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Elementary smooth functions �beyond contact� are employed to construct pair correlation functions that
mimic jammed disordered sphere packings. Using the g2-invariant optimization method of Torquato and
Stillinger �J. Phys. Chem. B 106, 8354 �2002��, parameters in these functions are optimized under necessary
realizability conditions to maximize the packing fraction � and average number of contacts per sphere Z. A
pair correlation function that incorporates the salient features of a disordered packing and that is smooth
beyond contact is shown to permit a � of 0.6850: this value represents a 45% reduction in the difference
between the maximum for congruent hard spheres in three dimensions, � /�18�0.7405 and 0.64, the approxi-
mate fraction associated with maximally random jammed packings in three dimensions. We show that, sur-
prisingly, the continued addition of elementary functions consisting of smooth sinusoids decaying as r−4

permits packing fractions approaching � /�18. A translational order metric is used to discriminate between
degrees of order in the packings presented. We find that to achieve higher packing fractions, the degree of order
must increase, which is consistent with the results of a previous study �Torquato et al., Phys. Rev. Lett. 84,
2064 �2000��.
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I. INTRODUCTION AND BACKGROUND

Packing problems address the various arrangements of a
set �finite or infinite� of nonoverlapping objects in a space of
given dimension �1–3�. Often, one seeks to arrange the ob-
jects in such a way as to optimize a certain statistical or bulk
property, e.g., the number density � of objects �or equiva-
lently the packing fraction �, the fraction of space covered
by the objects’ interiors�. This paper is concerned with opti-
mizing the packing fraction � and average number of con-
tacts per sphere �average kissing number� Z for packings of
congruent spheres in three-dimensional Euclidean space
while maintaining an assumed functional form for the pair
correlation function �defined below� of a “random” packing.

Random packings of three-dimensional hard spheres have
been studied by scientists to better understand everything
from heterogeneous materials to liquids, granular materials
�e.g., sand�, and living cells �3–7�. In parallel to the concept
of a maximum packing fraction for periodic �crystalline�
packings, it had been assumed that a �different� maximum
packing fraction could be defined for random packings, re-
ferred to as “random close packing” �RCP� �8,9�. However,
while there is a proved maximum packing fraction for hard-
sphere periodic packings achieved via an fcc lattice or one of
its stacking variants �2�, the RCP state has been shown to be
ill-defined �10,11�.

Experimental packings of oiled steel ball bearings origi-
nally led to the idea that mechanically stable random pack-
ings of identical spheres could not exhibit packing fractions
exceeding 0.64 or declining below 0.60 �9,12�. Mathemati-
cally constructed models �13� and early computer simula-
tions �14� seemed to support these conclusions, though later
work demonstrated that the limiting packing fractions ob-

tained were highly dependent on the packing methods �3,10�.
These methods included, for example, lightly vibrating a
container filled with spheres in either horizontal or vertical
motions, rolling spheres one by one into a container �15�,
and simulating the compression of a hard-sphere gas �16,17�.

Changing the method of packing via molecular dynamics
simulations showed that packing fractions greater than 0.64
are realizable �10,18,19�. However, it has yet to be demon-
strated from a theoretical basis, i.e., without resort to experi-
ment or computer simulation, that indeed there is no maxi-
mum density limit for random packings apart from the
proved limit for periodic packings. This paper provides such
a theoretical basis by extending previous optimization stud-
ies of g2-invariant processes �defined below� �20,21� to a
broader class of disordered packings.

Following previous work by two of us, a statistically ho-
mogeneous and isotropic packing is defined to be disordered
if its pair correlation function g2�r� in d-dimensional Euclid-
ean space Rd decays to unity faster than r−d−� for some
��0 �21�. Each packing corresponds to a unique g2�r�, a
function proportional to the probability density of finding a
separation r between any two sphere centers and normalized
such that it takes the value of unity when no spatial correla-
tions are present. The precise definition of “disordered” via
the pair correlation function takes the place of the imprecise
term random hereafter.

The essential ideas behind our approach were actually laid
out in our earlier work �20,21�. In Ref. �20�, the main objec-
tive was to study disordered packings in which short-range
order was controlled using so-called g2-invariant processes.
A g2 -invariant process is one in which a given pair correla-
tion function g2�r� remains invariant for all r as packing
fraction varies over the range of densities,
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The terminal packing fraction �� is the maximum achievable
for the g2-invariant process subject to satisfaction of the non-
negativity of g2�r� and the structure factor S�k�, i.e.,

g2�r� � 0 ∀ r � 0, �2�

S�k� � 0 ∀ k � 0. �3�

For a statistically homogeneous and isotropic packing at
number density �, S�k� is related to the Fourier transform of
the total correlation function h�r��g2�r�−1 by

S�k� = 1 + �h̃�k� , �4�

where h̃�k� represents the Fourier transform of h�r�. In three
dimensions, this can be written as

S�k� = 1 + 4���
0

� r sin kr

k
h�r�dr . �5�

The optimization procedure described above was formulated
for a hard-sphere packing, which requires the additional con-
dition on g2 that respects the nonoverlap constraint, i.e.,

g2�r� = 0 for 0 � r 	 D . �6�

When there exist sphere packings with a g2 satisfying con-
ditions �2�, �3�, and �6� for � in the interval �0,���, then a
lower bound on the maximal packing fraction is given by
�max���. It is noteworthy that this optimization problem for
sphere packings is an infinite-dimensional linear program,
which is the dual of the primal linear program devised by
Cohn and Elkies �22� to obtain upper bounds on the maximal
packing fraction �21�. We will comment further on this con-
nection in the conclusions. Finally, we note here that the
results of the optimization of the pair correlation function
given in Ref. �20� have found application in describing
small-scale convective structural features of the solar surface
�23�.

The non-negativity conditions �2� and �3� are necessary,
but generally not sufficient, for a pair correlation function at
a given density to be realizable by a point process �24�. A
third condition, obtained by Yamada �25� and not included in
the optimization procedure described above, constrains

2�A��	(N�A�− 	N�A�
)2
, which is the variance in the num-
ber of points N�A� contained within a window A�Rd,


2�A� � ��A��1 − ��A�� , �7�

where ��A� is the fractional part of the expected number of
points contained within the window. The number variance
associated with a spherical window of radius R for a statis-
tically homogeneous point process in d dimensions can be
written as follows �26�:


2�R� = �v1�R��1 + ��
Rd

h�r��2
int�r;R�dr�

� ��R��1 − ��R�� , �8�

where v1�R� is the volume of the window and �2
int�r ;R� is the

intersection volume of two windows of radius R �whose cen-

ters are separated by r� divided by v1�R�. This additional
condition �8� on the pair correlation function is always sat-
isfied for statistically homogeneous and isotropic packings
with sufficiently large windows in dimensions greater than 1
�21�. In all cases that have been studied, this condition is
satisfied for all R if the first two conditions are satisfied
�21,27�.

While conditions �2�, �3�, and �7� are necessary for the
realizability of point processes, along with incorporation in
g2�r� of the core exclusion feature, they appear to be rather
strong conditions for realizability of sphere packings, espe-
cially as the space dimension increases �21�. For example, a
method to construct disordered packing configurations that
realize test g2’s meeting the conditions and incorporating the
features of core exclusion and contact pairs �Eqs. �9� and
�11�� has been successful �28,29� in two and three dimen-
sions. No example in three dimensions or greater of an un-
realizable g2 satisfying the conditions and incorporating the
core exclusion feature is currently known.

In Ref. �20�, a five-parameter test family of g2’s incorpo-
rating features of core exclusion, contact pairs, and damped
oscillatory short-range order beyond contact �Eqs. �9�, �11�,
and �12�� had been considered. The problem of finding the
terminal packing fraction �� was posed as an optimization
problem: maximize � over the set of parameters subject to
the first two realizability conditions �the third condition due
to Yamada �25� was not relevant�. In this work, we consider
a broader family of smooth g2 test functions corresponding
to disordered packings �30� and satisfying all three afore-
mentioned conditions.

To demonstrate the absence of a theoretical upper limit on
disordered packings, we show that terms decaying as r−4,
representative of a feature prominent in the pair correlation
functions of maximally random jammed �MRJ� packings
�31�, allow for increased packing fraction for pair correlation
functions satisfying the three conditions and incorporating
the aforementioned features. A simple 11-parameter form
consisting of the initial five-parameter form plus two sinuso-
ids decaying as r−4 permits a packing fraction of 0.6850.
Using a translational order metric, we show that the pair
correlation function with the highest packing fraction also
exhibits the highest degree of order, which is consistent with
the conclusions of a previous work �10�. Additionally we
show the surprising result that the continued addition of
terms decaying as r−4 allows for packing fractions up to
� /�18, indicating that, if the packings are realizable, the
progression of disordered packings up to the maximum � is
a continuum, dependent only on the form and parameters of
the functions employed. A qualitative description of a realiz-
able disordered packing with smooth g2�r� and � approach-
ing � /�18 is provided in Sec. IV A.

II. OPTIMIZATION OF g2-INVARIANT PROCESSES

We begin by revisiting the optimization problem first ex-
amined in Ref. �20�. We employ a more comprehensive
search using simulated annealing to optimize the five param-
eters of the family of g2’s presented in Ref. �20� and find a
higher terminal packing fraction ��=0.642 68. The three
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functions that comprise the five-parameter family, gI�r�,
gII�r� and gIII�r�, capture the most salient properties of a
disordered packing, including that the average number of
spheres in contact is Z and that no sphere centers may ap-
proach closer than a distance of one sphere diameter.

A Heaviside step function represents the spheres’ hard
core exclusion,

gI = 
�r − 1� , �9�

where we set the diameter of the spheres to be unity. The
Heaviside step function 
�x� is defined piecewise as


�x� = 
0, x 	 0

1, x � 0.
� �10�

A Dirac delta function represents pair contacts,

gII =
Z

4��
��r − 1� , �11�

with Z as the average number of contacts per sphere �average
kissing number�. An exponentially decaying sinusoid pro-
vides short-range oscillatory motion about unity,

gIII =
A1

r
exp�− B1r�sin�C1r + D1�
�r − 1� , �12�

with parameters A1, B1, C1, and D1. The total pair correlation
function g2�r� is then

g2�r� = gI�r� + gII�r� + gIII�r� . �13�

Constraining B1�0, Z�0 ensures a physical configuration,
while constraining C1�0, 0�D1	� eliminates function
duplicates without additionally constraining the range of the
functional form.

A. Maximizing packing fraction

Packing fraction is maximized using the g2-invariant
method for the g2 functional form given by Eq. �13� in
20 000 independent runs of over 10 000 iterations each. Ini-
tial values for the five parameters are selected randomly be-
fore each run with exponentially decreasing probability from
zero and are confined to the following bounds:

− 50 	 A1 	 100,

0 	 B1 	 10,

0 � C1 	 50,

0 � D1 	 � ,

0 � Z 	 13.

Parameters are allowed to range outside of bounds, but in no
cases of the 20 000 did this occur.

Using GI�k�, GII�k�, and GIII�k� to represent 1 /� times the
second term on the right-hand side of relation �5� with h�r�
=gI�r�+gII�r�+gIII�r�−1, the structure factor for the func-
tions becomes

S�k� = 1 +
Z sin�k�

k
+ ��GI�k� + GIII�k�� , �14�

with GII�k�=Z sin�k� /�k. The exact analytical forms for GI,
GII, and GIII are included in Appendix B.

The method to maximize � relies on a simple principal. If
S�K�=0 at some point K and GI�K�+GIII�K�	0, while
S�k��0 for all other points k, then � is at a global maximum
for the given five parameters, i.e., �=��. Hence to maximize
��, S�k� is analytically calculated from the pair correlation
function in accordance with Eq. �14�, and for each random
step along one of the five parameters, if possible � is chosen
such that the structure factor is in accordance with this prin-
cipal. If obeying the structure factor condition is not math-
ematically possible for the parameter set, if the pair correla-
tion function g2�r� is not greater than or equal to zero for all
r or if the maximum � for the set does not meet the standard
temperature-dependent simulated annealing condition for ac-
cepting a move, the random step is rejected and a new step
chosen.

Figures 1 and 2 present pair correlation functions and cor-
responding structure factors that yield terminal packing frac-
tions ��=0.642 68 and ��=0.640 50, respectively. Param-
eters for high packing-fraction results were similar in period
C1, phase D1, and average kissing number Z but varied in
amplitude A1 and damping factor B1. For example, the g2�r�
with the highest two terminal packing fractions, ��

=0.642 68 and ��=0.640 50, exhibited A1=3.0996 and A1
=6.1707, with B1=0.580 91 and B1=1.2090, respectively.
Each g2�r� exhibits a minimum near r=1.35, with the mini-
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FIG. 1. Top: the optimized pair correlation function g2�r� �Eq.
�13�� with ��=0.642 68, A1=3.0996, B1=0.580 91, C1=7.540 69,
D1=0.459 70, and Z=5.0633. Note that the delta function at contact
cannot be explicitly represented. Bottom: the corresponding struc-
ture factor S�k� �Eq. �14��.
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mum for the highest packing fraction equal to zero and a
maximum at r=1 of about 2.7, suggesting that these traits,
along with a period 2� /C1 of about 1.2 and a phase D1 of
about 0.50, are important in obtaining the maximum packing
fraction for this functional form. Further analysis indicates
that the period and existence of a deep minimum within r
�1.5 remain important in maximizing packing fraction
when other elements are added to this functional form.

B. Maximizing kissing number

Maximum packing-fraction g2’s for this functional form
do not correspond to g2’s that maximize average kissing
number, as is the general case for sphere packings in many
dimensions �27�. Moreover, though the average kissing num-
ber for the highest possible packing fraction �fcc lattice� is 12
�32�, the proved maximum possible, Z may only obtain the
value of 9.5401 for this form. As will be seen later, as addi-
tional elements and parameters are added to this form and
optimized for maximum packing fraction, average kissing
number increases substantially. It is of interest therefore to
maximize Z with packing fraction � as a parameter. The
method employed is the same as before: simulated annealing
in 20 000 independent runs.

Figure 3 shows the pair correlation function for the opti-
mal parameters A1, B1, C1, D1, and �, with optimized Z
=9.5401. Most notably, the packing fraction associated with
the maximum average kissing number configuration is 0.631,
nearly equal to the maximum packing fraction achieved
���=0.642 68� for this functional form. The fact that many

more spheres are in contact �relative to the case in which the
packing fraction is maximized, where Z=5.0633� could re-
flect the presence of large clusters in the packing or even a
sample-spanning cluster �33�. Also of note is that the first
minimum, while still equal to zero, has moved inward to-
ward r=1, and that the value of the pair correlation function
at r=1+, g2�1+�=0.5514, is much smaller than before, where
the notation 1+ refers to the right-hand limit of g2�r� as
r→1.

These features must be present with an average kissing
number near 12, as the integral of g2�r� from r=1− to a given
R is related to the number of sphere centers most likely to be
found in that range of distances, and for a realizable packing,
this number cannot exceed 12 for R near unity. Specifically,
Z�R�, the total expected number of sphere centers to be found
within a �larger� sphere of radius R centered on an arbitrary
sphere center within the packing, can be written as

Z�R� = 4���
1−

R

x2g2�x�dx , �15�

where the average of Z�R� as R→1 from the right �1+� is
equivalent to the average kissing number Z.

Generally, Z�R� cannot exceed some Zmax�R�, where
Zmax�R� represents the maximum number of sphere centers
that can be placed within a �larger� sphere of radius R cen-
tered on an arbitrary sphere center. It is clear from geometric
considerations that Zmax�R� is a piecewise continuous no-
where decreasing function of R. As the maximum number of
congruent spheres that can be placed around a congruent
central sphere is 12, Zmax�R� is 12 on the interval �R : �1,1
+��� for some small deterministic parameter ��0, where �
is the distance from unity to the first discontinuity in Zmax�R�.
Currently, � is not known rigorously, though its value is
suspected to be about 0.045 �34�. That Z�R� must be less than
or equal to Zmax�R� for all R is another necessary realizability
condition for g2’s representing sphere packings. More will be
said about this condition in the conclusions.

It is also of note that the damping parameter B1 for the
maximum average kissing number case is much larger than
for the maximum packing-fraction case, implying that in the
maximum average kissing number case, spatial correlation
decreases substantially more quickly. The configuration rep-
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FIG. 2. Top: the optimized pair correlation function g2�r� �Eq.
�13�� with ��=0.640 50, A1=6.1707, B1=1.2090, C1=7.6011, D1

=0.549 81, and Z=5.1593. Note that the delta function at contact
cannot be explicitly represented. Bottom: the corresponding struc-
ture factor S�k� �Eq. �14��.
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FIG. 3. The optimized pair correlation function g2�r� �Eq. �13��
with Z=9.532, A1=−29.02, B1=2.735, C1=6.0537, D1=0.47, and
�=0.631. Note that the delta function at contact cannot be explic-
itly represented.
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resented by the more heavily damped pair correlation func-
tion can be interpreted as many groups of tightly packed
spheres pushed together in a random fashion, thus exhibiting
a high average kissing number but little to no spatial corre-
lation at distances greater than several sphere diameters.

III. INCREASING PACKING FRACTION

Here we show that the addition �beyond contact� to the
initial five-parameter family of g2 of sinusoids decaying as
r−4 allows for significant increase in the terminal packing
fraction above 0.64268. The r−4 decay represented in the
sinusoids added is a feature of pair correlation functions cal-
culated from large-scale simulations �106 spheres� of MRJ-
like packings �31�. In three dimensions, the inverse fourth
power is the smallest integer power to which a pair correla-
tion function may decay while satisfying the r−3−� condition
for representing a disordered packing. However, aside from
the clues that this mathematical attribute might provide, the
structural origins of the r−4 decay currently remain a concep-
tual mystery.

While the form of r−4 decay allows increased packing
fraction, other forms, including those representative of cer-
tain other features present in MRJ states, do not necessarily.
In fact, many other additions have been considered for this
study, though from these no substantial increases in �� above
the 0.642 68 achieved for the five-parameter form have been
obtained. This is not to say that only sinusoids decaying as
r−4 will increase the maximum possible attainable packing
fraction, just that the selection of elements is nontrivial. In
particular, one feature present in MRJ states, a fractional
power-law divergence near r=1, resulted only in a reduced
value for ��. The addition of this feature is discussed in
Appendix B.

The method used to optimize parameters with additional
forms included involves three steps. Structure factors are cal-
culated analytically from Eq. �14� as before, but to accom-
modate the increased processing time required to find the
minima of S�k� due to the complexity of its analytic form,
the number of points k at which S�k� is calculated is initially
reduced. The first step then is to find several “rough” maxi-
mum density configurations, just as with the initial five-
parameter configurations, using a reduced number of calcu-
lations with initial parameters selected as before in 10 000
independent runs. The second step is to improve on these
approximate maxima by increasing the number density of
points k calculated in S�k� about its minimum, in 1000 addi-
tional runs for each rough maximum �. The results of the
second step still do not yield an exact maximum and hence
the third step is to fine tune the maximum from the second
step manually, ensuring that S�k� and g2�r� are indeed greater
than zero for all r and k.

Sinusoids decaying as r−4 are highly successful in increas-
ing maximum packing fraction beyond 0.642 68. Specifi-
cally, cosine functions of the form

gIV�r� =
A

r4cos�Br + C�
�r − 1� �16�

are employed. Adding two of these elements to the initial
five-parameter form allows identification of a function obey-

ing all conditions with a maximum packing fraction of
0.6850, 45% closer to the packing fraction of the fcc con-
figuration than 0.640. Function �17� is the 11-parameter pair
correlation functional form specified,

g2�r� =
Z

4��
��r − 1� + �1 +

A1

r
exp�− B1r�sin�C1r + D1��

�
�r − 1� + �A2

r4 cos�B2r + C2� +
A3

r4 cos�B3r + C3��
�
�r − 1� �17�

or

g2�r� = gI�r� + gII�r� + gIII�r� + gIVa�r� + gIVb�r� , �18�

where the subscripts a and b in the last two terms on the
right refer to the fourth and fifth terms in Eq. �17�. Using
GIVa�k� and GIVb�k� to represent 1 /� times the second term
on the right-hand side of relation �5� with h�r� equal to
gIVa�r� and gIVb�r�, respectively, the structure factor for the
11-parameter form becomes

S�k� = 1 +
Z sin�k�

k
+ ��GI�k� + GIII�k� + GIVa�k� + GIVb�k�� .

�19�

The exact analytical form for GIVa and GIVb are included in
Appendix A.

Figure 4 presents the pair correlation function and corre-
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FIG. 4. Top: the optimized pair correlation function g2�r� �Eq.
�17�� with ��=0.6850, A1=3.555, B1=0.7189, C1=7.5589, D1

=0.6247, Z=10.4281, A2=0.2205, B2=2.370, C2=0.000, A3

=2.2822, B3=8.7373, and C3=0.0423. Note that the delta function
at contact cannot be explicitly represented. Bottom: the correspond-
ing structure factor S�k� �Eq. �19��.
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sponding structure factor with the 11 parameters of function
�17� optimized for a maximum packing fraction of 0.6850.
The first minimum and height of g2�r� just beyond r=1 in
Fig. 4 are similar to those observed in Fig. 3, the plot of the
pair correlation function for a maximized average kissing
number using the initial five-parameter functional form. The
period 2� /C1, phase D1, and decay factor B1 of the expo-
nentially decaying sinusoidal function are similar to those
observed in the top plots of Figs. 1 and 2, the plots of the
pair correlation functions for maximized packing fraction us-
ing the initial five-parameter functional form. The minimum
and height just beyond r=1 must be similar for physical
meaningfulness due to high average kissing number Z
=10.4281, while the similarities in period, phase, and decay
factor indicate that a higher degree of order is maintained
farther from r=1.

The decay factor, B1=0.7189, for the 0.6850 maximum
packing-fraction function is, in fact, larger than the decay
factor, B1=0.580 91, for the 0.642 68 packing-fraction func-
tion, but fast decay in the former g2 function is avoided
through the addition of the r−4 sinusoids.

The average kissing number Z=10.4281 for the 0.6850
maximum packing-fraction function is substantially higher
than that obtained for the 0.6427 maximum packing-fraction
function. The addition of the r−4 elements allows not only for
tighter packing of spheres �and hence a higher Z than previ-
ously possible� but also for slower decay than present with
an exponentially decaying function alone. This implies �but
does not prove� that more correlation at greater distances is
necessary for higher packing-fraction disordered packings: a
hypothesis that will be supported further later in this paper
by order metric calculations.

It is of note that reducing the packing fraction � without
proportionally reducing the kissing number Z quickly vio-
lates the structure factor condition. This implies that kissing
numbers as high as 10.42 cannot be maintained without pro-
portionally high densities, which is in agreement with physi-
cal intuition: average number of spheres in contact cannot
increase beyond a certain point without high enough packing
fraction, though it is important to note that the converse of
this statement is not true �if a configuration is not required to
be jammed�.

Further supporting this notion is Fig. 5, a graph of the pair
correlation function with ten parameters optimized to maxi-
mize � with Z set to 6.672. With the four parameters of
function �12� nearly the same as for the 0.6850 terminal
packing-fraction function but Z reduced substantially, only a
lower terminal packing fraction is possible. The amplitudes
of the r−4 cosine elements are also substantially reduced in
Fig. 5, implying that the increase in packing fraction from
0.6700 to 0.6850 necessitates both correlation at greater dis-
tances and a substantially higher average kissing number. As
will be quantified later in this paper, it follows that more
order overall is required to attain the packing fraction of
0.6850; nonetheless, the smooth correlation function past
contact and swift decay to unity indicates that the configura-
tion remains disordered as defined.

As before with the five-parameter functional form, it is of
interest to maximize kissing number Z for the 11-parameter
functional form �17�. We find that the average kissing num-

ber cannot increase much above 10.4281. For this functional
form and with realizability conditions satisfied, we see that if
one of either the packing fraction or kissing number is near
its maximum value, then the other must also be near its
maximum.

IV. FROM DISORDERED TO CRYSTALLINE

A. Order metrics

A disordered packing as defined clearly lacks the degree
of order present in a periodic packing, but the degree of order
within a disordered system still varies and may be quantified.
For cases of hard-sphere packings, many different methods
of quantifying the order in a configuration are possible. The
majority of these methods advocate the use of scalar statis-
tical measures. Some of these assume that the most ordered
system is the appropriate maximally dense packing
�3,10,18,19,35�, while others do not presuppose a reference
crystal state �3,18,19,26,36�.

For our purposes, the translational order metric introduced
by Truskett et al. �18� is convenient because it is given in
terms of the total correlation function,

T �
1

�c − �1/3D
�

�1/3D

�c

�h���−1/3��d� , �20�

where D=1 is the diameter of the hard spheres, �=r�1/3, and
�c is a selected cutoff distance �18�. The rescaled radial co-
ordinate � is set such that packing fractions of varying den-
sities will be comparable, in that the total number of sphere
centers over the integration range in packings of varying
densities will be the same. The quantity �c must be chosen
with care: in a short-ranged disordered system, if �c is cho-
sen too large, the metric will not discriminate well between
states as h���→0 with �→�. If �c is chosen too small, T
will not take contributions from correlations at greater r into
account. For the purpose of measuring order in all of the
relatively short-range pair correlation functions described in
this paper, �c=4 �or for packing fraction near 0.65, about r
=3.75� is chosen to ensure that all fluctuations of the total
correlation functions about zero greater than a certain mini-

0 1 2 3 4 5r
0

1

2

3

4

g 2
(r)

FIG. 5. The optimized pair correlation function g2�r� �Eq. �17��
with ��=0.6700, A1=3.3048, B1=0.719 01, C1=7.5115, D1

=0.6610, Z=6.672, A2=0.0795, B2=2.390, C2=0.000, A3=0.312,
B3=8.389, and C3=0.000. Note that the delta function at contact
cannot be explicitly represented.
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mal amplitude �about 0.1� are taken into account.
Using the translational order metric �20�, we show here

that the degree of order in the configurations presented is
greatest for the maximum packing fraction achieved. Table I,
referenced by figure number and g2�r� functional form, pro-
vides the average kissing number Z and terminal packing
fraction �� versus order T for the pair correlation functions
previously discussed. The table conveys that large differ-
ences in order may exist for similar densities, as is the case
with the pair correlation functions represented by the top
plots of Figs. 1 and 2. Additionally, a higher average kissing
number does not necessitate higher order: the degree of order
in the maximum average kissing number case of the five-
parameter form �Fig. 3� is substantially lower than in the
maximum packing-fraction case �Fig. 1�. Here, greater cor-
relation at a distance is sacrificed to put more particles in
contact. Finally, it is of note that for the maximum packing-
fraction cases of the 5- and 11-parameter forms, represented
by the top plots of Figs. 1 and 4, respectively, order is great-
est. These results are by no means conclusive but do suggest
that the maximum packing fraction and maximum order rep-
resentations of a given pair correlation function functional
form are similar or even perhaps the same.

B. Moving toward crystalline order

In the optimization study above only two sinusoids decay-
ing as r−4 were added to the initial five-parameter form. We
now show that an infinite �or finite� number of sinusoids
decaying as r−4, along with a Heaviside step function cen-
tered at r=1, can represent any bounded �nowhere infinite�
piecewise-differentiable pair correlation function that decays
to unity sufficiently fast. This follows directly from the ex-
istence of Fourier transforms, as will be explained shortly in
greater detail, assuming that we explicitly state the bounding
and decay conditions on the pair correlation function to mean
that the Fourier transform of r4f�r�=r4�g2�r�−
�r−1�� ex-
ists.

From a Fourier integral theorem, a radial function �37�
f�r� can be represented on an infinite interval not containing
zero, for our purposes, �1,��, by a continuum of sinusoids
decaying as r−4, as long as the one-dimensional Fourier
transform of r4f�r� over the interval exists in the sense of
generalized functions �38� as follows:

f�r� = ��0

�

F̃�k�
cos�kr�

r4 dk , r � 1

0, r 	 1
� �21�

with

F̃�k� =
1

�
�

1

�

x4f�x�cos�kx�dx . �22�

Under these conditions, a smooth disordered hard-sphere g2
that decays to unity can be written simply as

g2�r� = f�r� + 
�r − 1� . �23�

For example, to represent gIV�r� �Eq. �16�� in this form with

C=0, using the parameters from Eq. �16�, we set F̃�k�
=A��k−B�.

Discretizing the k in expression �22� with increment �k
between two successive discrete values, f�r� may be approxi-

mated with F̃�k� a series of real constants. In the limit as
�k→0 or as k becomes continuous, expression �21� holds
and any g2�r� meeting the aforementioned conditions may be
represented by Eq. �23�. Thus, to demonstrate that disordered
packings as defined can attain densities up to � /�18, it only
remains to show that there is a realizable packing with pack-
ing fraction near � /�18 that can be represented by a pair
correlation function in the form of Eq. �23� for which the
Fourier transform of r4f�r� exists, which is the focus of the
remainder of this section.

The pair correlation function of an infinite close-packed
fcc crystal consisting of congruent spheres of diameter D
=1 can be written as

g2
fcc�r� =

1

4��
�
i=1

�
Ci

fcc

qi
2 ��r − qi� , �24�

where the qi are the distances from the origin to each suc-
cessive shell in an fcc packing �which in these scaled coor-
dinates are qi=�i�, the sum runs only over those i for which
shells are present �for example, i=14, 30, 46, etc., are
skipped�, the Ci

fcc are the coefficients of the �even-exponent�
terms in the fcc theta series �1� �which represent the number
of spheres present on a shell�, and � represents a Dirac delta
function. Any same-density stacking variant of an fcc con-
figuration, i.e., any of the Barlow packings �39,40�, may be
represented by a similar series of delta functions. For a
spherical crystal of finite size, the qi remain the same but
terminate for i�2I, where �I is the distance from the central
sphere center to the center of the outermost sphere of the
crystal, and the Ci must be reduced to reflect a lower average
number of spheres present at given distances for all but the
central sphere.

An fcc configuration is not, however, disordered. To cre-
ate a disordered packing from a series of finite-size fcc crys-
tals, three further steps must be taken. First, the delta func-
tions are replaced with smooth sharply peaked Gaussian-type
curves that decay to zero at distance �w /2� from each qi. We
define the integral under each of these curves from qi−w /2
to qi+w /2 to be equal to the reduced Ci of a fcc crystal of
specified finite size. Physically, this represents packing
spheres of diameter 1 in a fcc arrangement, shrinking the
radius of these spheres to ra= �1 /2�− �1 /4�w and then mov-
ing each sphere a distance of no more than �1 /4�w from its
initial position such that the pair correlation function of the
packing near each qi has the properties just described. It is of

TABLE I. T order metric values.

�� Z T Fig. Eq.

0.631 9.532 0.36 3 �13�
0.64050 5.1593 0.34 2 �13�
0.64268 5.0633 0.43 1 �13�
0.670 6.672 0.40 5 �18�
0.6850 10.4281 0.46 4 �18�
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note that the exact form of the pair correlation function is not
of consequence as long as the proscribed properties are
maintained.

Second, the Ci are again altered such that the finite-size
“shrunk” fcc configuration of spheres becomes cubical in
shape, with a cube of side length Icube circumscribing the
arrangement. Finally, an infinite number of these cubes, with
principal axes of the fcc-packed spheres within each cube
arranged at uncorrelated angles, are packed together tightly
such that each pair of parallel faces of every cube are parallel
to a pair of faces on every other cube but with each face
touching four other faces �i.e., four other cubes�. Cubes may
be tightly packed in this fashion such that they fill space and
such that the resulting pair correlation function of the spheres
comprising these cubes is disordered due to the packing of
the cubes and the random arrangement of the principal axes
of the fcc-packed spheres within each cube.

This pair correlation function would be in practice diffi-
cult to write explicitly due to boundary effects, but this is
inconsequential to the description, as all that is necessary is
to illustrate that such packings exist. Additionally, it is note-
worthy that initially packing the spheres in each cube in
arrangements equivalent to any of the Barlow packings
would yield an equivalent result.

Boundary effects become negligible as the number of
cubes approaches infinity, and for increasing Icube and de-
creasing w, any packing fraction � /6	�	� /�18, with
� /6=�sc as the packing fraction of a simple cubic arrange-
ment, can be obtained. The minimal packing fraction �sc is
obtained when only one sphere is present in each cube. The
distance w can be made small enough for any finite-sized
system of cubes such that the system exhibits physical sta-
bility when force is applied, though the pair correlation func-
tion of such a system would change �perhaps to include delta
functions� as soon as stress and strain were present.

In this way, as long as w�0 and Icube is finite, a disor-
dered packing may exhibit any packing fraction up to � /�18
if one accepts that the pair correlation function of the system
described above, represented in the form of Eq. �23�, decays
to unity at least as fast as r−3−� and in a form such that the
Fourier transform of r4f�r� exists. Due to this result and the
others demonstrated in this paper, we state that the sequential
addition and optimization of more than two sinusoidal terms
of the form of expression �16� will allow packing fractions
greater than 0.6850, and as the number of terms grows, the
optimal packing fraction for a realizable g2 is conjectured to
approach � /�18.

V. CONCLUSIONS AND DISCUSSION

Using the g2-invariant method with g2’s satisfying the
three necessary, but generally not sufficient, conditions for
realizability, we demonstrated without implicit reliance upon
any packing methodology that packing fractions well above
0.64 are obtainable for pair correlation functions incorporat-
ing the salient features of disordered packings. A packing
fraction of 0.6850 was obtained employing a test family of
g2’s mimicking features observed in MRJ packings, includ-
ing most notably core exclusion, contact pairs, and a sinu-

soidal decay to unity as r−4. Consistent with a previous study
�10�, we found that to achieve higher packing fractions, the
degree of order must increase.

Additionally we showed, employing a qualitative example
and a revised version of a Fourier integral theorem, the sur-
prising result that a disordered packing as defined may reach
packing fractions approaching � /�18, the maximum pos-
sible for a three-dimensional hard-sphere packing. These re-
sults support the hypothesis that continued addition and sub-
sequent optimization of sinusoids decaying as r−4 �of the
form of Eq. �16�� will find realizable g2 with higher terminal
packing fractions up to �but not reaching� � /�18.

The conclusion that the addition of sinusoids decaying as
r−4 allows higher terminal packing fractions �where the ad-
dition of other features does not necessarily� is very relevant
to the study of high-density physical and jammed disordered
systems since it demonstrates that this feature contributes
significantly in allowing the systems to reach aforementioned
higher densities. It is noteworthy that the r−4 decay to unity
present in the g2’s of MRJ packings also characterizes g2’s of
high-density Bose systems �41�, ground states of fermionic
systems �42�, and models of the density distribution of the
early Universe �43–46�, though these latter systems are not
sphere packings.

In future work, we will seek to extend these results to
configurations of multicomponent spheres and nonspherical
objects. Additionally, we will investigate the structural ori-
gins of the presence of the r−4 decay in MRJ states and
attempt to determine if in higher dimensions additions of
terms consisting of sinusoids decaying as the smallest �in-
verse� integer power for which a packing remains disordered,
r−d−1, to a g2�r� representing the salient features of a
d-dimensional hard-sphere system, will allow for packing
fractions up to the known maximum in that dimension.

Moreover, we will examine the form of Zmax�R�, the
maximum number of sphere centers that can be placed
within a �larger� sphere of radius R centered on an arbitrary
sphere center. A natural question to ask is whether the real-
izability condition Z�R��Zmax�R� further constrains g2�r�
beyond the three conditions �Eqs. �2�, �3�, and �7��. The an-
swer is in the affirmative. We have already noted that the
Cohn-Elkies linear programming upper bound formulation
�22� is the dual of the Torquato-Stillinger lower bound pro-
cedure, i.e., the g2-invariant process �21�. Cohn and Kumar
�47� recently proved that there is no duality gap between the
primal and dual linear programming programs, which means
both the upper and lower bounds coincide when the best test
functions are employed. Cohn and Elkies �22� were able to
find the test functions that yield the best upper bound on the
maximal packing fraction in three dimensions: a packing
fraction of about 0.778, which is well above the true maxi-
mal value. This means that there exists a test pair correlation
function for the lower bound formulation that will deliver the
same maximal packing fraction of 0.778, which clearly is not
realizable. It was shown elsewhere that applying the addi-
tional condition that Zmax must be equal to 12 up to some
small positive � beyond contact together with the best test
function in the upper bound brought down the maximal
packing fraction appreciably from 0.778 �48�. This means
that adding the Zmax condition to the corresponding best test
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pair correlation function will also improve the packing-
fraction estimate. Therefore, the Zmax condition introduces
additional information beyond that contained in the two stan-
dard non-negativity conditions. The precise form of this ad-
ditional condition has yet to be fully elucidated and will be
explored in future work.
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APPENDIX A: ANALYTICAL STRUCTURE FACTOR
COMPONENTS

The analytical structure factor components, as calculated
from relation �5�, for gI, gII, gIII, gIV, and gV, with r=1 as the
diameter of the spheres, are as follows:

GI�k� =
4�

k3 �k cos k − sin k� , �A1�

GII�k� =
Z

�k
sin k , �A2�

GIII�k� =
2�Ae−B

k
�B cos�k − C − D� − �k − C�sin�k − C − D�

B2 + �k − C�2

−
B cos�k + C + D� − �k + C�sin�k + C + D�

B2 + �k + C�2 � , �A3�

GIV�k� =
A�

2k
„cos �C����B − k��B − k� − ��B + k�2

+ 2�B + k�2Si�B + k� − 2�B − k�2Si�B − k�2 + sin�C��

+ sin �C��2�B + k�2Ci�B + k� + �B − k�2

��2 log�B − k� − log�B − k�2 − 2Ci�B − k��

+ 4k cos �k� cos�B + C� + 4 sin �k��cos�B + C�

− B sin�B + C��… , �A4�

GV�k� =
8A�B�

15
�kB cos �k��51F2�3

4
;
3

2
,
7

4
;−

1

4
k2B2�

+ 3B1F2�5

4
;
3

2
,
9

4
;−

1

4
k2B2��

+ 5sin�k��31F2�1

4
;
1

2
,
5

4
;−

1

4
k2B2�

+ B1F2�3

4
;
1

2
,
7

4
;−

1

4
k2B2��� . �A5�

In the expression for GIV�k�, Si�k� represents the standard
sine integral, Si�k�=�0

kdx sin x /x, and Ci�k� represents the
standard cosine integral, Ci�k�=−�k

�dx cos x /x. In the ex-
pression for GV�k�, pFq��ai� , �bj� ,k� represents the standard
hypergeometric pFq function,

pFq��ai�,�bj�,k� = �
n=0

�
�a1�n ¯ �ap�nkn

�b1�n ¯ �bq�nn!
,

with �ai�=��a+ i� /��a� and ��x� as the standard gamma
function.

APPENDIX B: POWER-LAW DIVERGENCE IN NEAR
CONTACT DISTRIBUTION

Our analysis indicates that the addition of one of the sa-
lient features observed in MRJ-like states for three-
dimensional hard-sphere packings, a fractional power-law di-
vergence near r=1 due to near contacts �49,50�, does not
increase the packing fraction beyond that obtained from the
five-parameter form. For example, the addition of the form

gV�r� =
A4

�r − 1�1/2
�r − 1�
�B4 − r� , �B1�

with B4=1.15 as a cutoff parameter to the square-root power
decay, to the gI�r�, gII�r�, and gIII�r� discussed earlier led to
no additional increase in packing fraction under maximum
density parameter optimization in 10 000 independent runs.
Figure 6 shows a graph of the maximum packing fraction
obtained versus the value of coefficient A4, where values
plotted represent a random sample of 100 from the 10 000
runs conducted. One can see clearly that as A4 increases in
value, indicative of the increased prominence of the inverse
square-root divergence near r=1, maximum packing fraction
obtained decreases steadily.
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FIG. 6. Maximum obtained packing fraction � versus value of
parameter A4, represented by a random selection of 100 from
10 000 maximum density parameter optimization runs where a term
gV�r�, given by relation �B1�, was added to the initial five-
parameter pair correlation function functional form �13�.
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These results imply that the inverse half power decay
near r=1 is a feature intrinsic to MRJ configurations and
that this feature must be diminished to increase packing
fraction. Physically this is intuitive, as the presence of a

half power decay near r=1 indicates that there are many
spheres smoothly distributed just outside of contact, i.e., that
locally on average there is room to compress the system
further.
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