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Asymmetric autocatalysis and inhibition have been proposed as key processes in the spontaneous
emergence of chiral symmetry breaking in a prebiotic world. An elementary lattice model is for-
mulated to simulate the kinetics of chiral symmetry breaking via autocatalysis and inhibition in a
mixture of prochiral reactants, chiral products, and inert solvent. Starting from a chirally unbiased
initial state, spontaneous symmetry breaking occurs in spite of equal a priori probability for creat-
ing either product enantiomer, and the coupled reaction–diffusion processes subsequently amplify
the random early-stage symmetry breaking. The processes of reaction and diffusion are kinetically
intertwined in a way leading to competition in the appearance of enantiomeric excess. An effective
transition temperature can be identified below which spontaneous symmetry breaking appears. In the
absence of inhibition, reactions are predominantly autocatalytic under both reaction control (fast dif-
fusion, slow reaction) or diffusion control (fast reaction, slow diffusion) conditions. In the presence
of inhibition, simulations with different system sizes converge to the same transition temperature
under reaction control conditions, and in this limit the reactions are predominantly nonautocatalytic.
© 2010 American Institute of Physics. [doi:10.1063/1.3511715]

I. INTRODUCTION

Chirality is an essential characteristic of life. Biological
molecules are composed of subunits that exhibit only one of
the two possible chiral forms. Nineteen of the 20 naturally-
occurring amino acids are chiral, with exclusively the L-form
found in proteins during translation in the ribosome. Most nat-
urally occurring sugars are D-isomers, as exemplified by the
ribose units in nucleic acids. Fundamental questions naturally
arise about the origin of biological homochirality. Accord-
ing to one viewpoint, symmetry breaking is an intrinsic prop-
erty of polymerizing systems composed of chiral units, and
it arises from purely statistical considerations when the num-
ber of mathematically possible sequences exceeds the number
of sequences that can actually be formed in a large but finite
collection of polymerizing units.1, 2 It has been pointed out,
however,3 that prebiotic models of nonenzymatic polymeriza-
tion require a source of homochirality in order to explain a
primitive “RNA world” because in template-directed exten-
sion of D-RNA in a racemic solution, L-nucleotides act as
chain terminators.4 Thus, the investigation of possible physi-
cal mechanisms that can explain the origin of homochirality
in a presumably racemic prebiotic environment constitutes an
active area of current research.3, 5–7

Both kinetic8 and equilibrium processes may lead to
spontaneous chiral amplification. One possible thermody-
namic mechanism entails equilibrium phase behavior in a
poor solvent,9–14 and it involves the formation of both racemic
and enantiopure crystals in equilibrium with a liquid phase
enriched in one of the enantiomers. Interestingly, several
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proteinogenic amino acids exhibit such phase behavior in
water.10, 12 This mechanism spontaneously amplifies an ini-
tial chiral imbalance but cannot create chiral asymmetry from
racemic conditions. Molecular simulation of solid–fluid equi-
librium in simple models of chiral molecules can shed light on
the type of interactions that favor different solid phases.15 An-
other mechanism entails attrition of an initially equilibrated
saturated solution containing equal amounts of mirror enan-
tiomorphic crystals, resulting in a single enantiomorphic crys-
tal phase.16–19 The interpretation of this phenomenon remains
a subject of debate.20–22

A phenomenological kinetic scenario involving auto-
catalysis and inhibition, leading to chiral amplification start-
ing from a small imbalance, was proposed many years ago.23

Nearly half a century later, experimental proof of concept of
the role of autocatalysis in asymmetric amplification from low
enantiomeric excess catalyst was provided by Soai and co-
workers.24–26 A kinetic model that provides a simple expla-
nation of the asymmetric amplification observed in the Soai
reaction was provided by Blackmond and co-workers.27 The
Soai reaction remains the only reaction to our knowledge that
yields high enantiomeric excess of catalyst product from low
enantiomeric excess of catalyst reactants.28

Several studies have been conducted on the Soai
reaction27, 29, 30 and spontaneous asymmetric synthesis,31, 32

but the effects of diffusion and inhibition mechanisms on
chiral symmetry breaking are not in general well understood.
Few models include spatial degrees of freedom,33, 34 which
is a prerequisite to investigating diffusion. Possible inhibi-
tion mechanisms that have been considered span the range
from physical processes such as crystallization35 to molec-
ular interactions,36 but there is no general framework for
understanding the effect of the inhibition mechanism on
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chiral symmetry breaking. In this work, we formulate a simple
microscopic model that includes diffusion, autocatalysis, and
inhibition, and we investigate numerically the conditions
leading to chiral symmetry breaking in the reaction products,
starting from perfectly symmetric conditions.

In addition to the above-mentioned implications for the
origin of life, chirality is also of considerable practical interest
in pharmacology. Therapeutic compounds often must be syn-
thesized with a particular chirality, and in extreme cases the
mirror image may be harmful. A notable example is Thalido-
mide, whose (R)-enantiomer treats morning sickness, while
the (S)-enantiomer causes birth defects.37 In this case, dosing
with an enantiopure drug may still cause birth defects because
the two isomers interconvert in vivo. Another example is
(S, S)-ethambutol, which is used in the treatment of tubercu-
losis, while the (R, R)-enantiomer shows no antimicrobial ac-
tivity and the (R, S)-enantiomer possesses about one tenth of
the activity of the (S, S) molecule.38 All enantiomers possess
the same toxicity, which necessitates the production of pure
(S, S)-ethambutol. These examples illustrate the importance
for the pharmaceutical industry of research aimed at iden-
tifying ways to spontaneously amplify one chiral form over
another.

In Sec. II, we introduce a simple lattice model with
autocatalysis and inhibition that allows the possibility of as-
sessing quantitatively the effects of reaction and diffusion
rates, and inhibition mechanisms, on spontaneous chiral sym-
metry breaking. To our knowledge, this is the first model with
molecularly explicit chirality, spatial degrees of freedom, au-
tocatalysis, and inhibition that exhibits symmetry breaking. It
is important to note that this model provides a minimal de-
scription that nevertheless captures the underlying chemistry
and physics. The fact that the model is two-dimensional is
purely incidental, but allows for easy visualization of the ki-
netic processes involved. The numerical simulation method
used to investigate the model’s behavior is then discussed,
followed by a presentation of the results, and discussion.
Finally, a summary and concluding remarks about future lines
of inquiry are presented.

II. MODEL

Two reactive species, A and B, initially inhabit the sites
of a two-dimensional square lattice. Prochiral A particles, that
is to say, particles that can be converted from achiral to chi-
ral in a single reaction, occupy a single site, while prochiral
B particles occupy a nearest-neighbor pair of sites. Multiple
occupancy of a lattice site is forbidden. The unoccupied sites
can be interpreted either as empty space or as residency sites
for structureless and chemically inert solvent particles. These
reactive species, A and B, will be subject to stochastic dy-
namics that cause translational diffusion by nearest neighbor
jumps and, for multisite species, rotational diffusion by ro-
tation about the centermost site(s); and these A and B reac-
tants are also subject to irreversible chemical reactions that
produce rigid chiral C enantiomers as shown in Fig. 1(a).
Because the C enantiomers are confined to a two-dimensional
lattice, no translation and/or rotation can interconvert them;
to do so would require lifting the rigid bent C up into a third
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FIG. 1. Kinetic transitions in the model. Enantiomers with chirality are col-
ored red and blue for clarity and are distinguishable by the relative orientation
of the bonded A and B particles. (a) Nonlinear clusters of non-chiral A and
B particles are stochastically formed by diffusion, which may stochastically
and irreversibly react with a rate exp(−βEa) to form rigid C enantiomers,
depicted by a chemical bond between A and B particles, where Ea is the ac-
tivation energy, β is 1/kB T , T is the temperature, and kB is the Boltzmann
constant. Once formed, a rigid C enantiomer may translate and rotate diffu-
sively in two dimensions but cannot invert to the other C enantiomer. (b) C
enantiomers may autocatalyze the formation of other C enantiomers with the
same chirality at a rate of exp(−βEcat

a ) when a nonlinear cluster of A and B
particles forms in the cleft of a C enantiomer, where Ea > Ecat

a > 0. (c) Two
C enantiomers of differing chirality may form inactive dimers by binding to
each other’s clefts with strength ε ≤ 0, thereby mutually inhibiting their au-
tocatalysis mechanism. Only the relative orientation of particles is important
and only one special case of the four possible orientations is shown in parts
(a), (b), and (c).

dimension, flipping it over, and then returning it to the two-
dimensional lattice.

Let exp(−βEa) be the reaction rate for a nonlinear cluster
of nonchiral A and B particles to form a C enantiomer, where
Ea is the activation energy, β is 1/kB T , T is the tempera-
ture, kB is the Boltzmann constant, and the pre-exponential
factor has been set to unity. The activation energy, Ea > 0,
applies regardless of the orientation or chirality of the po-
tential product C enantiomer. With one important exception,
the activation energy, Ea , applies to bent clusters, regard-
less of the composition (A, B, C, empty) of the neighbor-
ing sites. The exception involves autocatalysis, with a re-
action rate exp(−βEcat

a ), where Ecat
a is the activation en-

ergy of the autocatalytic reaction, subject to the inequality
Ea > Ecat

a > 0. The autocatalytic activation energy, Ecat
a ap-

plies when an unreacted nonlinear A, B cluster resides in the
cleft of a C enantiomer of the same chirality, as illustrated in
Fig. 1(b).

The model as described above possesses an autocatalytic
mechanism, but no inhibition. However, if two C enantiomers
of differing chirality were to bind to each other’s cleft form-
ing an inactive dimer, they would no longer participate in the
autocatalytic mechanism. If the C enantiomers are present in
unequal amounts, the formation of an inactive dimer would
cause the minority catalyst population to decrease by a frac-
tion greater than that for the majority. Thus, dimer binding
of C enantiomers represents specific mutual antagonism.23, 28

Let ε ≤ 0 be the favorable dimer binding energy when two C
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FIG. 2. Example of four 6 × 6 lattice unit cells at a coverage fraction of φ

= 1/3 that, by periodic replication, is used to generate initial configurations
for larger systems. Importantly, the configuration contains no initial bias for
the formation of one enantiomer over another, on account of its symmetry.

enantiomers of opposite chirality reside in each other’s cleft,
as illustrated in Fig. 1(c).

III. METHODS

Numerical solution of the model is possible with a simple
rejection kinetic Monte Carlo algorithm,39 which randomly
attempts and accepts transitions with rules described in what
follows. A particle is randomly selected. If that particle is of
type A or B, a reactive or diffusive transition is attempted
with equal probability. If that particle is of type C, a diffu-
sive transition is attempted. Reactive transitions are accepted
with probability ωr = exp(−β�E), where �E = +∞ if the
selected particle does not have a neighboring reactant in the
correct configuration, Ecat

a if an autocatalytic configuration
produces C enantiomers of the same chirality, and Ea other-
wise where Ea > Ecat

a > 0. Diffusive transitions are accepted
with probability ωd = exp(−β�E), where �E = +∞ if the
attempt leads to particle overlap, |ε| if two C enantiomers of
the opposite chirality both reside within the other’s cleft, and
zero otherwise. When |ε| is large, inactive dimers are likely
to remain stationary for the remainder of the simulation. Dif-
fusion takes place in a good solvent such that all interaction
energies are equal, except when two C enantiomers of oppo-
site chirality form an inactive dimer as illustrated in Fig. 1(c).
Solvent is implicitly assumed to flow out of the way of A, B,
and C diffusive jumps as necessary. Time, t is incremented af-
ter each attempt by �t = τ/N , where N is the total number of
A, B, and C particles and τ is the average interval over which
each particle is excited once (i.e., visited) by an implicit heat
bath.

The initial configuration contains no bias for the forma-
tion of one enantiomer over another, on account of its symme-
try, as exemplified in Fig. 2. A simulation is conducted on a fi-
nite two-dimensional square lattice of size nx by ny , nx = ny ,
with a lattice spacing of l and with periodic boundary condi-
tions. Our numerical simulations have utilized both nx = 36
and nx = 90. Irreversible reactions lead to a decrease in the

amount of A and B present, and a simulation is completed
when the reactant A diminishes in mole fraction to a preset
value xA. The time-dependent discrete probability distribution
function of the fraction present of a given enantiomer, f , and
the corresponding distribution of enantiomeric excess, ee are
approximated by averaging over a large number of equivalent
simulations, ns ≥ 104. There is no need to specify the enan-
tiomer implied in the fraction, f , because the model treats
both chiral forms symmetrically, which guarantees symmetric
probability distribution functions for a large ensemble of sim-
ulations. The fraction, f , and the enantiomeric excess, ee, are
related by the formula ee = |2 f − 1|. Because these are dis-
crete probability distribution functions, the resolution is de-
termined by the number of enantiomers present.

The sample skewness of the enantiomeric excess, g1(ee),
is a convenient parameter to characterize the extent of sym-
metry breaking and is defined as

g1(ee) =
√

ns(ns − 1)

ns − 2

m3

m3/2
2

, (1)

where m2 and m3 are the second and third central moments,
respectively, of the distribution of the enantiomeric excess.40

The Einstein expression is used to compute the diffusion
coefficient, Di , for a given species, i , in the absence of reac-
tion and is given by

Di = lim
t→∞

〈[ri (t ′ + t) − ri (t ′)]2〉t ′

4t
, (2)

where ri (t) is the position of a particle of species i at time t
and 〈· · ·〉t ′ is an average over all particles of species i and time
origins, t ′.

IV. RESULTS AND DISCUSSION

Simulations at various coverage fractions were conducted
in the absence of reaction to study the composition depen-
dence of diffusion coefficients. The diffusion coefficients
in the absence of reaction for the pure components, Di ,
equimolar A, B mixtures, DAB

i and equimolar A, B, C mix-
tures, DABC

i for various coverage fractions, φ, are shown in
Fig. 3. These results are not needed as input to the reactive
simulations, but were, rather, conducted as a preliminary in-
vestigation of diffusive motion in this model. The diffusion
coefficients at infinite dilution, in units of l2/τ , are 1/4
3/16 and 1/6 for A, B, and C, respectively. Infinite dilu-
tion diffusion coefficients were also derived by means of the
master equation and agree with simulation results. As the cov-
erage fraction is increased, species with more sites experience
greater steric hindrance to displacement [Fig. 3(a)]. At the
same coverage fraction, A is more mobile in an equimolar
A, B mixture than in pure A, while B is less mobile in an
equimolar A, B mixture than in pure B, as shown in Fig. 3(b).
This trend is found to be monotonic with coverage fraction.
Equimolar A, B, C mixtures, however, possess nonmonotonic
dependence on coverage fraction, as shown in Fig. 3(c). For
low coverage fractions, A is more mobile in equimolar A, B,
C mixtures than in pure A, while C is less mobile. At suffi-
ciently high coverage fractions, however, this trend reverses
such that A is less mobile in equimolar A, B, C mixtures than
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FIG. 3. (a) Top. Pure component diffusion coefficients, Di , of species i in
the absence of reaction, as a function of the coverage fraction φ. Diffusion
coefficients are reported in units of l2/τ . (b) Middle. Normalized difference
between equimolar A, B mixture diffusion coefficients, D AB

i , and the cor-
responding pure component quantities. (c) Bottom. Normalized differences
between equimolar A, B, C mixture diffusion coefficients, D ABC

i , and the
corresponding pure component quantities. All simulations containing C enan-
tiomers are racemic. No reactions are attempted, the simulation is terminated
at t/τ = 100; ε = 0, nx = ny = 36, and the mean squared displacement is
averaged over 1000 independent trajectories. The statistical error, smaller
than symbols, is of the order of 10−3 l2/τ .

in pure A, while C is more mobile. Despite the simplicity of
the lattice model, interesting phenomena occur as a function
of coverage fraction and mixture composition which merit
further study.

Simulations with reactions were conducted to study
symmetry breaking. Discrete probability distribution func-
tions, P , of both the fraction, f , and the enantiomeric ex-
cess, ee, are shown in Figs. 4 and 5, respectively. Symme-
try breaking, evidenced by a bimodal probability distribution
of f , is observed for sufficiently low temperatures. Under
symmetry-broken conditions, there is a high probability that a
simulation will lead to substantial enantiomeric excess, and a
correspondingly small probability that a racemic mixture will
result. The symmetry of P( f ) about f = 0.5 means that
enantiomeric excess of either chiral product is equally proba-
ble when averaged over a large number of simulations.

Local maxima in the probability distribution functions
arise as a result of inhibition. Consider Fig. 4. The probability
distribution functions at f = 1 and 0 must be precisely equal
with or without inhibition because when the system remains
enantiopure, no inactive dimers may form and the simulations
are equivalent. The probability at f = 1/2 when inhibition is
present, however, is always less than in the absence of inhi-
bition. Inhibition shifts the probability toward the extremes,
while P(0) and P(1) are pinned at constant values, leading
directly to local maxima.

When symmetry breaking occurs, g1(ee) < 0, the tail
of the distribution is larger on the left than the right, and
the majority of values lie to the right of the mean. When

FIG. 4. (a) Top. Discrete probability distribution function, P( f ), of the frac-
tion of a given enantiomer, f , averaged over ns simulations, is shown for
Ecat

a /Ea = 0, ε/Ea = 0, nx = ny = 36, ns = 105, φ = 1/3, and xA = 0.1.
Symmetry breaking occurs at βEa = 10 (solid black line), while symme-
try breaking does not occur at the higher temperatures βEa = 8 (solid red
line), βEa = 6 (solid blue line) and βEa = 4 (dashed green line). (b) Bot-
tom. As above except ε/Ea = −10. With inhibition, symmetry breaking
occurs at βEa = 10 and 8, where the bimodal distributions possess local
maxima.

symmetry breaking does not occur, g1(ee) > 0. Thus, the
skewness of the ee is a convenient parameter to quantify the
extent of symmetry breaking. An important physical quan-
tity is β∗ = 1/kB T ∗, where T ∗ is the transition temperature
at which g1(ee) = 0. The skewness, g1(ee), is simply the nor-
malized third central moment and is therefore zero for a sym-
metric probability distribution of the enantiomeric excess.

The overall behavior of the model system is summarized
in Fig. 6, where all points lying above a given line represent

FIG. 5. Discrete probability distribution function, P(ee), of the enantiomeric
excess, ee, corresponding to the same set of simulations as shown in Fig.
4(b). Symmetry breaking occurs at βEa = 10 (solid black line) and 8 (solid
red line), in which case the skewness, g1(ee) < 0. Symmetry breaking does
not occur at the higher temperatures βEa = 6 (solid blue line) and βEa = 4
(dashed green line), when the skewness, g1(ee) > 0. Thus, the skewness of
the enantiomeric excess is a convenient parameter to quantify the extent of
symmetry breaking. A transition from nonsymmetry broken states to symme-
try broken states is defined to occur when the probability distribution function
of enantiomeric excess is symmetric, in which case the skewness, g1(ee), or
third central moment, is zero. The sudden downturn at ee = 0 is due to the
discreteness of P(ee), leading to half the expected probability with an odd
number of possible outcomes.
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FIG. 6. Loci of β∗, where all points above a given line represent symme-
try broken states. System sizes of nx = 36 (solid circles and squares) and
nx = 90 (open circles and squares) were simulated with ε = 0 (no inhibition;
squares) and ε/Ea = −106 (with inhibition; circles). ns = 104, φ = 1/3, and
xA = 0.1. For the three rightmost points on the black curve (solid squares),
ns = 103 due to slow simulation times.

symmetry broken states corresponding to a particular choice
of model parameters. As Ecat

a increases for a given Ea − Ecat
a ,

reactions become slower relative to diffusion, and the system
is said to be under reaction control. The quantity β∗ is found
by successively incrementing βEa by 0.1 and determining the
g1(ee) average and standard deviations from five block aver-
ages of ns simulations total. Figure 7 shows the fraction of
the total number of reaction events that are noncatalytic for
each β∗ in Fig. 6. As summarized in Fig. 6, two fundamen-
tally different forms of symmetry breaking can occur in the
present model. With no favorable dimer binding energy, that
is to say in the absence of an inhibition mechanism (curves
marked no inh), symmetry breaking occurs by a predomi-
nantly autocatalytic route, favored by low temperatures (large
β∗). The enantiomeric excess of the system then depends
largely on the first noncatalytic reaction. With favorable in-
active dimer binding energy, that is to say when an inhibition
mechanism is present (curves marked inh), symmetry break-
ing may occur even when a majority of the reactions are non-
autocatalytic. In this case, the transition temperature plateaus
upon increasing the diffusion rate into the reaction-limited
regime. In this regime, two different system sizes plateau to
the same transition temperature, which suggests the attain-
ment of a system-size independent transition temperature for

FIG. 7. Fraction of total number of reaction events that are noncatalytic,
corresponding to each β∗ in Fig. 6. System sizes of nx = 36 (solid circles
and squares) and nx = 90 (open circles and squares) were simulated with
ε = 0 (no inhibition; squares) and ε/Ea = −106 (with inhibition; circles).
ns = 104, φ = 1/3, and xA = 0.1.

FIG. 8. Same as Fig. 6, except φ = 1/6. Loci of β∗, where all points above
a given line represent symmetry broken states. System sizes of nx = 36
(solid circles and squares) and nx = 90 (open circles and squares) were simu-
lated with ε = 0 (no inhibition; squares) and ε/Ea = −106 (with inhibition;
circles). ns = 104, φ = 1/6, and xA = 0.1.

sufficiently high diffusion rates, and favorable inactive dimer
binding energy. Under diffusion control (Ecat

a → 0 for a given
Ea − Ecat

a ), lower temperatures are needed in order for sym-
metry breaking to occur in progressively larger systems. In
the absence of inhibition, the inverse relation between tem-
perature and system size persists into the reaction control
regime.

Figures 8 and 9 summarize the overall behavior of the
model system for a coverage fraction, φ = 1/6. For lower
coverage fractions, simulations without inhibition are essen-
tially equivalent to the higher coverage fraction simulations.
In the presence of inhibition, however, the system-size de-
pendence is appreciably reduced relative to φ = 1/3 case
(Fig. 6). Regions of diffusion control are expected to shrink
with decreased coverage fraction because, as shown in
Fig. 3, diffusion coefficients increase markedly with de-
creasing φ. Note that although the system sizes considered
(nx = 36 and 90) are the same in Fig. 8, the lower cover-
age fraction simulations have half the number of molecules,
which promotes symmetry breaking. Initial configurations
were generated by using the unit cells shown in Fig. 2, but
evacuating columns of unit cells in alternating fashion. For
example, particles in the two right-most unit cells in the
2 × 2 unit cell initial condition shown in Fig. 2 would be
removed. For nx = 90, half of the particles in the fifteenth
column of unit cells were removed. Simulations were also

FIG. 9. Same as Fig. 7, except φ = 1/6. Fraction of total number of reaction
events that are noncatalytic, corresponding to each β∗ in Fig. 8. System sizes
of nx = 36 (solid circles and squares) and nx = 90 (open circles and squares)
were simulated with ε = 0 (no inhibition; squares) and ε/Ea = −106 (with
inhibition; circles). ns = 104, φ = 1/6, and xA = 0.1.
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conducted at a coverage fraction of φ = 3/16, at constant
number of particles, by adding an empty row and column
to the sides of the unit cell, and qualitatively similar depen-
dence on system size was observed as in φ = 1/3 case. Re-
sults equivalent to those obtained using the highly symmet-
ric initial arrangement resulted when each simulation started
from a random configuration because the initial condition ran-
domizes by diffusion on shorter times than those needed for
noncatalytic reactions.

V. CONCLUDING REMARKS

The rudimentary model presented in this work is capa-
ble of simulating chiral symmetry breaking, evidenced by bi-
modal probability distribution functions of the fraction of a
given enantiomer, obtained from unbiased initial conditions.
This behavior emerges spontaneously as a result of the sub-
tle interplay of reaction, diffusion, autocatalysis, and inhibi-
tion. We are not aware of another model with molecularly
explicit chirality, microscopic degrees of freedom, autocataly-
sis, and inhibition that exhibits symmetry breaking. This sug-
gests a useful role for theory and modeling in elucidating
the possible conditions that may have given rise to the emer-
gence of enantiomeric excess in the prebiotic world, as well as
for identifying strategies for the rational design of industrial
chiral synthesis processes.

A simple rejection kinetic Monte Carlo algorithm was
used to simulate the behavior of the model. This algorithm
becomes inefficient when reaction acceptance probabilities
are low. A rejection-free kinetic Monte Carlo algorithm, de-
scribed elsewhere,41 may be used in the future to simulate the
infinite-diffusion-rate limit. The model cannot break symme-
try in an infinite system with finite diffusion rates because,
although arbitrarily many domains with enantiomeric excess
will occur in that case, they will cancel each other statistically,
and the average enantiomeric excess of the entire system will
approach zero in the thermodynamic limit. A simple modifi-
cation of the model that accounts for reversible reactions and
local mass action kinetics could asymptotically lead to sym-
metry breaking in arbitrarily large systems. Results from this
and other enhancements of the present model will be the sub-
ject of future publications.

Several extensions of the present simple model may
provide further insight into chiral symmetry breaking. The
currently irreversible enantiomer-formation reactions can be
modified by augmenting them with at least small positive
values for their corresponding reverse reaction rates (thereby
addressing contention in the literature on the effect of re-
versibility on symmetry breaking42, 43), as well as with
additional catalytic cluster processes that have dominant
enantiomers dissociating their mirror images. Solvent inter-
actions can also be readily incorporated. To simulate the Soai
reaction24 more explicitly, catalyst complexes may also be
considered. Incorporation of hydrodynamic effects can pro-
vide insight on the role of mixing as a mechanism for the
suppression of local fluctuations, and its consequences for
the system-size dependence of the appearance of symmetry-
breaking conditions. Finally, a three-dimensional extension of
the lattice model is feasible with chiral molecules that are

represented on a simple cubic lattice by three mutually or-
thogonal, contiguous line segments in a bent linear pattern,
where chirality is distinguished by the sign of the scalar triple
product for the bond vectors. The autocatalytic configuration
in this three-dimensional extension involves occupancy of all
eight vertices of a fundamental cube, which is geometrically
possible only by model molecules of the same chirality.
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