 Therefore, as the dimension d increases, we expect
that g2 may be represented to a good approximation by the
summation over these chain diagrams; we will see momen-
tarily that this truncation of the series corresponds to the
MFA and that the result is convergent.

This convergence claim is not true, however, for the gen-
eral series representation, as may be seen from the plots of
the ratios �n+1�r�, defined in Eq. �16�, in Fig. 2. We note that
the ratios strongly depend on the dimension d of the system
and the radial separation r; however, they eventually diverge
as r increases. There is no reason a priori why the g2 cluster
expansion should only converge for some values of r, and we
therefore expect the series to diverge as a whole. We recall
that the high-temperature expansion of g2 is centered at �
=0; therefore, if it is to converge for some ��0, it must also
converge for certain values of ��0. However, as the recip-
rocal temperature � passes through 0, the pair potential un-
dergoes an effective transition from repulsive to attractive
interactions due to the coupling of � and the energy scale 

in the Boltzmann factor. Because the pair potential does not
exclude particle overlap, even in the limit r→0, the attrac-
tive regime forces the particles to cluster on top of each other
at a point, and the system undergoes a collapse instability.
This collapse instability forces the radius of convergence to 0
and has been documented by Stillinger for the equivalent
high-temperature free-energy expansion.21,29 In terms of in-
teracting polymers, the collapse instability corresponds to
changing the effective composition of the solvent such that
aggregation of the macromolecules is energetically favor-
able. The FK potential in Eq. �1� captures this behavior via
variation in the parameter 	. We make note, however, that
the divergence of �n+1�r� appears to push outward toward r
= +� as d increases. It is therefore possible that a high-
dimensional approximation such as the one mentioned above
may be able to overcome the collapse instability, and we
explore this possibility in Sec. III below.

III. DENSE FLUID-PHASE BEHAVIOR OF THE GCM

The low-density cluster expansion studied in the dilute
fluid regime, though convergent in � according to Ruelle,27

has a finite radius of convergence which is necessarily small.
Therefore, to discern information about the fluid phase at

values of � greater than the radius of convergence of the
series above, we rely on approximation methods �numerical
and analytical� to estimate g2. These approximation methods
rely on solutions to the so-called Ornstein–Zernike (OZ)
equation, given by

h�r� = c�r� + ��
Rd

h��x − x���c�x��dx� �27�

=c�r� + ��h � c��r� , �28�

where c�r� denotes the direct correlation function, and �h�c�
indicates the convolution of h and c. We take the OZ equa-
tion as the definition of the direct correlation function; it
essentially separates the immediate interactions between two
particles from those interactions that result indirectly from
interactions with surrounding particles. The advantage of the
OZ equation is that it allows us to approximate h and there-
fore g2 by making a reasonable ansatz about the form of c.
We consider the following three well-documented closures to
the OZ equation �see, e.g., McQuarrie30�:

cHNC�r� = exp�− ���r� + ��r�� − ��r� − 1 �HNC� , �29�

cPY�r� = �1 + ��r���exp�− ���r�� − 1� �PY� , �30�

cMFA�r� = − ���r� �MFA� , �31�

where

��r� = h�r� − c�r� . �32�

Both the PY approximation and the MFA may be obtained
from the HNC approximation via linearization of one or
more of the exponential functions in Eq. �29�. Solutions to
the OZ equation utilizing the HNC and PY approximations
are necessarily numerical. We utilize a relatively simple
modified Picard iteration algorithm, a review of which may
be found in the article by Busigin and Phillips.31 For refer-
ence, we include the details of the algorithm in Appendix C.

The MFA is unique in the sense that one may obtain
some analytical results from the OZ equation using Fourier
analysis as a result of relation �7�. Namely, the OZ equation
implies

FIG. 2. �Color online� The ratios
�n+1�r� derived from Eqs. �20�–�24�
for �̄=��−d/2=0.9.
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ĥ�k� =
ĉ�k�

1 − �ĉ�k�
�33�

and therefore in the MFA the total correlation function is
given by

ĥMFA�k� =

− �
���2�d/2 exp	−
��k�2

4



1 + �
����2�d/2 exp	−
��k�2

4



. �34�

Our study of this approximation will involve the associated
structure factor factor S�k� for the system at a given density,
which we introduce here as

S�k� = 1 + �ĥ�k� =
1

1 − �ĉ�k�
, �35�

where the second equality follows from the OZ equation.
The structure factor is proportional to the scattered intensity
of radiation from a system of points and thus is experimen-
tally observable; this notion is the physical motivation for the
intrinsic property that S�k��0∀k� �0, +��. Determination
of the structure factor for a system is therefore a means to
establish the physicality of a given approximation. For the
MFA, note that Eqs. �7� and �31� and imply

SMFA�k� =
1

1 + �
����2�d/2 exp	−
��k�2

4



. �36�

We collect in Fig. 3 the results for g2 as obtained from
the HNC and PY approximations along with the MFA utiliz-
ing the iterative Fourier algorithm above. We have chosen

the density � to be sufficiently high to capture the behavior
of the dense fluid regime. Each of the approximations shows
short-range correlations which rapidly diminish with increas-
ing r, indicative of gaslike fluid behavior. Again, the prob-
ability of finding particles at zero separation is nonvanishing
due to the bounded nature of the potential. However, while
the HNC approximation and the MFA have similar values for
g2�0�, it appears that the PY approximation underestimates
this value and thereby introduces an increased effective re-
pulsion among the particles. Note that the correlations also
diminish with dimensionality, providing further numerical
support for a decorrelation principle with respect to g2.

Figure 4 shows the results for the HNC approximation
with d=5 and �
�0. Here, the approximation does not im-
mediately diverge and shows aggregation at the origin; as the
value of �
 becomes increasingly negative, the correlations
in the system become longer in range until the approximation
does in fact diverge for �
 slightly less than −0.73. Similar
results have been priorly reported by Root et al.22 for the PY
approximation. Thus, these numerical schemes have the ca-
pacity to branch into the instability region for at least some
small range of �
�0. The results obtained in this region
certainly do not contain the actual physics of the GCM, but
they do reflect the properties of aggregation and increasing
correlations among particles that we expect with collapse
and thus provide valuable insight into the nature of this in-
stability.

Let us now turn our attention to some analytical proper-
ties of the MFA. We will for the moment work with unitless
parameters such that �*=�
, �*=��d, and k*=k�. For no-
tational convenience, we will continue to denote these quan-
tities as �, �, and k, respectively. It is important to note that
when we speak of the infinite-dimensional limit, we mean

FIG. 3. �Color online� Approximation
methods for the GCM with d=3,5 ,7.
The density ��d=5.0 and �
=1.0.

224505-7 Gaussian core model phase diagram J. Chem. Phys. 128, 224505 �2008�

Downloaded 09 Nov 2008 to 128.112.81.90. Redistribution subject to ASCE license or copyright; see http://jcp.aip.org/jcp/copyright.jsp



the limit as d→ +� such that �* and �* are held constant.
We define the dimensionally dependent parameter �d

=���d/2, which implies �see Eqs. �34� and �36��

SMFA�k� =
1

1 + �d exp	−
k2

4



. �37�

It is clear from Eq. �37� that SMFA→1 as k→ +� for �d

fixed; indeed, one can see from Fig. 5 that SMFA represents a
“smoothed step function” for any finite dimension.

Consider the limit �d→ +�. Equation �37� implies that
SMFA→0 on any compact subset of R+ �used here to denote

the nonnegative reals� in this case. We note, however, that
this limit does not commute with the limit k→ +�; this issue
is directly related to the apparent disappearance of the “step
function” in the high-dimensional limit. To address this prob-
lem, it is worthwhile to consider the evolution of the slope of
SMFA at SMFA�k�=1 /2, the “midpoint” of the structure factor,
as �d→ +�. Assuming ���0 and fixed d, SMFA�k�=1 /2 oc-
curs at kd=2�ln��d��0. The slope of SMFA at any point k in
its domain is given by the derivative SMFA�

SMFA� �k� =

�dk exp	−
k2

4



2�1 + �d exp	−
k2

4

�2

�38�

=�S�k��2��dk

2
�exp	−

k2

4

 . �39�

Evaluating Eq. �39� at kd,

SMFA� ��k��k=kd
=

kd

8
�40�

=
�ln��d�

4
. �41�

We immediately notice from Eq. �41� that the slope diverges
in the infinite-dimensional limit, indicative of the behavior of
a true Heaviside step function. Our claim based on this in-
formation is that the MFA approaches a step function with
discontinuity at k= +� in the infinite-dimensional limit. We
draw the connection here with a system of identical hard
spheres, the pair correlation function of which is exactly a
Heaviside step function; as d→ +�, the MFA to the GCM
thereby resembles a system of hard spheres with arbitrarily
large radii interacting in the dual space �in the sense of FTs�
to the real space of the Gaussian core particles for nonzero
density. In low-dimensional reciprocal space, the hard
spheres are “smoothed” by the MFA, meaning interparticle
penetration becomes increasingly likely with decreasing di-
mension; however, the particles adopt an increasingly hard
core as the dimension increases. This information allows us
to draw some analytical conclusions about a decorrelation
principle for the GCM in this regime. Assuming for suffi-
ciently high dimension we may write as an approximation
for SMFA

SMFA = ��k − kd� , �42�

where ��k−kd� denotes the Heaviside step function in recip-
rocal space with discontinuity at k=kd, it is possible to evalu-
ate the coordinate space correlation functions analytically.
The result is

h�r� = − v̄� 1

2�
�d/2�

0

+�

kd−1��kd − k�� J�d/2�−1�kr�

�kr��d/2�−1 �dk

�43�

FIG. 4. �Color online� Hypernetted chain approximation to g2 with d=5
demonstrating the �nondivergent� collapse phenomenon for value of �

�0. The density ��5=0.1.

FIG. 5. �Color online� Structure factor SMFA�k� in the MFA for various d;
��d=36 /� and �
=100.
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⇒g2�r� = 1 − v̄� 1

2�
�d/2

Jd/2�kdr�� kd

r
�d/2

, �44�

where v̄=1 /� denotes the reciprocal density. Since we con-
sider d�1, we utilize the principal asymptotic form of the
Bessel function in Eq. �44� to obtain the following result:

g2�r� � 1 − v̄� ekd
2

2
�d/2� 1

�d
��d+1�/2

. �45�

We make note of the constraint that ����−d/2 to ensure
that kd�R, restricting this approximation essentially to the
low-temperature/high-density regime. Equation �45� is single
valued for all r; it is clearly less than 1 for any finite dimen-
sion, and the value it adopts is roughly the minimum of the
expression for g2 in Eq. �44�. Note that for d→ +� the val-
ues of g2 in Eqs. �44� and �45� both approach g2�r�=1. The
fact that Eqs. �44� and �45� converge in the limit d→ +�
thereby reflects a loss of correlations in the infinite-
dimensional limit, and from our knowledge of the behavior
of the structure factor in the MFA, we expect that this “hard
sphere” approximation accurately captures the high-
dimensional behavior of the system. These results thereby
provide analytical support for a decorrelation principle with
the GCM in the fluid phase.

To examine the behavior of the MFA in the high-
temperature limit, we derive the cluster expansion of g2

�MFA�

with respect to reciprocal temperature �. This is easily ac-
complished via iteration of the OZ equation with respect to
h. The result is

g2
�MFA��r� = 1 − ���r� + 


n=2

+�

�− ��nCn+1�r� . �46�

The MFA therefore only keeps the dominating terms
from the analytical high-temperature expansion. However,
unlike the analytical expansion, the series in Eq. �46� is con-
vergent; the proof is left to Appendix D. Plots of g2 obtained
from Eq. �46� are given in Fig. 6. For values of ��0 such
that the series converges, the form of g2 is very similar to the
results obtained from the cluster expansion work above. In
fact, we expect that the MFA becomes a better approximation
to the cluster expansion as d increases due to the domination
of the series by the chain diagrams. Since the density expan-
sions for the HNC and PY approximations, which are well
known �see, e.g., McQuarrie30� and are not derived here,
retain the chain diagrams that appear in Eq. �46�, we con-
clude that these approximation schemes should converge in
the high-dimensional limit. For values of ��0 and within
the radius of convergence, the MFA expansion shows a simi-
lar aggregation phenomenon to the one observed from the
HNC approximation; as before, this approximation scheme
penetrates into the instability region without collapse up to
some finite value of �, beyond which the series diverges. We
remark that Eq. �46� provides a computationally convenient
way of computing approximations to g2 for the GCM to any
order �n since analytic results are available for the chain
diagrams.

IV. SOLID-PHASE BEHAVIOR OF THE GCM

A. High-dimensional lattice structures

Our focus in the study of the solid phase of the GCM
will primarily involve the determination of lattice summation
energies for known lattices up to d=8. Unfortunately, struc-
tural information for lattices in dimensions significantly
higher than eight is either unavailable or computationally
prohibitive to obtain. However, the results presented here
provide significant evidence in favor of a decorrelation prin-
ciple.

A lattice in high dimensions is characterized by the
integer-valued linear combinations of a set of primitive basis
vectors, i.e., a lattice 
= �p�, where

p = 

i=1

d

niai. �47�

In the expression above ni�N∀ i, and ai denotes the ith
basis vector for the lattice. Associated with a lattice 
 is the
so-called dual lattice 
* with basis vectors q defined by
�q ,p�=2�m, m�Z. The lattice summation energy is the to-
tal energy per particle for a given lattice, defined mathemati-
cally by

��x1, . . . ,xN� = �N

2
�


j=2

N

exp�− �� ja�2� , �48�

where the a is the nearest-neighbor distance within the lattice
and � j is a scaling factor that identifies the position of par-
ticle j relative to particle 1. Passing to the thermodynamic
limit and partitioning the summation in Eq. �48� such that it
is over all coordination shells in the lattice gives the desired
result,

FIG. 6. �Color online� Radial distribution function g2 from the series repre-
sentation of the MFA in Eq. �46� for d=5,7 and �
=0.18,−0.18. Note that
as the MFA passes through �
=0, the form of g2 reflects the aggregation of
the HNC approximation near the collapse instability; however, the series in
Eq. �46� is still convergent for some values of �
�0.
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�/N =
1

2

�=1

+�

Z� exp�− ���a�2� . �49�

The factor Z� denotes the coordination number of the �th
coordination shell in the lattice. We note that the nearest-
neighbor distance to the power d is inversely related to the
density �i.e., ad�=c
�, and the constant of proportionality
depends on the chosen lattice. Therefore, all that is needed to
completely specify the lattice summation energy for a given
lattice are the sets �Z�� and ���� along with the proportional-
ity constant c
. We consider here the integer lattices Zd and
the lattice families Dd , Ad, and Ed along with their respective
duals. The Dd lattices are the d-dimensional counterparts to
the three-dimensional FCC lattice and are the densest known
lattice packings for all 2�d�6; similarly, the Ad lattice
family generalizes the d=2 triangular lattice, which is the
densest packing for d=2. The Ed family contains the densest
known lattice packings for d=6,7 ,8 but are not defined for
d�6. We will henceforth restrict our attention to the afore-
mentioned mathematical lattice structures, keeping in mind
that other possible packings, both periodic �lattices with a
“basis” in the language used in the physical sciences� and
nonperiodic, may achieve both a greater density and lower
ground-state energy. In fact, we provide evidence that this
scenario becomes increasingly more likely as the dimension
of the system increases.

B. The fluid-solid phase transition
in the high-density limit

From our knowledge of the three-dimensional phase dia-
gram of the GCM, we expect to find a fluid-solid phase tran-
sition in any dimension d such that Tm→0 in the limits �
→0 and �→ +�. The former limit is expected by the reduc-
tion of the GCM to a system of hard spheres in this regime,
which has been shown with generality by Stillinger.8 There is
strong numerical support �though no rigorous proof� for a
fluid-solid phase transition with hard spheres up to d=3, and
we strongly suspect this is still true for higher dimensions.
For d=3, the freezing temperature for a hard-sphere system
scales as9 Tf����exp�−c�−2/3�, where c is a constant, and we
conjecture that for arbitrary d the scaling is similar. In any
case, our focus here is on the limit �→ +�. We initially
consider a finite system of N particles in a volume � and
introduce so-called collective coordinates, defined such that

��x1, . . . ,xN� = 

1�i�j�N

��rij� �50�

=� 1

2�
�


k
�̂��k����k���− k� − N� , �51�

where

�̂��k� = �
�

���x��exp�− i�k,x��dx �52�

��k� = 

i=1

N

exp�− i�k,xi�� . �53�

In passing to the thermodynamic limit, we have that �̂�

→ �̂, which is given in Eq. �7�.
Let k0 be defined as a reciprocal space radius such that

��̂�k0�= 1
2 ; therefore,

k0 = 2�ln�2�d/2�� . �54�

The results in Eq. �7� imply that �̂�k� decreases as k in-
creases. As a result, in the low-temperature regime for �k�
�k0, Eq. �54� implies that ��̂�k� is large and positive. By
Eq. �51�, minimization of the energy will then require
��k���−k� to move toward its minimum to offset the effect
of increasing �̂�k�. However, for �k��k0 ,��̂�k� will become
increasingly small, and the magnitude of ��k���−k� is of less
consequence in the minimization of �.

Since the density of k vectors inside a sphere of volume
� is � / �2��d, the number N0 of such vectors with magni-
tude k�k0 is

N0 = � �d/2k0
d

��d/2 + 1�
�� �

�2��d� =
k0

d�

2d��d/2 + 1��d/2 . �55�

By the argument above, we conclude that for sufficiently
high density �, N0 reflects the number of “lost” degrees of
freedom to the system by the argument above. When N0

reaches some characteristic fraction 0���1 of the total
number Nd of degrees of freedom, the GCM will freeze; i.e.,

�Nd =
�ln�2� f�

d/2��d/2�

�d/2��d/2 + 1�
, �56�

where � f is the reciprocal freezing temperature. Solving Eq.
�56� for kBTf yields

kBTf = 2�d/2 exp�− �d���d/2��d/2 + 1��2/d� , �57�

which approaches 0 in the limit �→ +�.

C. Duality relationships

Since the Gaussian is self-similar under FT, it is possible
to relate the lattice summation energy of a lattice at low
density to the lattice summation energy of its dual lattice at
high density; we call such an expression a type of duality
relation. A dimensionally dependent duality relation derived
in this study for the lattice summation energies in the GCM
is given below; however, we also mention the duality rela-
tionships recently put forth by Torquato and Stillinger re-
garding the ground state of a classical system interacting via
a bounded, absolutely integrable pair potential ��r�.26 One
result is �based on the FT convention used in Eq. �3��

�
Rd

��r�h�r�dr = � 1

2�
�d�

Rd
�̂�k�ĥ�k�dk , �58�

where h denotes the total correlation function as defined in

Eq. �9�, and ĥ , �̂ denote the FTs of h and �, respectively.
Equation �58� is an immediate consequence of Parseval’s
formula �for a reference, see Lieb/Loss19� since under the
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given assumptions � ,h�L2�Rd�; furthermore, one may
show that if the configuration of particles in Rd is a ground
state and ergodicity is assumed, then the left- and right-hand
sides of Eq. �58� are minimized. It should be stressed, how-
ever, that Eq. �58� will hold regardless of whether the con-
figuration is a ground state. Equation �58� may in turn be
used to prove the following duality relationship for a Bravais
lattice 
:26

��r = 0� + 

r�
\�0�

��r� = ��̂�k = 0� + � 

k�
*\�0�

�̂�k� , �59�

which follows from the identity h�r�= �1 /�s1�r��
n=1Zn��r
−rn�−1 for a Bravais lattice, where s1�r� denotes the surface
area of a d-dimensional sphere.

Torquato and Stillinger go on to show that twice the

minimized energy per particle �̂min for any ground-state
structure of the dual potential �̂�k� is bounded from above by
the corresponding real-space minimized twice-energy per
particle �min, i.e., the right-hand side of Eq. �59�,

�̂min � �min = ��̂�k = 0� + � 

k�
*\�0�

�̂�k� . �60�

This inequality results from the notion that the energy-
minimizing configuration in the dual space to a real-space
configuration need not be a Bravais lattice. At the very least,
such a possibility cannot be eliminated solely from Eq. �59�.
However, equality of minimum energies in real and recipro-
cal spaces will hold whenever the reciprocal lattice 
* at
reciprocal lattice density �̂=�−1�2��−d is a ground state of
�̂�k�. Conversely, if a sufficiently well-behaved dual poten-
tial �̂�k� has a Bravais lattice 
* at number density �̂, then

�min � �̂min = �̂��r = 0� + �̂ 

r�
\�0�

��r� . �61�

Here we present a duality relationship that associates the
energy per particle �� /N�
 of a given lattice 
 in the ther-
modynamic limit at low density with the equivalent energy
per particle of the dual lattice 
* at high density. In accor-
dance with prior work by Stillinger24 concerning one, two,
and three-dimensional duality relations for the GCM, we
consider the energy per particle �� /N� to eliminate boundary
effects in passing to the thermodynamic limit. We define

I
�a� = 1 + lim
N→+�

�2�

N
�




, �62�

where a denotes the nearest-neighbor distance within the lat-
tice. We may equivalently write I
�a� in terms of the discrete
density function ��s�:

I
�a� = �
Rd

��s�exp�− s2�ds , �63�

where ��s� is given in terms of a summation over Dirac delta
functions,

��s� = 

j

��d��s − s j� . �64�

It is convenient at this point to “smooth” the Dirac delta
functions in Eq. �64� via convolution with a normalized
Gaussian, yielding

��s� = lim
�→+�

��s,�� , �65�

��s,�� = ��

�
�d/2



j

exp�− ��s − s j�2� , �66�

where it is understood that the limit �→ +� is to be taken at
an appropriate point in the calculation. Noting that ��s ,�� is
a dth-order periodic function of the variable s, we may rep-
resent this function in a Fourier series

��s,�� = 

k

f�k�exp�i�k,s�� , �67�

where �x ,y�=
i=1
d xiyi denotes the inner product of two vec-

tors in d-dimensional real Euclidean space, and the vectors k
are 2� times the vectors from the dual lattice 
*. Expres-
sions for each f�k� are determined from Fourier orthogonal-
ity conditions, whereby one multiplies Eq. �67� by
exp�−i�k ,s�� and integrates over a unit cell within the lattice
to obtain

f�k� = �
�a�exp	− k2

4�

 , �68�

where �
�a�=c
 /ad denotes the density of the system as a
function of the nearest-neighbor distance a with c
 a con-
stant for the lattice 
. Combining Eqs. �65�–�68� yields

I
�a� = lim
�→+�

�
Rd



k

f�k�exp�i�k,s��exp�− s2�ds �69�

= lim
�→+�



k

f�k��
Rd

exp�i�k,s��exp�− s2�ds �70�

=�d/2�
�a� lim
�→+�



k

exp	− k2�� + 1�
4�


 �71�

=�d/2�
�a�

k

exp	− k2

4

 . �72�

The right-hand side of Eq. �72� is exactly of the form for I�a�
given in Eq. �62�; in fact, under suitable scaling for the dual
lattice 
*, we may write

I
�a� = �d/2�
�a�

k

exp�− ��	kb�a��2� , �73�

where b�a� denotes the nearest-neighbor distance for the dual
lattice as a function of a, and 	k denotes the related scaling
factor for the particle coordinate in the dual lattice. Refer-
ence to Eq. �62� yields the desired result

I
�a� = �d/2�
�a�I
*��b�a�� . �74�
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Our interest here is to discern the so-called self-dual
density �̄*, which is the density at which the lattice 
 and its
dual 
* have the same energy per particle in the thermody-
namic limit. It is immediately clear from Eq. �74� that if the
condition of equal energy per particle between a lattice and
its dual holds, then

�̄* = �−d/2, �75�

whereby the coefficient on the right-hand side of Eq. �74�
becomes unity.

D. Lattice energies and coexistence regions

The lattice summation energies for our chosen lattice
families �Dd ,Ad ,Ed� relative to the energy for the corre-
sponding Zd lattice are given in Figs. 7 and 8. In accordance
with our predictions from the duality relationship in Eq. �74�,
there appears to be a universal phase-transition density be-

tween and lattice and its dual at �=�−d/2. For d=4,5, the
lowest-energy lattices are given by the Dd lattice and its dual;
this observation provides direct support for the Torquato-
Stillinger conjecture26 concerning the ground-state structures
of classical systems since Dd is the Bravais lattice corre-
sponding to the densest known sphere packing for 3�d�5.
As we would predict from this conjecture, the Ed lattices and
their duals obtain the lowest energy for 6�d�8, followed
by the Dd family. Thus, there appears to be a relationship
between the density of a given lattice structure and its energy
with respect to the GCM, providing numerical support for
the conjecture mentioned above.

We may define the lattice coexistence region between
dual lattices via the Maxwell double-tangent construction.
For notational convenience, we will define

� = ��/N� , �76�

FIG. 7. �Color online� Relative lattice
summation energies �� /N�Zd

− �� /N�
�d� vs 1 /� for given lattice
families 
�d�; d=4,5 ,6.

FIG. 8. �Color online� Relative lattice
summation energies �� /N�Zd

− �� /N�
�d� vs 1 /� for given lattice
families 
�d�; d=7,8.
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v̄ = �1/�� = �V/N� . �77�

The Maxwell double-tangent construction involves finding a
solution �v̄�
� , v̄�
*�� to the following set of coupled equa-
tions:

p�
��v̄�
�� = p�
*��v̄�
*�� , �78�

��
��v̄�
�� = ��
*��v̄�
*�� , �79�

where v̄�
� and v̄�
*� characterize the upper and lower recip-
rocal density bounds for the phase coexistence region be-
tween a lattice and its dual.

To solve for v̄�
� and v̄�
*�, we note that

p = − � ��

�V
�

N
= − � ��

�v̄
� , �80�

� = � ��

�N
�

V
= � ��N��

�N
�

V
= � + N� ��

�N
�

V
, �81�

=� + N� ��

�v̄
�� �v̄

�N
�

V
= � − v̄� ��

�v̄
� , �82�

=� + v̄p . �83�

Equations �80� and �83� allow us to numerically determine
values for v̄�
� and v̄�
*� from our lattice summation data.

Table I collects the results for the Maxwell construction
of the phase coexistence regions between dual lattices in
each dimension. We note that the width of the phase coex-
istence region scaled by the self-dual density �̄*=�−d/2 in-
creases with dimension for a given lattice family. The imme-
diate significance of this behavior is that for arbitrarily high
Euclidean dimensions, it is possible that the phase coexist-
ence region for a particular lattice is wide enough such that
new structures are able to achieve lower energy as ground
states. In the context of a decorrelation principle, we cannot
exclude the possibility that these structures are disordered. If
the conjecture by Torquato and Stillinger11 that the densest
known packings of hard spheres in high dimensions are dis-
ordered is to be believed, then this behavior is expected.

V. CONCLUDING REMARKS

We have hereby made an effort to generalize the phase
properties of the GCM up to d=3 with respect to the dimen-
sionality of the system. In the fluid phase, we have devel-
oped a dimensionally dependent low-density/high-
temperature expansion for the radial distribution function g2.
Although this series provides some interesting evidence for a
decorrelation principle, it suffers from the drawback of being
divergent due to a collapse instability induced by the unme-
diated attraction of the particles for values of ��0. Numeri-
cal approximations �HNC, PY, and MFA� for g2 at higher
densities and lower temperatures strengthen the evidence for
decorrelation in the GCM, and we show that the MFA con-
tains the high-dimensional behavior of the GCM for suffi-
ciently high temperatures. With regard to the solid phase of
the GCM, results for the lattice summation energies of
known lattice families up to d=8 provide support for the
recent Torquato-Stillinger conjecture26 concerning the
ground states of classical many-particle systems. Namely, for
sufficiently well-behaved pair potentials, the ground states
for certain low dimensions correspond to the densest known
lattice packings for low densities and the corresponding dual
lattices for high densities with a solid-solid phase transition
at intermediate density values. However, we cannot rule out
the possibility that the ground states of the GCM for these
relatively low dimensions are periodic �lattices with a “ba-
sis”�, although such non-Bravais ground states are not likely
for d=2, 3, 4, 8 and 24.

We only considered Bravais-lattice candidate ground
states in this paper. Moreover, we cannot exclude the possi-
bility that for sufficiently high dimensions the ground-state
structures may in fact be disordered; in the case where the
particles adhere to a decorrelation principle, it is not unrea-
sonable that we might expect this result in accordance with
prior work by Torquato and Stillinger.11

Despite our current work on this problem, a few remain-
ing points are worthy of mention. With regard to the behav-
ior of the system in the fluid regime, the nature of the col-
lapse instability makes analytical evaluation of the radial
distribution function difficult to interpret. We have developed
the density expansion of g2 and made favorable comparisons
to numerical approximations, yet the physicality of the clus-
ter expansion seems to be lost due to divergence of the se-

TABLE I. Scaled phase coexistence regions for specified lattices in 4, 5, 6, and 7 dimensions. Here �* and p*

are the self-dual chemical potential and pressure, respectively; �̄* is the self-dual density as defined in Eq. �75�
above.

d Lattice family �* p* �
 �
* ��
−�
*� / �̄*

4 A 0.479 83 0.033 10 0.101 03 0.101 64 0.006 05
5 A 0.539 22 0.019 80 0.056 83 0.057 49 0.011 54
5 D 0.511 55 0.019 27 0.057 07 0.057 26 0.003 32
6 A 0.603 31 0.011 86 0.031 96 0.032 54 0.017 83
6 D 0.565 98 0.011 46 0.032 06 0.032 44 0.011 54
6 E 0.548 49 0.011 36 0.032 36 0.032 44 0.002 48
7 D 0.628 35 0.006 84 0.018 00 0.018 41 0.022 57
7 E 0.577 23 0.018 26 0.018 20 0.018 26 0.003 30
8 D 0.698 25 0.004 10 0.010 09 0.010 45 0.034 83
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ries. Stillinger21 priorly utilized a Borel resummation to in-
terpret the “lost” information in the high-temperature
expansion of the excess free energy, yet the strong spatial
and dimensional dependence of the g2 expansion makes this
technique difficult in the present case. What is perhaps most
promising is the reduction of the expansion to that of the
MFA in the high-dimensional limit, whereby the divergence
of the series is partially removed with results similar to the
numerical approximations from the HNC. However, the
MFA has been shown to be a thermodynamically inconsistent
approximation.2

In the solid phase, we still have an open question con-
cerring the fluid-solid phase transition at any value of �.
There is reason to believe, as mentioned above, that such a
transition exists up to some maximum melting temperature
Tm��� as in the three-dimensional case,9 and we have implic-
itly made this assumption in the present work. However, we
know that the phase diagram will be dimensionally depen-
dent as shown by the fact that for d=4, the self-duality of D4

preempts a solid-solid phase transition as in d=3. Neverthe-
less, the study of the ground-state structures of the GCM is
worthwhile in the context of the Torquato-Stillinger
conjecture26 concerning the ground states of classical sys-
tems and with respect to the decorrelation principle.

The results we have presented suggest that it may be
possible to extend this research to a broader class of pair
interactions. We recall that the primary advantage of the
GCM, as we have shown, is the property of being self-
similar under FT. However, it is known that the eigenfunc-
tions of the FT are equivalent to the states of the quantum-
mechanical harmonic oscillator �under suitable scaling�,
namely, Gaussian functions modulated by the Hermite poly-
nomials. This property indicates that our analysis may be
generalized to pair potentials containing both repulsive and
attractive components. This more general case is likely to
modify the collapse instability, which deserves further study.
Physically, these interactions could be related to spatially
inhomogeneous solvent compositions that simultaneously in-
duce repulsion and attraction among macromolecules in so-
lution. Alternatively, one may also consider pair potentials
formed from linear combinations of �attractive and repulsive�
Gaussian interactions. In any case, the possibility for finding
unique thermodynamic phenomena which could be used in
the design of novel materials makes this a viable avenue for
future exploration.

ACKNOWLEDGMENTS

We thank Henry Cohn for very useful discussions. S. T.
thanks the Institute for Advanced Study for their hospitality
during his stay there This work was supported by the Office
of Basic Energy Sciences, U.S. Department of Energy under
Grant No. DE-FG02-04-ER46108.

APPENDIX A: OUTLINE OF THE PROOF
OF REGULARITY OF THE GCM PAIR POTENTIAL

Proposition. The GCM pair potential is regular for 

�0.

Outline of proof. From the definition of regularity, it is

sufficient to prove the proposition for some ��0. Fix � ,

�0. Positivity of the pair potential �2� provides the requisite
lower bound of K=B=0, where B denotes the stability con-
stant for the pair interaction. Since 0�exp�−���x���1 for
� ,
�0, we thus have

C��� = �
Rd

�1 − exp�− �* exp�− �x2���dx , �A1�

where �=1 /�2 and �*=�
�0.
Since the exponential function is an entire function, we

may write the integrand of �A1� as a convergent Taylor series

C��� = �
Rd



n=1

+� � �− 1�n+1��*�n

n!
exp�− �nx2��dx . �A2�

The multidimensional integral in Eq. �A2� may be con-
verted to an intregral on the non-negative reals R+ via a
coordinate transformation, and the resulting infinite series
may be shown to be uniformly convergent on R+ via refer-
ence to the Weierstrass M test. As a result, we may exchange
the operations of integration and summation to obtain

C��� = 

n=1

+�
�− 1�n+1��*�n

n!
� �

�n
�d/2

. �A3�

One may show that the series in Eq. �A3� is convergent
via reference to the ratio test,

lim
n→+�

�n = lim
n→+�

�	 ��*�n+1

��*�n 
 · 	 n!

�n + 1�!
 · � n

n + 1
�d/2�

�A4�

=�* lim
n→+�

�� 1

n + 1
�� n

n + 1
�d/2� �A5�

=0 � 1. �A6�

Convergence of the series in Eq. �A3� proves the propo-
sition.

APPENDIX B: PROOF OF EQ. „32…

Proposition. The chain diagrams defined by Eq. �25� sat-
isfy

Cn+1 = �n−1��n−1

n
�d/2

�1/n �B1�

Note that p�k� is simply a restatement of the proposition,
where k denotes the index of the last integrable vertex on the
chain diagram. ∀n�2, where � denotes the GCM pair po-
tential.

Proof. We prove by mathematical induction. Let p�k� ,k
�N \ �1�, be the claim,
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� �
i=1

k

�i,�i+1�dx2 ¯ dxk = ��k−1

k
�d/2

�1,�k+1�
1/k . �B2�

As mentioned in the text, we have chosen the stationary ver-
tices in the cluster diagram to be 1 and k+1 for simplicity. To
prove p�2�, we use the relation

�
Rd

�i,j
m � j,k

n dx j = � �

m + n
�d/2

�i,k
�mn/�m+n��, �B3�

which follows directly from Eq. �8�.
Equation �B3� implies

� �1,2�2,3dx2 = ��

2
�d/2

�1,3
1/2, �B4�

which is the exact form of the right-hand side of �B1�. There-
fore, p�2� is true.

We fix k0�N \ �1� arbitrarily and make the usual induc-
tion hypothesis that p�k0� is true. We now prove p�k0+1� is
true. Using Fubini’s theorem

� �
i=1

k0+1

�i,�i+1�dx2 ¯ dxk0+1

=� ��k0+1�,�k0+2���
i=1

k0

�i,�i+1�dx2 ¯ dxk0� · dxk0+1

�B5�

=��k0−1

k0
�d/2� ��k0+1�,�k0+2��1,�k0+1�

1/k0 dxk0+1 �B6�

=� �k0

k0 + 1
�d/2

�1,�k0+2�
1/�k0+1�. �B7�

We see from the result in Eq. �B7� that p�k0+1� is true,
and the truth of p�k�∀k�N \ �1� immediately follows. The
proof of Eq. �B1� is thus apparent with the n−1 factors of �
arising by convention from the integration over the n−1 in-
tegrable nodes.

APPENDIX C: PICARD ITERATION ALGORITHM
FOR NUMERICAL APPROXIMATIONS

In order to obtain a numerical approximation to g2 using
one of the closures mentioned in Sec. II, we are required to
solve the OZ equation, which for a given closure c�r� will be
a nonlinear integral equation. To address this problem, we
first make an initial estimate for the convolution integral
��r�=h�r�−c�r� and calculate the corresponding c�r� using
either Eq. �29� or �30�. To update our guess for the form of
��r�, we use ���r�=F−1���ĉ�k��2 / �1−�ĉ�k���, where F−1 de-
notes the inverse FT, and the right-hand side of the equation
follows from taking the FT of the OZ equation. We calculate
the error �=��r����r�−��r��, where �r denotes the size of
the coordinate-space mesh, and set ��r�=����r�+ �1
−����r�, where 0���1 is a mixing parameter to speed �or
to aid� convergence of the algorithm. The algorithm is iter-
ated so long as � is greater than some specified tolerance.
Convergence of this algorithm is reasonably quick assuming

a good choice of �, requiring usually only a few hundred
iterations. We note, however, that as the density increases, it
is necessary to decrease the value of �, thereby increasing
the requisite iterations.

APPENDIX D: PROOF OF CONVERGENCE
OF THE SERIES IN EQUATION „52…

Proposition. The function g2
�MFA� is well defined by Eq.

�46�; more specifically,



n=2

+�

�− ��nCn+1�r� � + � , �D1�

∀r� �0, +�� within some finite radius of convergence with
respect to �.

Proof. We show that the series in Eq. �D1� converges by
reference to the ratio test. Namely,

�n+1�r� =
Cn+1�r�
Cn�r�

�D2�

=� �n

�n−1�� �n

�n−1�d/2� n

n + 1
�d/2

�−�1/n�n+1�� �D3�

——→
n→+�

��d/2. �D4�

Therefore, the series in Eq. �D1� will converge for all � such
that ����1 / ���d/2�. �Note that we have, without loss of gen-
erality, chosen unitless parameters as described in Sec. III.�
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