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The. water molecule ha~ been idealize~ as a point dipole plus point quadrupole, encased in a spherical 
exclUSion. envelope. Classical. electro~tatl.cs has ?een ~pplied to the determination of the potential field 
surro~n.dmg such a molecule m th~ Wide interfacial regIOn between the liquid and vapor phases, just below 
the cntlcal temperature. From this result, the mean torque on the molecule in this inhomogeneous region 
follows, and produces a spontaneous interfacial polarization. The consequent potential difference across 
the interface has thu~ been e~aluated at several temperatures, and demonstrates the tendency for surface 
water .molecules to .onent. their pr~tons away from the vapor and into the liquid. A related optical experi­
ment IS suggested, mvolvmg electnc-field dependence of reflected-light ellipsometry. 

I. INTRODUCTION 

In view of the significance of water as a solvent for 
electrochemical processes, it is obviously important to 
understand the nature and magnitude of the potential 
drop across the water liquid-vapor interface. Although 
several experiments have been interpreted in such a 
way as to yield predictions for the surface potential, 
the results do not even agree in sign.! The purpose of 
this paper is a calculation of this surface potential, 
using a precise electrostatic model, and a few elemen­
tary principles in classical statistical mechanics. 

FrenkeP was the first, to the best of our knowledge, 
to suggest that the permanent quadrupole moment of 
the water molecule plays a central role in the orienta­
tion preference of water molecules in the interfacial 
zone. The basic concept involved is that molecules in 
the surface will tend to orient so as to place their elec­
tric fields as much as possible in the high-dielectric­
constant liquid, rather than the low-dielectric-constant 
vapor, thereby minimizing the field free energy. If the 
water molecules possessed only a centrally placed 
permanent dipole moment, the resulting dipolar field 
symmetry would render any orientation energetically 
equivalent to its opposite orientation, so no surface 
dipole layer would form. The permanent quadrupole 
moment, however, tends to displace field lines either 
toward the front or back of the polar molecule, depend­
ing on its sign, and the consequent symmetry breaking 
leads to a surface dipole layer with an associated 
potential. 

In implementation of a quantitative analysis of 
the water surface potential, we have restricted atten­
tion primarily to temperatures just below the critical 
(374°C) on account of the several simplifications that 
result. First, it is known that the interfacial zone be­
comes very wide as the critical point is approached,3.4 

1 R. Parsons, in Modern Aspects of Electrochemistry, J. O'M. 
BockrisandB. E. Conway, Eds. (Academic Press Inc., New York, 
1954), Vol. 1, pp. 123-124. 

2 J. Frenkel, Kinetic Theory of Liquids (Dover Publications, 
Inc., New York, 1955), p. 356. We are indebted to Dr. R. A. 
Lovett for pointing out this reference to us. 

a J. O. Hirschfelder, C. F. Curtiss, and R. B. Bird, Molecular 
Theory of Gases and Liquids (John Wiley & Sons, Inc., New York, 
1954), pp. 372-373. 

so that any molecule resides in a region of slowly vary­
ing dielectric constant. The corresponding mean torque 
on the surface molecules likewise is small, and the 
statistical mechanical expression for the mean orienta­
tional probability may conveniently be linearized to 
produce explicit results in elementary form. 

The next section exhibits the electrostatic problem 
generated by a dipole-plus-quadrupole source encapsu­
lated in a spherical exclusion volume, located within 
a region of slowly varying dielectric inhomogeneity. The 
subsequent section (III) then in turn converts the 
result to a mean torque potential, an interfacial spon­
taneous polarization density, and finally to the surface 
potential. Numerical values for the potential are then 
calculated from available bulk liquid and vapor prop­
erties, as well as molecular parameters. Several com­
ments on the method of calculation are arrayed in a 
discussion, Sec. IV, where an optical experiment is 
suggested to confirm our identification of the preferred 
orientation. 

II. ELECTROSTATIC PROBLEM 

We adhere to the molecular multipole moment 
definition contained in the recent review by Krishnaji 
and Prakash.5 Thus, through quadrupolar terms, the 
electrostatic potential surrounding an isolated molecule 
in free space has the form (i, j = 1, 2, 3) 

(1) 

where it is understood that the summation convention 
applies to repeated subscripts. In terms of the molecular 
charge density p(r), the multipole moments are defined 
as follows: 

q=j p(r) dr, 

Jl.;= j XiP(r) dr, 

(2) 
• R. A. Lovett, "Statistical Mechanical Theories of Fluid Inter­

faces," Dissertation submitted to the University of Rochester 
1965 (unpublished). ' • Krishnaji and V. Prakash, Rev. Mod. Phys. 38,690 (1966). 
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FIG. 1. Cartesian coordinate system located in the water mole­
cule, which diagonalizes the quadrupole tensor 6. The origin is at 
the oxygen nucleus, the z axis is the symmetry axis, and the y axis 
lies in the molecular plane. 

Figure 1 displays the most convenient choice of 
Cartesian coordinate systems for description of the 
water molecule. The origin is placed at the oxygen 
nucleus, the x axis is perpendicular to the plane of 
the molecule (the y-z plane), and the z axis is the two­
fold symmetry axis oriented in the same direction as 
the permanent dipole moment. On account of the 
molecular symmetry, the quadrupole tensor is diagonal 
in this coordinate system. 

Before entering into consideration of the inhomo­
geneous interfacial zone, we first specify the molecular 
electrostatic problem within the bulk of either the liquid 
or vapor phase. In this simple case, the dielectric con­
stant t would be position independent in the absence of 
any constraints on the system. We wish, however, to 
consider the case of a water molecule held fixed at the 
origin, possessing in fact the orientation shown in 
Fig. 1. The remainder set of molecules, which respond 
dielectrically to the field set up by the fixed molecule, 
are not uniformly distributed throughout the region, 
but are excluded from the neighborhood of the origin 
by the fixed central molecule. For this reason we asso­
ciate with this dielectric medium a spherical exclusion 
cavity of radius a, concentric with the oxygen nucleus 
at the origin. Outside this sphere the macroscopic 
dielectric constant t will be presumed everywhere to 
apply, but inside, the dielectric constant will be taken 
as unity. The situation is exhibited in Fig. 2. 

Under the given circumstances it is natural to describe 
the electrostatic potential if; in terms of spherical co­
ordinates r, 0, <p. For r> 0, if; will satisfy Laplace's 
equation 

V2.,f;(r, 0, <p) =0, (3) 

plus the standard boundary conditions, and at r=O 
will possess singularities characteristic of the dipolar 
and quadrupolar sources imputed to the fixed water 
molecule. Let 

Y/m(O, <p) =p/!m!(cos() exp(im<p) (4) 

stand for the unnormalized spherical harmonics which 

satisfy the equation 

V2Y'm(O, <p) -H(l+1) Y'm(O, <p) =(J. (5) 

The electrostatic potential if; adopts two distinct forms 
inside (in) and outside (out) the spherical dielectric 
cavity, each of which may be expanded in spherical 
harmonics, 

co +/ 
if;in(r, 0, <p) = L L [Almrl+B'mr-l-I]Ylm(O, <p), 

I~O m~/ 

co +1 
if;out(r,O,<p)=L L Clmr-l-IYlm(O,<p). 

l~m~l 

Continuity of if; at r=a requires 

a2l+IAlm+Blm=Clm, 

(6) 

(7) 
while continuity of the radial component of the dis­
placement vector at r=a yields the relation 

a21+IIA lm - (l+1)B 1m = - CZ+l)tClm . (8) 

Therefore, we must have 

A lm = (CZ+l) (l-t)/a21+I[I+U+l)t]IBlm , 

C1m = (21+1)/[l+U+l)t]IB lm . (9) 

The coefficients B lm multiplying the singular parts 
of if;in, are determined by the central water molecule's 
multipole moments. With 

z=r cosO, 

y = r sinO cos<p, 

x = r sinO sin<p, ( 10) 

the transformation between the Cartesian coordinates 
of Fig. 1 and the spherical polar coordinates, it is easy 
to obtain the Blm from Eq. (1) and the explicit Y lm 
expressions.s One finds that 

B1,o=J..I.z=J..I., 

B2,2=B2.-2 =l2(OW-Oxx), (11) 

and all other Blm are vanishing. This completes speci­
fication of the potential field surrounding a fixed water 
molecule in the homogeneous interior of either bulk 
phase. 

1 

a 

FIG. 2. Spherical dielectric cav­
ity of radius a surrounding a fixed 
water molecule. 

6 I. M. Ryshik and I. S. Gradstein, Tables of Series, Products, 
and Integrals (Veb Deutscher Verlag der Wissenschaften, Berlin, 
1963), pp. 360, 364. 
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Now we consider the more complicated case of a 
water molecule in the inhomogeneous interfacial zone. 
By virtue of the assumption that the temperature Tis 
only slightly less than the critical temperature Te , 

the dielectric constant e(r) should vary sufficiently 
slowly with position r (relative to the fixed molecule) 
such that over the region in which the molecule's 
electrostatic potential "if; is significant, a linear estimate 
of e(r) should suffice (i.e., a two-term Taylor expan­
sion). Figure 3 shows the general spatial relations 
between the Cartesian coordinate system fixed as 
before in the given water molecule, and the local di­
electric-constant gradient direction which, of course, is 
normal to the planar interface. The linear dielectric­
constant expression therefore may be written 

e(r) ""'e (0) +1 Ve(O) \ r cOS,¥, (12) 

--------------------

in terms of the angle '¥ between Ve and the polar direc­
tion of interest.7 We note for later use that the general 
addition theorem for Legendre polynomials8 permits 
elimination of cOS,¥ in favor of functions of the angles 
a, (3, 0, and cp (see Fig. 3), 

cos,¥ = coSa' cosO + sinO' sinO cos ({3 - cp) • ( 13) 

The electrostatic potentials inside and outside the 
spherical dielectric discontinuity surface may still be 
taken in the form of the general expansions shown in 
Eq. (6), with the previous Elm assignments in Eq. (11) 
still applicable. Also, the conditions shown in Eq. (7) 
arising from continuity of "if; are valid in this more 
general circumstance. However, the radial "if; derivative 
condition corresponding to the rather simple previous 
Eq. (8) becomes far more elaborate; it is 

XU+1)Y lm (O,cp), (14) 

where Eq. (7) has been utilized in elimination of the coefficients elm' Due to the 0, cp dependence of cOS,¥ as shown in 
Eq. (13), the coefficients of the explicitly shown spherical harmonics Y lm in Eq. (14) may not be individually 
equated. 

When l!..T=Tc-T is small, so 1 V'e 1 is everywhere small in the interface, it is appropriate to seek a solution 
to our interfacial electrostatic problem linear in the local value of the gradient. Therefore, set 

(15) 

The Alm(O) have precisely the form shown in the first Eq. (9), with the dielectric constant taken to be e(O), since 
neglect of the local gradient reduces the electrostatic problem to the preceding case of homogeneity. 

The quantities Alm(l) may next be determined after substitution of Expression (15) into Eq. (14), followed by 
linearization with respect to 1 Vel, 

On account of the fact that cos,¥, Eq. (13), consists of two parts respectively proportional to cosO' and sinCl! we 
conclude from the linearity of Eq. (16) that the same will be true for the A Im(l) , 

A 1m (I) = cosaA 1m (c) +sinaA 1m (.) • (17 ) 

We see in the following section that only the coSa' part of A 1m (I) contributes to the interfacial polarization and 
potential, so only the Alm(c) need to be determined. Therefore, use Eqs. (13) and (17) to convert Eq. (16) to 

ex> +1 co +1 (l+1) (2l+1)a- I- 2 

L:: L:: [1+ U+ 1) e(O) ]al-lA lm(c) Y1m(O, cp) = - L:: L:: 1+ (l+ 1) (0) Elm cosOYlm(O, cp). (18) 
z-o m=--Z Z-O m--Z e 

The spherical harmonics YZm satisfy the following recurrence relation9
: 

cosOYZm(O, cp) =[(l+\ m \)/(21+1)]Yl-1•m (O, cp)+[(l-\ m l+l)/(2l+1)]Yz+1•m (O, cp), (19) 

7 The symbols E(O) and V.(O) of course refer to the dielectric properties of the interface at the position where the fixed water 
molecule is to be place1, bu~ eyaluated before this. molecule is put in. position. With the. fixed molecule in place, the dielectric con­
stant again becomes umty wlthm the a sphere, and IS equal to the prevlOUs value only outSide that sphere. 

S J. A. Stratton, Electromagnetit; Theory (McGraw-Hill Book Co., New York, 1941), p. 408, Eq. (46). 
I Reference 6, p.351, Eq. 6.733(2). 
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where on the right side one must take Y1m=O if 1 m 1>1. After utilizing this identity in Eq. (18) for those terms 
corresponding to nonvanishing B lm, the right-hand side of this equation (18) simplifies to 

{ ~ ~ ~ ~ 
- 1+2~(O) BI ,oYO,o(8, </,) + 2+3~(0) B2,oYI,o(8, </,) + 1 +2e(0) Bl,OY2,o(8, </,) + 2+3e(0) B2,oYa,o(8, </,) 

Finally, the Alm(e) are obtained by matching up spheri­
cal harmonic coefficients on both sides of Eq. (18). 
The nonzero results are 

Ao,o(e) = -2BI,O/a2~(O) [1+2~(0)], 
AI,o(e) = -6B2,o/a4[1+2~(0) ][2+3e(0)], 

A 2,o(e) = -4BI ,o/a4[1 +2e(0) ][2+3e(0)], 

Aa,o(e) = -9B2.0/a6[2+3e(O) ][3+4e(O)], 

Aa.2(e) = A a,_2(e) = -3B2.2/a6[2+3e(0) ][3+4e(O)]. (21) 

III. SURFACE POTENTIAL 

We have attributed to the water molecule both a 
point dipole and a point quadrupole, The corresponding 
charge densities may be taken asIO 

Pd(r) = -Y' Vo(r), 

pq(r) =-ja:vvo(r), (22) 

where y is the dipole vector and 6 the quadrupole 
tensor. Within the interior of either the liquid or vapor 
phases, isotropy assures the vanishing of any mean 
torque on the distribution Pd+Pq. But within the inter­
facial zone the anisotropic part of the inner-region 
potential, 

co +1 
if;in(I)(r) =1 Ve 1 a L: L: Alm(I)rlYlm(8, </,), (23) 

1=0 m=-l 

produced by the local dielectric constant gradient will 
give rise to a torque, The torque potential V may be 

+ 2:;~;0) B2,2[Ya,2(8, </,) + Ya,-2(8, </')]}. (20) 

obtained by combining the last two equations: 

of course it depends on orientation angle a, as well as 
position within the interface (denoted by "height" h). 

The potential V (a, h) by itself would tend to produce 
a polarization density within the interfacial zone, but 
it would not be correct to assume that this polarization 
P(h) is produced only by the direct orienting effect 
of V on the molecules. Associated with P is a mean 
interfacial electric fieldll 

E(h) = -471'P(h). (25) 

For small AT, this field will be sufficiently homogeneous 
in the neighborhood of any given molecule in the inter­
face to produce a cavity field, 

Ecav(h) = (3e(h)/[1+2e(h)]}E(h), (26) 

at the center of that molecule's a sphere. This cavity 
field then interacts with the molecule's dipole moment 
to produce an additional torque potential (E= 1 EI), 

Vcav(a, h) = - (3e(h)J,lE(h) /[1 +2e(h)]} cosa 

= -GE(h) cosa. (27) 

The total torque potential V + Vcav may next be 
used to find the polarization density P by direct evalua­
tion of the relevant orientational average: 

P(h) =p(h)J,lU [1..:1 

d(cosa) Cosa exp ( - yea, h)~;cav(a, h)) / 1..:1 

d(cosa) exp ( 

p(h)J,lUl+I 
""--- d(cosa) cosa[V(a, h)+Vcav(a, h)]. 

2kT -1 
(28) 

Here p(h) stands for the molecular density at position h, U is the unit vector in the V~ direction (pointing from 
vapor to liquid), and we have used the fact that the torques go to zero as AT -to to linearize the integrands. 

It was remarked in the previous section that if;in(I) contains contributions varying with molecular orientation as 
both sina and cosa, and it is evident from Eq. (24) that the same is true of Yea, h). However, only the cosa part 
of yea, h) can contribute to the linearized polarization expression (28), so we are required only to consider the 
cosa part of if;in(I). By inserting the results (21) into Eq. (24), we find for the cosa part of yea, h), 

V(e) Ca, h) = - (5 1 Ve(h) 1 J,l8 .. /a3[1+2e(h) ][2+3e(h)]J cosa 

=-F cosa. (29) 

)0 These expressions may easily be verified by partial integration in the integral potential expression, so as to reproduce Eq. (1). 
II The negative sign obtains because the polarization is spontaneous, not induced by E. 
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Next compute E(h) from Eq. (25), using Integral 
(28) for P with V(e) in place of V: 

27rp (h) p.U 1+1 
-E(h) kT -I d(cosa) cos2a{F+GE(h)] 

(30) 

We may now solve for E(h); after the explicit forms 
for F and G are inserted, the interfacial field becomes 
expressed in the following form ({3 = 1/kT) : 

-E(h) 
207rp.2{30 zzp (h) Ve (h) 

3a3[2+3e(h) J[1 +2e(h) +47r{3p.2p(h)e(h) J . 
(31) 

The potential difference between the deep interiors of 
the vapor (h = - 00) and liquid (h = + 00) phases now 
follows by integration: 

In the strict sense, our potential formula (32) should 
be restricted to small t:.T in view of the approximations 
upon which it depends. So far as the limiting behavior 
near Te is concerned, the factor /(h) in the integrand 
possesses the only important h variation, so p(h) and 
e(h) in the remaining factors may simply be replaced 
by their values at the critical point, Pe and ee. The 
integral then becomes trivial, so we find that the critical 
region interfacial potential drop has an elementary 

z 
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FIG. 3. Angles defined by the direction of the dielectric constant 
gradient (VE) in the interface, relative to the Cartesian (xyz) 
coordinate system attached to the water molecule as in Fig. 1. 

TABLE 1. Values (in volts) of the surface potential~!-~" cal­
culated from Eq. (33). Liquid-phase dielectric constants have 
been taken from Ref. 15, and Ev for the vapor obtained from Eq. 
(34). For water, tc=374°C. 

WC) EI E. ~I-~' (V) 

370 9.74 6.55 1. 003 X lo-a 

360 11.22 5.98 1. 65X 10-3 

350 12.61 5.65 2.20Xlo-a 

340 14.10 5.35 2.78X10-a 

330 15.51 5.24 3.28XlO-a 

320 16.88 5.07 3.79XlO-a 

form: 

-.7. 207r{3cp.20zzPe ( el-ev ) 
~l-~v~------~~-=~~--~----

3a3 (2+3Ec) (1 + 2Ec+47r{3cp.2PcEc) 
(33) 

El and Ev are the bulk-phase dielectric constants at the 
temperature of interest, and we see that their difference 
primarily controls the rate at which ~l-~v vanishes 
with t:.T. 

Equation (33) may indeed be applicable to polar 
fluids other than water, if the spherical dielectric cavity 
approximation is appropriate. Since all factors in the 
right-hand member of Eq. (33) are positive, with the 
possible exception of 0 •• , we see that for this class of 
polar fluids the sign of the axial quadrupole moment is 
decisive in determining the direction of preferential 
surface orientation, and therefore the sign of the surface 
potential. 

We have used Eq. (33) to calculate ~l-~v for water 
at several temperatures just below Te. The results are 
displayed in Table 1. The following data were used: 

Critical temperature12a : 

Te=674.15°K; 

Critical density12a: 

Pc=0.329 g/cm3 

= 1.096 X 1022 molecules/cm3; 

Critical dielectric constantl2b : 

Ec=7.8; 

Molecular dipole momentl2c : 

p. = 1.87 X 1O-IS esu' cm. 

In addition, a was chosen to be the oxygen-oxygen 
distance of closest approach, as observed in the ice 
lattice,t3 equal to 2.76X1O--s cm. Subcritical liquid 

12 (a) N. E. Dorsey, Properties of Ordinary Water-Substance 
(Reinhold Pub!. Corp., New York, 1940), p. 558. (b) From super­
critical steam dielectric constants of J. K. Fogo, S. W. Benson, and 
C. S. Copeland O. Chern. Phys. 22, 209 (1954) J, we have obtained 
the cited value for Ec by extrapolation to Te. (c) R. A. Robinson 
and R. H. Stokes, Electrolyte Solutions (Butterworths Scientific 
Publication, Ltd., London, 1959), p. 1. 

13 J. 1.. Kavanau, Water and Water-Solute Interactions (Holden­
Day, Inc., San Francisco, Calif., 1964), p. 1. 
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dielectric constants El are available from measurements 
by Hasted!4 and by Akerlof and Oshry,15 and from them 
the unmeasured critical-region vapor values were 
estimated from a "law of rectilinear diameters," pat­
terned after that known to be obeyed by the coexisting 
densities16 

Finally, we took Ozz=0.364X1O-26 esu·cm2, which is 
the average of the theoretical values reported in Sec. 
VIII of Ref. 5.J7 

Table I shows that the mean electrostatic potential 
in the interior of the liquid liz, is larger than that for the 
vapor. Consequently, we must conclude that inter­
facial water molecules prefer to orient themselves with 
their protons pointing toward the liquid phase. 

IV. DISCUSSION 

There are several sources of error in our calculation. 
The most serious undoubtedly is the spherical-dielectric­
cavity assumption. Unfortunately, so little is known 
about local dielectric properties on the molecular scale 
at present that a more elaborate assumption for water 
seems out of the question. In the case of some other 
more elongated polar molecules (such as OCS or BrCN) 
an ellipsoidal cavity assumption might be warrented, 
but the more generalized calculation would still involve 
application of macroscopic electrostatics to the micro­
scopic regime. 

We have based our use of the spherical dielectric 
cavity centered specifically about the water molecule's 
oxygen nucleus on the facts that the protons are rather 
deeply buried in the oxygen's electron cloud (at a 
distance of 0.96 A from the oxygen nucleus compared 
to 1.4 A for the molecule's van der Waals radius) and 
that neighbor oxygens have equal distances from a 
central oxygen in the ice lattice. If it were required 
instead to place the sphere center at the point 0, 0, l 
in the coordinate system shown in Fig. 1, then the 
quadrupole quantity Oz. would transform to the new 
value 0 .. ' =Ozz-41J.L. Conceivably, then, a sufficiently 
large value for the center shift 1 could reverse the sign 
of the surface potential upon use of 0 • .' in Eq. (33). 

The possibility that the water molecule would polar­
ize as a result of the reaction field it induces within 

14 J. B. Hasted, Progr. Dielectrics 3, 101 (1961). 
Ii G. C. AkerIof and H. I. Oshry, J. Am. Chern. Soc. 72, 2844 

(1950). 
14 Reference 3, pp. 262-263. 
17 Recently the somewhat smaller value 8 •• =O.1505X10-26 

esu'cm2 has been privately communicated to us by J. Moskowitz, 
D. Neumann, and P. Liebman on the basis of a seemingly very 
complete Gaussian-basis Hartree-Fock approximate wavefunction 
for the water molecule. To the extent that this may represent the 
best currently available determination for fJ •• , the surface potential 
values reported in Table I would have to be scaled down accord­
ingly. However, the sign would be unchanged. 

its spherical cavity has not, of course, been considered. 
As Onsager18 has remarked, this effectively only en­
hances the water molecule's dipole moment, and would 
not in itself change the surface potential sign. Likewise 
the analogous change in quadrupole moment of the 
molecule under the influence of the reaction field has 
been disregarded, since no relevant molecular informa­
tion whatever is available. 

Although higher-order molecular multipoles than the 
quadrupole were not considered in our analysis one 
may show that their effect in the critical region for 
which the dielectric-constant expression (12) is valid 
is entirely negligible. Similarly the implicit use of local 
dielectric isotropy (whereby the usual inhomogeneous 
region dielectric tensor is replaced by a scalar) may be 
shown to be asymptotically correct as llT vanishes. 

In spite of the fact that our derivation of surface 
potential, Eq. (33), has relied heavily on simplifications 
that obtain near the critical point, it is hard to imagine 
that the orienting agency operative at high tempera­
tures should be superseded by another basically dif­
ferent one at ordinary temperatures. For this reason it 
may not be wholly incorrect to estimate the order of 
magnitude of if;l-if;v at 25°C by means of Eq. (33). If 
we only modify this equation by using the correct {3 
at this lower temperature, as well as Ev"'1, EI=78.30, 
the predicted surface potential is 0.029 V. In view of 
the approximations, this is probably an underestimate. 

Finally we raise the possibility that an optical experi­
ment on the water liquid-vapor surface could determine 
the direction of spontaneous surface polarization, and 
thereby hopefully verify our result. The relevant argu­
ment may be based on the Helmholtz free-energy 
functional utilized by (among others) Ornstein and 
Zernike,19 and by Cahn and Hilliard.20 Upon extension 
to include the usual electrostatic field free energy, it 
has the following form: 

pep, EJ= f ! f(p) +tB(Vp)2+hEE·Eldr. (35) 

T(P) is the macroscopic free-energy density for homo­
geneous fluids, and B is a positive constant. The in­
tegral in Eq. (35) covers the entire fluid system, and 
the observed density distribution per) minimizes the 
functional subject to fixed total amount of matter. 

In the case of nonpolar fluids with external electric 
fields absent, the interfacial width is established as a 
balance between f(p), tending to produce an infinitely 
sharp density discontinuity, and the squared-gradient 
term which becomes infinitely large in this limit. For 
water the spontaneous interfacial zone polarization 

18 L. Onsager, J. Am. Chern. Soc. 58,1486 (1936). 
19 L. D. Landau and E. M. Lifshitz, Statistical Physics 

(Addison-Wesley Pub\. Co., Reading, Mass., 1958), p. 367. 
20 J. W. Cahn and J. E. Hilliard, J. Chern. Phys. 28,258 (1958). 
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has associated with it an electric field as shown in 
Eq. (25), and the last term in the integrand of Eq. (35) 
acts then to widen the interface even more than the 
squared-gradient term alone would do. 

H an external electric field is applied normal to the 
surface so as to reinforce the spontaneous field, the 
width should increase even more. But if the external 
field acts so as to cancel out the spontaneous field, the 
interfacial zone should decrease in width (for at least 
a limited range of external field magnitudes). 

The well-developed technique of optical ellipsometry 
has, in fact, been applied to estimation of water surface 

thickness.21 We therefore suggest that similar experi­
ments be performed with variable electric fields to 
establish which field sign minimizes the width. In view 
of the calculation presented in this paper, the result of 
such measurement would constitute an indirect deter­
mination of the water molecule's quadrupole moment.22 

21 K. Kinosita and H. Yokota, J. Phys. Soc. Japan 20, 1086 
(1965) . 

22 In principle, the external-electric-field dependence of the 
surface tension should also reflect the direction of spontaneous 
surface-zone polarization, but the experimental measurement 
would probably pose more severe difficulties than the ellipsometric 
determination. 
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The vibrational structure of the Frenkel exciton states of a molecular crystal is investigated by a varia­
tional technique using a rigid-lattice-model Hamiltonian. The spirit of the weak coupling formalism is 
strictly adhered to by constructing crystal wavefunctions from products of isolated molecule wavefunctions 
so that the only parameters of the theory are Franck-Condon factors and vibrational frequency shifts. The 
basis set consists of all vibronic, i.e., single particle, states belonging to the same electronic state trans­
forming according to a given wave vector, plus a set of two-particle states in which vibronic and ground 
vibrational excitation occupy different sites. Interactions between single-particle states are treated in detail, 
as are interactions between one- and two-particle states. However, part of the interaction between certain 
two-particle states is neglected and this makes the treatment progressively less accurate for higher vibrational 
states and stronger coupling. Electron exchange effects, coupling of excitons to photons, higher electronic 
states, and ion-pair states are not considered. 

It is shown how each element of the conventional weak coupling energy matrix is supplemented by terms 
which account for the interaction between one- and two-particle states as well as interactions among the 
two-particle states. For a given wave vector each single-particle state is accompanied by a family of two­
particle bands which rapidly increases in size for higher vibrational states. In the weak coupling limit the 
families are widely separated, while intermediate coupling corresponds to two-particle bandwidths com­
parable with the vibrational spacing. The onset of strong coupling corresponds to overlapping of adjacent 
families. 

I. INTRODUCTION 

Interactions between electronic excitation and vibra­
tional modes in crystals play an important role in 
determining the structure of the optical spectra as 
well as controlling the efficiency of energy migration 
and degradation processes.1- 5 For crystals of poly­
atomic molecules the intramolecular binding forces 
are generally much stronger than the intermolecular 

• Research supported by the National Science Foundation 
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1 J. Frenkel, Phys. Rev. 37, 17, 1276 (1931). 
2 J. Frenkel, Physik Z. Sowjetunion 9, 158 (1936). 
3 R. E. Peierls, Ann. Physik 13, 905 (1932). 
4 A. S. Davydov, Theory oj Molecular Excitons, translated by 

M. Kasha and M. Oppenheimer (McGraw-Hill Book Co., New 
York, 1962). 
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forces even when electronic excitation is present. As a 
result the vibrational modes separate into low-energy 
lattice modes (torsional, optical, and acoustic) which 
replace the translational and rotation degrees of 
freedom of the gas phase, and modes corresponding 
closely to the intramolecular vibrations of isolated 
molecules.6 ,1 

6 H. C. Wolf, Solid State Phys. 9, 1 (1959); R. M. Hochstrasser, 
Ann. Rev. Phys. Chern. 17,457 (1966). 

7 For large planar molecules like the aromatic hydrocarbons 
recent calculations, e.g., D. B. Scully and D. H. Whiffen, J. Mol. 
Spectry. 1, 257 (1957), and D. Steele, ibid. 15, 333 (1965), have 
shown that out-of-plane vibrations may overlap the lattice modes 
in frequency. However, since these out-of-plane vibrations are not 
excited or only very poorly excited in electronic transitions from 
the ground level their consideration is secondary to those vibra­
tional modes which are strongly excited. Some lattice vibrations of 
benzene crystals have been calculated by I. Harada and T. 
Shimanouchi, J. Chern. Phys. 44, 2016 (1966). 
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