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Using a collective coordinate numerical optimization procedure, we construct ground-state
configurations of interacting particle systems in various space dimensions so that the scattering of
radiation exactly matches a prescribed pattern for a set of wave vectors. We show that the
constructed ground states are, counterintuitively, disordered �i.e., possess no long-range order� in the
infinite-volume limit. We focus on three classes of configurations with unique radiation scattering
characteristics: �i� “stealth” materials, which are transparent to incident radiation at certain
wavelengths; �ii� “super-ideal” gases, which scatter radiation identically to that of an ensemble of
ideal gas configurations for a selected set of wave vectors; and �iii� “equi-luminous” materials,
which scatter radiation equally intensely for a selected set of wave vectors. We find that ground-state
configurations have an increased tendency to contain clusters of particles as one increases the
prescribed luminosity. Limitations and consequences of this procedure are detailed. © 2008
American Institute of Physics. �DOI: 10.1063/1.2961314�

I. INTRODUCTION

A fundamental problem of statistical mechanics is the
determination and understanding of classical ground states of
many-particle systems—the zero-temperature particle ar-
rangement that minimizes potential energy per particle. Al-
though perfect crystalline �periodic� structures are often en-
ergetically favorable among all configurations, there is
incomplete mathematical and intuitive understanding of the
formation of order at low temperature,1 introducing the pos-
sibility of disordered ground states. A disordered many-
particle system is one that lacks long-range order. More pre-
cisely, disordered systems have a pair correlation function
g2�r� �defined below� that decays to unity faster than �r�−d−�,
for spatial dimension d and some positive �, in the infinite-
volume limit.2 Recently, a collective coordinate approach has
been used to identify certain possibly disordered ground
states.3–5 Although previous studies are suggestive of the re-
lation between disordered ground states and collective coor-
dinates for finite systems, a systematic investigation of dis-
ordered ground states, including whether they exist in the
infinite-volume limit, is not yet available.

In this paper, we use an “inverse” approach to construct
classical disordered ground states with precisely tuned wave
scattering characteristics via the aforementioned collective
coordinate procedure. In a recent example of a “forward”
problem, the scattering from glass ceramics with nanometer-
sized crystals was likened to that of random sequential ad-

sorption �RSA� of hard spheres,6 a well-known disordered
many-body configuration.7 These ceramics are of interest in
photonics applications because they are mechanically rigid
and nearly suppress all scattering at long wavelengths.8

By contrast, our method utilizes an inverse approach: We
prescribe scattering characteristics �e.g., absolute transpar-
ency� and construct many-body configurations that give rise
to these targeted characteristics. Potential applications in-
clude designing ground-state materials as radiation filters or
scatterers, and materials transparent to specific wavelengths
of radiation, among others. We apply our methodology ini-
tially for structureless �i.e., point� particles. However, it
could be generalized to structured particles, colloids, or as
bodies using the appropriate structure factors for finite-sized
particles as is done for random media.9

Since previous studies utilized small periodic systems,3–5

we first establish that systematically increasing the system
size has no effect on the degree of disorder. Extrapolation
from these results indicates that the constructed configura-
tions remain disordered in the infinite-volume limit, a seem-
ingly counterintuitive proposition. We then construct disor-
dered ground states with special scattering properties:
“stealth materials,” “super-ideal gases,” and “equi-luminous
materials.”

We use the term “stealth” materials to refer to many-
particle configurations that completely suppress scattering of
incident radiation for a set of wave vectors, and thus, are
transparent at these wavelengths.10 Periodic �i.e., crystalline�
configurations are, by definition, “stealthy” since they sup-
press scattering for all wavelengths except those associated
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with Bragg scattering. However, we construct disordered
stealth configurations that prevent scattering only at pre-
scribed wavelengths with no restrictions on any other wave-
lengths.

We define a super-ideal gas as a single many-particle
configuration whose scattering exactly matches that of an
ensemble of ideal gas configurations, or Poisson point distri-
butions, for a set of wave vectors. A super-ideal gas has a
structure factor that is identically unity for specified wave
vectors, and thus, this single configuration would be impos-
sible to differentiate from an ensemble of ideal gas configu-
rations for the specified wave vectors.

We define an equi-luminous material to be a system
whose scattering is constant for a set of wavelengths. Al-
though stealth materials and super-ideal gases are subsets of
equi-luminescent materials, we use this term to refer to ma-
terials that scatter radiation more intensely relative to an
ideal gas. These materials that scatter radiation much more
intensely than an ideal gas for a set of wave vectors have
enhanced density fluctuations and show local clustering simi-
lar to polymers and aggregating colloids.11 Typically, scatter-
ing experiments on these systems are used to shed light on
the characteristic length scales of a system.11–13 With our
inverse procedure, we impose the degree of clustering by
tuning the scattering characteristics for certain wavelengths.

Upon generating ensembles of ground-state configura-
tions for each class of materials described above, we charac-
terize local order of each ensemble. We place emphasis on
pair information in real space via the pair correlation func-
tion g2�r� and in reciprocal space through the structure factor
S�k� as these functions are experimentally accessible and
used widely in many-body theories.9,14,15

The pair correlation function g2�r� is the normalized
two-particle probability density function �2�r� and is propor-
tional to the probability of observing a particle center at r
relative to a particle at the origin.9 For a statistically homo-
geneous and isotropic medium, the pair correlation function
g2�r� depends only on the magnitude of r��r�, and is com-
monly referred to as the radial distribution function g2�r�,
which henceforth is the designation used in this paper.

The structure factor S�k� is proportional to the intensity
of scattering of incident radiation from a configuration of N
particles and is defined as

S�k� =
���k��2

N
, �1�

where ��k� are the collective coordinates and k are the wave
vectors associated with the system volume and boundary
conditions. Collective coordinates ��k� are the Fourier coef-
ficients in the expansion of the density field as follows:

��k� = �
j=1

N

exp�ik · r j� , �2�

where r j denotes the location of particle j. When S�k� de-
pends only on the magnitude of k��k�, the structure factor
S�k� is related to the Fourier transformation of g2�r�−1, ig-
noring the forward scattering associated with k=0,

S�k� = 1 + �� exp�ik · r��g2�r� − 1�dr , �3�

where � is the number density. For highly ordered systems,
both g2�r� and S�k� contain a series of �-functions or peaks at
large r and k, indicating strong correlations at the associated
pair distance. In configurations without long-range order,
both g2�r� and S�k� approach unity at large r and k.

Several inverse methods have sought to construct sys-
tems using pair information in real space, particularly in ad-
dressing the question of pair correlation function
“realizability,”2,9,16–19 which asks whether a given pair cor-
relation function, at number density �, can be realized by
spatial arrangements of particles. Typically, in real space, a
“target” radial distribution function is chosen and many-
particle configurations are found that best match the target
g2�r�. Stochastic optimization techniques have been a popu-
lar “reconstruction” method to find realizations of random
media20–23 or spatial arrangements of particles24–26 that best
approximate target correlation functions.

In contrast to these real-space methods, we target pair
information in reciprocal space to construct configurations
whose structure factor exactly matches the candidate struc-
ture factor for a set of wavelengths. In addition, our proce-
dure guarantees that the resulting configuration is a ground-
state structure for a class of potential functions.

The remainder of this paper is as follows. Section II
presents background on disordered ground states and moti-
vates our choices for candidate structure factors, while Sec.
III outlines the numerical procedure. Structure factors, radial
distribution functions, and representative particle patterns for
stealth materials, super-ideal gases, and equi-luminous mate-
rials are found in Secs. IV–VI. Lastly, general conclusions
and discussion relevant to classical disordered ground states
and this procedure are found in Sec. VII. The Appendix com-
pares minimization algorithms and analyzes the energy land-
scapes associated with our potential functions.

II. STEALTH MATERIALS, SUPERIDEAL GASES, AND
EQUILUMINOUS MATERIALS

Physical intuition and experimental facts suggest that in
the zero-temperature limit, classical systems of interacting
particles adopt a periodic structure to minimize potential en-
ergy. The “crystal problem” has attempted to determine the
fundamental mechanism that forces particles into ordered
states, but the existence of these mechanisms has yet to be
fully understood.1 The notion of disordered ground states is
particularly mysterious because of the lack of symmetry, lack
of long-range order, and degeneracy of ground-state configu-
rations.

The characterization of order in solid phases in the low-
temperature limit has been well studied. In addressing the
crystal problem, it has been suggested that nonanalyticity of
thermodynamic functions may yield “turbulent,” or nonperi-
odic, Gibbs states at positive temperature.27 As a conse-
quence, a turbulent crystal, characterized by fuzzy diffraction
peaks, is possible as a nonperiodic solid phase, in addition to
periodic and quasiperiodic structures.28 Turbulent crystals
have been examined previously28,29 and evidence has been
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presented that at low temperature, equilibrium states may
contain disorder.30 Theoretical work has created classical lat-
tice models with short-range interactions whose ground
states contain the property of disorder.31 In addition, a simple
gradient model was used to develop a disordered state, a
labyrinth, within a pattern forming system. Although this
state was ultimately excluded from being a ground state, the
authors were unable to exclude other models as potentially
yielding disordered ground states.32 Despite significant re-
search attention, understanding of the attainability of disor-
dered configurations as classical grounds states is incom-
plete.

We choose to limit this investigation to the study of
stealth materials, super-ideal gases, and equi-luminous mate-
rials based on the potential applications and fundamental in-
terest. Constructing systems with transparency at specified
wavelengths, including wavelengths outside of the low-k re-
gion, is the primary motivation. A stealth material has a
structure factor that is exactly zero for some set of wave-
lengths. In the low-k limit, several disordered systems nearly
suppress all scattering, though most are not ground states.
For example, when crystallizing hard colloidal spheres,
stacking faults of close-packed layers create deviation from
perfect crystallinity. The structure factor is nearly zero in the
low-k region followed by a strong Bragg peak and a diffuse
peak before decaying to unity.33

The examples of stealth configurations can also be de-
scribed as “hyperuniform.” Hyperuniform systems have the
property that

lim
k→0

S�k� = 0, �4�

i.e., infinite-wavelength density fluctuations vanish.34 Hyper-
uniform point patterns arise in the structure of the early
Universe,35 maximally random jammed packings,34,36,37 cer-
tain tilings of space,38 and the ground-state configurations of
certain repulsively interacting particle systems.34

The structure factor for a super-ideal gas is exactly unity
for a set of wave vectors and unconstrained for the remaining
wave vectors. We narrow our study to constraining wave
vectors in the small-k region. We choose super-ideal gases
based on interest in Poisson point distributions. The Poisson
point process has the simplest candidate S�k� and g2�r�, both
being exactly unity for all k and r, respectively. For a single
finite configuration, the structure factor exhibits random fluc-
tuations about unity. However, in a super-ideal gas, we con-
strain a set of wave vectors so that S�k� is exactly unity and,
for all wave vectors outside of this unconstrained set, the
intuitive expectation is that the structure factor would en-
semble average to unity. In fact, this does not necessarily
happen and an interesting alternative behavior arises, which
is discussed in detail below.

Equiluminous describes materials that scatter light
equally intensely for a set of wave vectors. The structure
factor for this class of materials is simply a constant for a set
of wave vectors. Subsets of equi-luminous materials include
super-ideal gases �S�k�=1� and stealth materials �S�k�=0�.
Here, we focus on materials whose structure factor is a con-

stant greater than unity, as these systems show strong local
clustering and intense scattering relative to an ideal gas.

III. NUMERICAL PROCEDURE

The numerical optimization procedure follows that of
Uche et al.5 used to tailor the small-k behavior of the struc-
ture factor. The structure factor S�k� and collective coordi-
nates ��k�, defined in Eqs. �1� and �2�, are related to the
quantity C�k� as follows:

S�k� = 1 +
2

N
C�k� , �5�

where

C�k� = �
j=1

N−1

�
i=j+1

N

cos�k · �r j − ri�� . �6�

For a system interacting via a pair potential v�ri−r j�, the
total potential energy can be written in terms of C�k� as
follows:

� = �
i�j

N

v�ri − r j� , �7�

=�−1�
k

V�k�C�k� , �8�

where � is the system volume and V�k� is the Fourier trans-
form of the pair potential function

V�k� = �
�

drv�r�exp�ik · r� . �9�

For a region of space with dimensions Lx, Lx�Ly, or Lx

�Ly �Lz in one, two, or three dimensions, subject to peri-
odic boundary conditions, the infinite set of corresponding
wave vectors has components

k� =
2	n�

L�

, �10�

where n� are positive or negative integers, or zero and �
=x ,y ,z as needed. For example, in three dimensions, the set
of wave vectors is

k = 	2	nx

Lx
,
2	ny

Ly
,
2	nz

Lz

 . �11�

It is clear that for any positive V�k� that is positive for
�k�
K and zero otherwise, the global minimum of the total
potential energy in Eq. �8� is achieved by driving C�k� or
S�k� to its minimum value for all �k�
K.5 For simplicity, we
utilize a “square-mound” V�k�, i.e., a function that is a posi-
tive constant V0 for all k�Q, where Q is the set of wave
vectors such that 0� �k�
K, and zero for all other k. In the
infinite-volume limit, this corresponds to a system of par-
ticles interacting via a real-space pair potential function that
is bounded, damped, and oscillating about zero at large r.3–5

This choice of pair potential serves our immediate purposes
to generate many-particle configurations with tuned scatter-
ing characteristics as a numerical tool only. Such soft poten-
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tials are of physical importance in soft-matter physics and
are easier to treat theoretically.39 The specific form of V�k� is
largely irrelevant in the design of scattering patterns so long
as it is positive, bounded, and has compact support up to
�k�=K. For example, V�k� could have been chosen so that
there is strong repulsion in v�r� for small r, but such inter-
actions will be studied in future work. For a cutoff radius K,
there are 2M�K� wave vectors in the set Q, where M�K� is
the number of independently constrained collective coordi-
nates. That is, constraining C�k� implicitly constrains
C�−k� due to the relation

C�k� = C�− k� . �12�

For a system of N particles in d dimensions, there are dN
total degrees of freedom. We introduce the dimensionless
parameter � to conveniently represent the ratio of the number
of constrained degrees of freedom relative to the total num-
ber of degrees of freedom

� =
M�K�

dN
. �13�

The global minimum of the potential energy defined in Eq.
�8� has the value of

min
r1¯rN

��� = − 	N

2

 �

k�Q
V0, �14�

if and only if there exist particle configurations that satisfy
all of the imposed constraints, which necessarily occurs for
�
1. Minimizing Eq. �8� to its global minimum for �
1
yields ground-state configurations that are stealthy for all k
�Q.

To target a specific form of the structure factor to certain
nonzero values, such as S�k�=1, we introduce a second non-
negative objective function as follows:

� = �
k�Q

V�k��C�k� − C0�k��2, �15�

where C0�k� is associated with the target structure factor by
Eq. �5�. If Eq. �15� is taken to be the potential energy of an
N-body system, then two-, three-, and four-body interactions
are present.5 Equation �15� has a global minimum of zero,
for �
1, if and only if there exist configurations that satisfy
all of the imposed constraints. Minimizing Eq. �15� is used to
construct super-ideal gases and equi-luminous materials as
ground-state configurations.

Three algorithms have been employed previously for
minimizing Eqs. �8� and �15�: steepest descent �SD�,3 conju-
gate gradient,4 and MINOP.5 SD and conjugate gradient
methods are line search methods that differ only in their
choice of search directions.40 The MINOP algorithm is a
trust-region method. When far from the solution, the pro-
gram chooses a gradient direction, but when close to the
solution, it chooses a quasi-Newton direction.41,42 Upon each
iteration, the program makes an appropriate update to ap-
proximate the Hessian.42

We find that that neither the conjugate gradient method
nor the MINOP algorithm significantly biases any subset of
ground-state configurations. The resulting configurations are

visually similar, and the ensemble-averaged radial distribu-
tion function and structure factor produced by both methods
have similar features. We chose the MINOP algorithm be-
cause it has been demonstrated to be better suited to the
collective coordinate procedure than the conjugate gradient
method.5 We refer the reader to the Appendix for character-
ization of the energy landscape and comparison between line
search methods and the MINOP.

Three sets of initial conditions were considered: random
placement of particles �Poisson distributions�, RSA, and per-
turbed lattices �integer, triangular, and face centered cubic in
one, two, and three dimensions, respectively�. For a RSA
process, particles are assigned a diameter and randomly and
irreversibly placed in space such that particles are not
overlapping.9 At sufficiently high �, usually �
0.6, the con-
structed ground-state systems apparently lose all memory of
their initial configurations. The analyses presented in Secs.
IV–VI will be those of random initial conditions. In some
cases at large �, a global minimum is not found. For the
results discussed here, Eqs. �8� and �15� were minimized to
within 10−17 of their respective minimum value. All other
trials were excluded from the analysis.

The region of space occupied by the N particles was
limited to a line in one dimension, a square in two dimen-
sions, and a cube in three dimensions, with periodic bound-
ary conditions. For stealth materials, particular attention was
paid to the choice of N for two and three dimensions. Mini-
mizing Eq. �8� for large � is known to yield crystalline
ground states.3–5 We choose to be consistent with previous
studies. In two dimensions, N was chosen as a product of the
integers 2pq, and p /q is a rational approximation to 31/2 so
that all particles could be placed in a triangular lattice con-
figuration without substantial deformation. In three dimen-
sions, N was usually chosen so that N=4s3, where s is an
integer, so that the particles could be placed in a face cen-
tered cubic lattice without deformation. In minimizing Eq.
�15�, N occasionally was assigned other values.

IV. RESULTS FOR STEALTH MATERIALS

A. Infinite-volume limit

Previous work suggesting the existence of disordered
ground states utilized small simulation boxes containing up
to several hundred particles.3–5 Our goal here is to show that
constructed systems continue to show no long-range order in
the infinite-volume limit. For d=2 and 3, systems containing
up to several thousand particles were constructed by mini-
mizing Eq. �8� for small � values. We find that ground-state
configurations differing only by N, with � and � fixed, are
disordered and exhibit the same local structure.

Figures 1 and 2 demonstrate the behavior of S�k� and
g2�r� for stealth materials constrained at �=0.05. The struc-
ture factors for systems only differing in N have identical
characteristics. The structure factor is exactly zero for con-
strained wave vectors and subsequently peaks above and
fluctuates about unity. The averaged S�k� initially peaks to a
value of 1.10 and decays rapidly to unity, a feature that is
more apparent for a large ensemble of configurations.
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The radial distribution function remains essentially in-
variant as the number of particles in the simulation box in-
creases from 108 to 6912, with � and � fixed, as shown in
Fig. 2. For a single realization, a system containing 108 par-
ticles has the same shape of g2�r� as that of the larger system
but shows significant statistical noise. In the figure, we
ensemble-average the results for the smaller system to make
clear the structural similarities. In the smaller system, the
large-r behavior is unavailable due to the minimum image
convention of the periodic box. Thus, the figure only dis-
plays a local structure, which is clearly disordered. In both
cases, g2�r� dips slightly below unity for small r and quickly
approaches and oscillates about unity with a diminishing am-
plitude.

B. Effect of increasing constraints

It was previously reported that minimizing collective
density variables for sufficiently high � induces
crystallization;5,4 therefore, for disordered stealth ground
states, we have minimized Eq. �8�, focusing on the low �
regime.

For d=1, crystallization occurs for ��0.5.3 For most
values of � below the crystallization threshold, the structure
factor is zero for all constrained wave vectors, it then peaks
above unity immediately outside K, and decays toward 1. As
� is increased, the height of the peak decreases and at �
higher than 0.30, a second peak forms. Below the crystalli-
zation value, S�k� dampens to unity for k larger than K.

For d=2, three � regimes have been reported: disordered
for ��0.57, “wavy crystalline” for 0.57
��0.77, and
crystalline for �
0.77.4 We choose to investigate well be-
low these ordered regions. In the ensemble-averaged struc-
ture factor, a peak forms in S�k� immediately beyond K and
decays toward unity. As � increases, the magnitude of the
peak increases, in contrast to d=1, and at the wavy crystal-
line threshold, several peaks begin to form beyond K. The
height of the peak is density dependent; however, S�k� gen-
erally has a maximum between 1.1 and 2.0 in the disordered
region.

For d=3, the transition from disordered to crystalline
regimes was identified previously to occur at � near 0.5.5

Constraining � below 0.45, S�k� peaks immediately beyond
K and smoothly decays to unity, but at �=0.454 67, S�k�
smoothly oscillates about unity. The magnitude of the peak is
generally smaller than for systems similarly constrained in
lower dimensions. In Fig. 3, we compare the structure factor
for several � values for 500 particles in a unit cube. We
include a nearly crystalline system of 500 particles con-
strained at �=0.548 67. The order of the system is apparent
by the series of sharp peaks in S�k� that persist at large k.

We find that particles have a repellent core that increases
in strength with increasing �. Figure 4 demonstrates the re-
pellent core effect via the radial distribution function associ-
ated with the 500-particle system described above. For this
particular system, at �=0.454 67, an exclusion region devel-
ops where g2�r� is exactly zero for a region near the origin.
At �=0.548 67, the peaks demonstrate crystallinity.

Increasing � tends to increase the net repulsion of the
potential, which is clearly observed in particle patterns.
Since differentiating between disordered stealth systems is
most instructive in two dimensions, we present particle pat-
terns in this dimension only. Figure 5 compares particle pat-
terns of 168 particles with Eq. �8� constrained for small �.
The circular window in the figure represents the length scale
of the wavelength associated with K. At the lowest � consid-
ered, the particles do not appear to have any spatial correla-

FIG. 1. Structure factor for stealth ground states for d=3, �=108, and �
=0.05. Increasing the system size from N=108 to N=6912 does not affect
the scattering characteristics. The potential energy was minimized to within
10−17 of its absolute minimum.

0 0.5 1
r

0

0.5

1

1.5

2

g 2(r
)

N=108, 25 realizations
N=6912, 1 realization

d=3

FIG. 2. �Color online� Radial distribution function for stealth ground states
for d=3, �=108, and �=0.05. Increasing the system size from N=108 to
N=6912 does not affect the resulting local structure. The potential energy
was minimized to within 10−17 of its absolute minimum.

FIG. 3. �Color online� Ensemble-averaged S�k� for stealth ground states
consisting of 500 particles in a unit cube. At �� 0.45, S�k� begins to oscil-
late while damping to unity. �a� �=0.113 33, 250 realizations; �b� �
=0.250 00, 50 realizations; �c� �=0.454 67, 50 realizations; and �d� �
=0.548 67, 4 realizations. The potential energy was minimized to within
10−17 of its global minimum.
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tion. At higher � values, particles develop an exclusion shell
about their center but do not have any long-range order.

C. Stealth materials spherically constrained in k
space

The entirety of disordered stealth materials studied have
involved constraining wave vectors in a spherical shell near
the origin. Since this procedure is capable of constraining
wave vectors of choice, we have constructed configurations
in which two disconnected concentric regions of wave vec-
tors are constrained, one near the origin and the other farther
from the origin.

We define parameters K0�K1�K2�K3 as magnitudes
of limits for constrained wave vectors. In this class of stealth
configurations, we constrain collective coordinates so that
S�k� is zero for all wave vectors in two spherical shells about
the origin in reciprocal space. Specifically, S�k� is zero for all
K0� �k�
K1 and all K2� �k�
K3. The region K1� �k�
K2

is defined as the intermediate region, where the structure
factor can be free to fluctuate or to be controlled. Figure 6
shows the location of parameters. These systems are con-
structed by introducing a V�k� that contains two square
mounds.

Spherically constrained stealth configurations were con-
structed in two and three dimensions. We present ensemble-
averaged radial distribution functions and structure factors
for d=3 and particle patterns for d=2 as these provide the
clearest representation of the general trends.

The peaking phenomenon in S�k�, as originally observed
in simple stealth materials, is evident both immediately be-
yond K1 and beyond K3. The structure factor increases above
unity slightly in the intermediate region but peaks and decays
rapidly to unity beyond K3. This is seen for all test cases and
it is not immediately clear if this phenomenon persists for
large separations of constrained regions �i.e., K2−K1�. Figure
6 shows the ensemble-averaged radial distribution function
and structure factor for configurations of 500 particles con-
strained so that S�k�=0 for 0� �k�
8.8	 and 13	� �k�

14.8	.

An important feature of this procedure is the ability to
suppress scattering for wave vectors that are normally Bragg
peaks in a crystalline material. With a 500-particle, three-
dimensional system, minimizing Eq. �8� for a single square-
mound V�k� for �=0.548 67 creates a crystalline ground
state where the first Bragg peak occurs just beyond k=14	.
The constructed system in Fig. 6 suppresses scattering for a
range of k surrounding 14	. Because the intermediate set is
free to fluctuate, the total number of constrained wave vec-
tors in this stealth configuration is less than that of a crystal-
line configuration. The stealth region away from the origin
can be shifted to larger k and can be tailored in magnitude.

The scattering of the intermediate set of wave vectors
can also be controlled using Eq. �15�. One such configuration
that can be developed is a stealth/ideal gas hybrid. In these
many-particle systems, there is behavior typical of crystal-
line solids at selected regions of reciprocal space and ideal
gas at others. In Fig. 7, a 500-particle system in three dimen-
sions is constrained so that S�k�=0 for 0� �k�
8.8	 and
13	� �k�
14.8	. The intermediate set is constrained to
S�k�=1.

The characteristics of the radial distribution function
vary depending on the constraints of the intermediate set. In
all cases, the radial distribution function shows weak neigh-
bor peaks before approaching unity. The second neighbor
peak, though, is stronger than the first neighbor peak, a trait
uncommon to most conventional many-body systems. The

FIG. 4. �Color online� Ensemble-averaged g2�r� for stealth ground states of
500 particles in a unit cube. At �� 0.45, g2�r� oscillates about unity with a
shorter wavelength than observed for smaller � values. �a� �=0.113 33, 250
realizations; �b� �=0.250 00, 50 realizations; �c� �=0.454 67, 50 realiza-
tions; and �d� �=0.548 67, 4 realizations. The potential energy was mini-
mized to within 10−17 of its global minimum.

(a) χ= 0.04167 (b) χ = 0.41071

FIG. 5. Stealth particle patterns of 168 particles in two dimensions: �a� �
=0.041 67 and �b� �=0.410 71. The bar below each graph and the circular
window represent the characteristic length associated with K. Both systems
are disordered but at higher �, particles tend to spread away from each other.
The potential energy was minimized to within 10−17 of its global minimum.

FIG. 6. �a� Ensemble-averaged g2�r� and �b� S�k� for a stealth material of
500 particles in a unit cube. 25 realizations. S�k�=0 for 0� �k�
8.8	 and
13	� �k�
14.8	 and with the intermediate set unconstrained. The potential
energy was minimized to within 10−17 of its global minimum.
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extent of the repelling-core region varies depending on the
chosen value of K1 and the extent to which the intermediate
set is controlled, evidenced by Figs. 6 and 7. Further reduc-
ing the value to which the intermediate set is controlled is
likely to increase the repelling-core region given the relation
between S�k� and g2�r� in Eq. �3�.

Spherically constrained stealth particle patterns consist-
ing of 168 particles with the intermediate set, respectively,
unconstrained and constrained are shown in Fig. 8. To serve
as a basis of comparison, a realization of a wavy crystalline
configuration generated by suppressing scattering for all
wave vectors up to 22	 is also shown. The wavy crystalline
material, Fig. 8�a�, stands in sharp contrast to the stealth
materials since particles tend to align in well-patterned
strings. The spherically constrained stealth materials lack any
order. With the intermediate region uncontrolled, Fig. 8�b�,
particles tend to align into weak “strings.” Creating a stealth/
ideal gas hybrid, Fig. 8�c�, decreases the tendency to align in
weak strings. The diameter of the circular window is equiva-
lent to the length scale of K3, indicating the ability to impose
system features with a specified length scale.

V. RESULTS FOR SUPERIDEAL GASES

Super-ideal gases were constructed at various � values
for d=1, 2, and 3. The maximum attainable � value varied
depending on spatial dimension and system size but was gen-
erally near �=0.95 for most initial configurations. At � near

unity, the minimization routine sometimes failed to find a
global minimum of �. However, in d=3 and � near unity,
the success rate for finding global minimum was much im-
proved over that of lower dimensions.

The results from all dimensions studied have similar
characteristics. For a single realization, the structure factor is
exactly unity for k�K. Outside of the constrained region, the
structure factor seemingly fluctuates about unity. However,
for an ensemble of super-ideal gases, the structure factor had
a small peak immediately beyond K that slowly decayed to
unity. This small peak is unexpected since we impose no
constraints on S�k� for wave vectors outside K and would
expect that correlations do not exist at these k. The construc-
tion of super-ideal gases reveals a subtle coupling between
S�k� within the constrained region and S�k� outside the con-
strained region that manifests upon ensemble averaging. For
d=1, 2, and 3, S�k� never exceeds values of 1.25, 1.18, and
1.10, respectively, when ensemble averaged. For ��0.4 and
��0.96, the peak generally decays to unity rapidly. For
0.4
�
0.96, the peak is rather long ranged, decaying much
more slowly. Figure 9 shows the ensemble-averaged g2�r�
and S�k� for two systems containing 500 particles in d=3.

The radial distribution function has characteristics com-
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FIG. 10. The value of the radial distribution function in the first bin for a
super-ideal gas consisting of 500 particles in a unit cube. The contact value
g2�0� increases initially for small �. However, for large �, local clustering is
suppressed. Each data point represents at least 30 realizations, except for
�=0.989 67, which represents 12 realizations.

FIG. 7. �a� Ensemble-averaged g2�r� and �b� S�k� for a stealth material of
500 particles in a unit cube. S�k�=0 for 0� �k�
8.8	 and 13	� �k�

14.8	 and with the intermediate set constrained to S�k�=1. 10 realiza-
tions. The potential energy was minimized to within 10−17 of its global
minimum.

FIG. 8. �a� Wavy crystalline configuration generated by constraining S�k�
=0 for all �k�
22	. �b� Stealth material generated by constraining S�k�=0
for 0� �k�
10	 and 20	� �k�
26	 and the intermediate set is uncon-
strained. �c� Stealth material generated by constraining S�k�=0 for 0� �k�

10	 and 18	� �k�
22	 and with the intermediate set constrained to
S�k�=1. The line beneath the figure and the circle in the figure approxi-
mately represent the length scale of K3. The potential energy was minimized
to within 10−17 of its global minimum.

FIG. 9. Ensemble-averaged g2�r� and S�k� for super-ideal gases in three
dimensions. 500 particles in a unit cube. �=0.906 67, 30 realizations, and
�=0.989 33, 12 realizations. The dashed line shows the location of unity for
each structure factor. The potential energy was minimized to within 10−17 of
its global minimum.
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mon across dimensions studied. For r�0.1Lx, g2�r� shows
very small fluctuations about unity. The local behavior of
g2�r�, r�0.1Lx, varies depending on � and is most sensitive
to � in d=3. Figure 9 shows that super-ideal gases at �
=0.906 67 exhibit severe local clustering as the radial distri-
bution function has a contact value g2�0� near 7. However, at
�=0.989 67, the structure more closely resembles an ideal
gas. Figure 10 tracks the contact value of g2�r� for various �.
At significantly large �, local clustering is suppressed and
the super-ideal gas structure closely resembles that of an en-
semble of ideal gas configurations. An interesting conse-
quence is that the local structure of a super-ideal gas at very
small � resembles that of a super-ideal gas at very large �.

Two-dimensional particle patterns reveal subtle differ-
ences between super-ideal gas configurations and Poisson
distributions. Figure 11 compares a realization of Poisson
distribution of 418 particles and a super-ideal gas at �
=0.90. At certain �, super-ideal gases exhibit local order and
a tendency to align into weak strings that is best revealed
only upon ensemble averaging. At smaller �, super-ideal
gases are particularly difficult to discern from a Poisson dis-
tribution.

VI. RESULTS FOR EQUILUMINOUS MATERIALS

Equiluminous materials represent a broad class of mate-
rials that scatter light equally intensely for a set of wave
vectors, where a super-ideal gas is a special case. We choose
to focus here on equi-luminous materials whose scattering in

the small-k region is much more intense relative to that of an
ideal gas. For all cases considered, we observe qualitative
similarities in the ensemble-averaged radial distribution
function and structure factor. The structure factor is exactly
equal to the chosen constant for all k�K. Beyond K, the
ensemble-averaged structure factor decays to unity very
slowly at a rate dependent on the specified constant in con-
strained region. Figure 12 compares S�k� for several equi-
luminous configurations containing 168 particles for d=2.
These configurations have constrained S�k� values that are
exactly 1, 2, 3, and 4, respectively, for �=0.345 23. Achiev-
ing � above 0.37 for S�k�=4.0 and for d=2 proved challeng-
ing as the minimization procedure often failed to find global
minima.

In real space, we observe that constraining S�k� to be
increasingly large has no affect on the long-range behavior of
g2�r�. Generally, for r�0.1Lx, g2�r� averages near unity.
However, for r�0.1Lx, strong local correlations rapidly van-
ish for increasing r. By increasing the constrained value of
S�k�, the contact value of g2�r� increases significantly but
does not change the large-r behavior, which remains near
unity. Figure 13 demonstrates the behavior of g2�r� corre-
sponding to the systems described above.

Realizations of equi-luminous materials demonstrate the
aggregation of particles common to this class of equi-
luminous materials. Figure 14 shows configurations for

FIG. 12. �Color online� Ensemble-averaged S�k� for equi-luminous ground
states consisting of 168 particles for d=2. �=0.345 23, 50 realizations. The
potential energy was minimized to within 10−17 of its global minimum.

FIG. 13. �Color online� Ensemble-averaged g2�r� for super-ideal gas and
equi-luminous ground states consisting of 168 particles, d=2, �=0.345 23,
50 realizations. Clustering near the origin increases for increasing the con-
strained S�k� value, which are 1, 2, 3, and 4, respectively. The potential
energy was minimized to within 10−17 of its global minimum.

FIG. 11. Particle configurations of 418 particles. �a� Poisson point process;
�b� super-ideal gas, S�k�=1, �=0.90. Ensembles of super-ideal gases reveal
the presence of local clustering.

FIG. 14. Ground-state configurations of 168 particles: �a� S�k�=2, �
=0.345 23, and �b� S�k�=4, �=0.345 23. Particle clustering increases when
constrained to higher S�k�.
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which S�k�=2 and S�k�=4 for �=0.37. Particles tend to clus-
ter and align into well-formed strings, or filamentary struc-
tures, as opposed to clustering radially. Filamentary struc-
tures arise in astrophysical systems, particularly for the
distributions of galaxies.43 For a larger target S�k�, the aggre-
gation is increasingly severe and particles nearly stack on top
of each other.

In the extreme case of targeting S�k� toward its maxi-
mum value of N for very small �, particles tend to collapse
on each other, yielding an overall rescaling of the system
length scale. It should be noted that in these extreme cases,
global minima were rarely found and required successive
iterations to achieve optimality. For example, in seeking a
ground-state configuration with S�k�=10 for �=0.017 85, the
ground-state configuration in which S�k�=8 for �=0.017 85
was used as the initial condition.

VII. CONCLUSION AND DISCUSSIONS

Previous studies concerning constraints on the collective
coordinates of particle configurations3–5 were suggestive that
potentials defined by Eqs. �8� and �15� yield classical disor-
dered ground-state configurations. These studies restricted
the system size to small periodic boxes consisting of at most
100 particles in d=1,3 418 particles in d=2,4 and 500 par-
ticles in d=3.5 In this investigation, we find that increasing
the system size while fixing � and � does not affect the
structure of resulting configurations, suggesting that there are
no long-range correlations in the infinite-volume limit. Con-
structing ground-state materials via MINOP for systems sig-
nificantly larger than that presented in Sec. VI becomes com-
putationally challenging and currently is the limitation on
system size. Regardless, our numerical evidence for disor-
dered ground states in the infinite-volume limit corroborates
recent analytical work that suggests the existence of energeti-
cally degenerate and aperiodic ground states in the infinite-
volume limit via a similar potential.39,44

Three novel classes of ground-state materials with po-
tential radiation scattering applications have been intro-
duced: stealth materials, super-ideal gases, and equi-
luminous materials. Each provides a unique opportunity to
impose an underlying structure for a ground-state configura-
tion with a known potential. With stealth materials, we have
the precise control to suppress scattering at specified wave-
lengths. For a single square-mound V�k�, increasing the
number of constraints on wave vectors near the origin drives
systems toward crystallinity.3–5 However, by introducing
V�k� with two square mounds and choosing to suppress scat-
tering in two disconnected regions of reciprocal space, we
disrupt the drive toward crystallinity. Particle patterns then
have strong local correlations with an imposed length scale,
but lack long-range order. It is interesting to note that all
stealth ground-state configurations generated in this investi-
gation are also hyperuniform point patterns, i.e., configura-
tions that suppress density fluctuations in the infinite-
wavelength limit. In choosing which regions of reciprocal
space to be stealthy, we exhibit the unique ability to control
and suppress density fluctuations at specified wavelengths.

Equiluminous materials investigated in Sec. VI demon-

strate ground-state structures that scatter light for a set of
wavelengths more strongly than an ideal gas. In choosing the
number of constrained wave vectors and the value of S�k�,
one can design ground-state configurations that have increas-
ingly clustered behavior for increasing � and S�k�. By adjust-
ing K, we can impose correlations over a certain length scale.

The differences between super-ideal gases and ideal
gases are not intuitively obvious. The resulting local struc-
ture deviates significantly from that of an ideal gas as there is
some degree of local clustering, with the exception of � near
0 and � near 1. The propensity for super-ideal gases to ex-
hibit local clustering suggests that, among the many energeti-
cally degenerate global minima in the landscape, configura-
tions with some degree of clustering dominate relative to
those that do not. We also find that this local order is par-
ticularly sensitive to the number of constraints imposed sug-
gesting that the energy landscape changes significantly for
small changes in �. Despite the local clustering, the resulting
configurations exhibit no long-range order.

One potential application of this procedure is in address-
ing the realizability question. Despite receiving significant
attention, only necessary conditions have been placed on the
pair correlation function g2�r� and its corresponding structure
factor S�k� for the realizability of a point process.2,9,16–19

General sufficient conditions have yet to be developed. This
method can potentially address realizability from reciprocal
space, which stands in contrast to real-space numerical re-
construction techniques.20–22,25,26 A limitation in its use for
the question of realizability is the peaking phenomenon in
S�k�. In all cases studied, S�k� has a peak immediately be-
yond K, suggesting collective coordinates are not necessarily
independent of each other and that the nonlinearity of the
coordinate transformation plays an important role in con-
straining collective coordinates. Additionally, our results
show that the magnitude of the peak is reduced for higher
dimensions, suggesting that dimensionality plays a key role
in the coupling among collective coordinates. The under-
standing of constraints on collective coordinates is incom-
plete. New questions arise: How are the wave vectors beyond
K influenced by constraints below K? What role does dimen-
sionality play in the peaking phenomenon?

Another possible application of this procedure is to pro-
duce ground-state configurations that are ordered or quasip-
eriodic over a specified length scale for the design of photo-
nic materials. Materials with a photonic band gap are of
significant interest due to their technological
applications,45–47 and materials with desired band gaps have
been designed.48,49 From first-order perturbation theory, scat-
tering of radiation is related to the photonic band gap of a
material.50 By targeting a structure factor that is maximal for
certain wave vectors and zero for others, we may be able to
construct ground-state structures with a specified desired
photonic band gap to a first-order approximation.

In the present investigation, the potential V�k� �Fourier
transform of the real-space potential v�r�� was chosen to be a
square mound with compact support at K for convenience.
However, the constructed ground-state configurations are
equivalent to the ground-state configurations associated with
a broad class of V�k�. If a ground-state configuration of den-
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sity � is constructed by minimizing Eq. �8� or Eq. �15� to its
global minimum value, Eq. �14�, or zero, respectively, then
the ground-state configuration is also a ground state at den-
sity � for any positive V�k� that is bounded with the same
compact support. Importantly, the particular choice for V�k�
used in this paper serves our numerical purposes to generate
many-particle configurations with the novel scattering char-
acteristics identified in this paper. Our intent here was not to
address the experimental issue of what realistic potentials are
capable of achieving such configurations. However, we men-
tion that other bounded V�k� with compact support could be
considered with a corresponding real-space potential v�r�
that has appreciably shorter range than the one studied here
as well as repulsive interactions that more closely mimic
strong short-range repulsions.

Recently derived duality relations allow us to identify
further degeneracies among ground states constructed via
Eq. �8� and provide bounds on the minimum energy for vari-
ous forms of v�r�. These duality relations link the energy of
configurations for a bounded and integrable real-space pair
potential function to that of its Fourier transform and provide
a fundamental connection between the ground states of
short-range pair potentials to those with long-range pair po-
tentials. More specifically, if a Bravais lattice structure is the
ground-state energy Umin for a pair potential function v�r�,
then Umin provides an upper bound on the ground-state en-

ergy Ũmin of a system interacting via the Fourier transform of
the pair potential function V�k� at the associated reciprocal
density.39 In using Eq. �8�, we used a long-ranged, damped,
and oscillatory v�r�, whose Fourier transform is a square-
mound V�k�. For �
1 and at a given density �, this v�r� had
a Bravais lattice as a ground-state structure, and for suffi-
ciently large �, a Bravais lattice becomes its unique ground-
state structure at a certain density. By these duality relations,
we know that the minimum energy of this Bravais lattice
system, Eq. �14�, is the upper bound on the ground-state
energy of systems at density ��=�−1�2	�−d interacting via
V�k�.39

Targeting specific forms of the structure factor with Eq.
�15� requires up to four-body interactions in real space to
achieve these as ground states. However, it would be particu-
larly useful to construct disordered ground states using short-
range two-body potentials. Developing effective short-range
pair interactions, possibly via the Ornstein–Zernike
formalism,51 to achieve desired scattering properties remains
a potential future direction.
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APPENDIX: ENERGY LANDSCAPE ANALYSIS

For large �, the procedure sometimes terminates at a
potential higher than the absolute minimum, failing to meet

our criterion for global minimum. Generally this has been
attributed to local minima in the energy landscape associated
with Eqs. �8� and �15� and the performance of the minimiza-
tion algorithm.5 Since little is known about these landscapes,
we shed some light on to them and justify the discrepancy
between the performances of the various algorithms.

1. Energy landscape

The landscape of � can be visualized for a system of
three particles on a unit line. Imposing the constraint so that
�S�k��k=�2	= �2 /N�D, the energy � becomes

� = �cos�2	�x1 − x2�� + cos�2	�x1 − x3��

+ cos�2	�x2 − x3�� + 3
2 − D�2. �A1�

D must be within the range of realizability for S�k� �i.e., 0

D
N2 /2�. The energy landscape possesses translational
freedom, so we can fix x1 at the origin, x1=0. Plotting Eq.
�A1� versus particle coordinates for the case of D=0 and
D=1 provides a simple picture of the energy landscape. Fig-
ures 15 and 16 show the energy landscape and contour plot
for D=0 and D=1, respectively.

For a stealth configuration, D=0, Fig. 15, there is ex-
actly one solution, corresponding to the crystalline arrange-
ment of particles, that is a global minimum of �. The global
maximum is a stacking of all particles onto the origin. For
D�0, Fig. 16, there is a family of degenerate ground-state
solutions located in a ring around configurational points cor-
responding to the periodic arrangement of particles. For this
system, a single ground state exists only for D=0 or D
=N2 /2. For all other D, there exist degenerate ground states.
Taylor expansion about the minima when D=0 indicates the
landscape is quartic in nature. When D�0, local maxima are
located at configurational points associated with the periodic
arrangement of particles, as evident in Fig. 16. As D is in-
creased, the local maxima are found increasingly higher in
the landscape. Above D=1.5, the periodic arrangements of
particle become global maxima and the origin becomes a
local maximum.

Visualization confirms that the energy landscape is non-
trivial, particularly for D�0. Local minima were not found
despite our experience with the minimization procedure. Lo-
cal minima can be found by constraining the next wave vec-

FIG. 15. �Color online� Energy landscape and contour plot associated with
minimizing Eq. �A1� for the first wave vector. Three particles on a unit line,
D=0, �=0.333. Ground-state configurations correspond to the periodic
arrangement.
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tor. For example, constructing a system for D=1 at �
=0.667 for a three-particle system introduces local minima.
If D�0 and D�N2 /2, � cannot be minimized to zero at
�=0.667. The crystalline arrangement achieves �=0 for D
=0 and the stacking of particles achieves �=0 for D
=N2 /2.

2. Stationary point characterization and capture
basins

To enumerate and characterize the stationary points
�local/global minimum or maximum, or saddle point� of the
energy landscape �, Eq. �8�, we introduce a non-negative
function f�x�, where x refers to particle coordinates as fol-
lows:

f�x� = �� · �� . �A2�

The global minima of f�x� have a value of zero and corre-
spond to stationary points of the energy landscape �. Cap-
ture basins are the regions of phase space that, upon mini-
mizing f�x�, yield each stationary point. For three particles
on a line, the stationary points are countable from the visu-
alization of the landscape, and this provides a basis for com-
parison. We use SD since it will generate nonoverlapping
capture basins and we compare against the MINOP. If at a
certain point in the energy landscape MINOP’s trust region
overlaps with a different capture basin, it may favor a search
direction that enters the overlapping capture basin and lead
to a different stationary point.

Table I summarizes the results of the capture basin

analysis for a three-particle one-dimensional system con-
strained at k=1 and k=2 from several hundred trials. Ran-
dom positions are assigned and f�x� is minimized, yielding a
stationary point. Many times f�x� was not minimized to a
global minimum indicating that a stationary point of � was
not found. In the table, the number of capture basins refers to
the countable number of basins in the landscape with one
basin associated with each stationary point, without account-
ing for particle permutations. The fractions in the chart rep-
resent the fraction of the total number of stationary points
found corresponding to each stationary point, or alterna-
tively, the fraction of phase space that corresponds to a spe-
cific capture basin for each stationary point.

The capture basins for a two-dimensional system of 12
particles were found for all available values of �, for D=0.
Because of the increased speed of the MINOP, we only em-
ploy this algorithm to minimize f�x�. Upon generating a sta-
tionary point, the potential � was calculated and the eigen-
values of its associated Hessian matrix were found. Global
minima of � have non-negative eigenvalues and �=0.
Saddle points have at least one negative eigenvalue and �
�0. Table II summarizes the capture basins and stationary
points for 12 particles in two dimensions. Trials that did not
yield stationary points are excluded from the reported frac-
tions.

No local maxima, global maxima, or local minima were
found; however, they must exist in systems of sufficiently
high dimension. The most unstable saddles generally have a
high potential exceeding the global minimum by �102,

FIG. 16. �Color online� Energy landscape and contour plot associated with minimizing Eq. �A1� for the first wave vector. Three particles on a unit line, D
=1, �=0.333. Ground-state configurations are a set of configurations at the �=0 ring around the integer lattice points.

TABLE I. Fraction of phase space corresponding to capture basins of landscape � for three particles on a line
as found by steepest descent �SD� and MINOP algorithms.

�=0.333 �=0.667
No. of capture basins SD MINOP No. of capture basins SD MINOP

Global min 2 0.414 0.290 3 0.234 0.146
Saddle 3 0.440 0.530 6 0.420 0.376
Global max 1 0.108 0.180 1 0.016 0.108
Local max 2 0.048 0.014
Failed to converge … 0.038 0.000 ¯ 0.282 0.356
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while the most stable saddles have potentials � that differed
from a global minimum by O�10−1�. Our experience with
finding local minima is consistent with these results. When
the MINOP terminates at � above its global minimum value,
which usually occurs when N�12, the potential of the final
configuration is about 10−8–10−2 above the global minimum
value. The strong correlation between the number of nega-
tive eigenvalues and potential is consistent with our experi-
ence with these algorithms.

The number of saddle points grows rapidly with the total
dimensionality of the system �number of particles times spa-
tial dimension� and grows more rapidly than any other sta-
tionary points. In the three-particle system at �=0.667, we
observe that local maxima are located near saddle points in
the energy landscape. It is likely that minimizing f�x� intro-
duces a bias toward finding saddle points of � rather than
local maxima of �. Because local maxima are outnumbered
by saddle points and the search procedure may favor direc-
tions toward saddle points of �, it is likely that minimizing
Eq. �A2� would rarely generate local maxima for systems of
high dimensionality. Global maxima are attained only by
stacking particles in a single location. It is expected that this
stationary point would be so greatly outnumbered by all
other stationary points and that minimizing f�x� may never
generate a global maximum.

These simple studies allow us to better justify the infer-
ences regarding the landscape associated with �. Overcon-
straining the three-particle system for targeting a super-ideal
gas introduced local minima. Increases to the system’s di-
mensionality and to � increased the number of saddle points
and are expected to increase the number of local minima.
Comparisons between the MINOP and the line search tech-
niques indicate that the trust region often overlaps other cap-
ture regions, which find global minima of � more effec-
tively.
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