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We show for the first time that collectively jammed disordered packings of three-dimensional
monodisperse frictionless hard spheres can be produced and tuned using a novel numerical protocol
with packing density � as low as 0.6. This is well below the value of 0.64 associated with the
maximally random jammed state and entirely unrelated to the ill-defined “random loose packing”
state density. Specifically, collectively jammed packings are generated with a very narrow
distribution centered at any density � over a wide density range �� �0.6,0.740 48. . .� with variable
disorder. Our results support the view that there is no universal jamming point that is distinguishable
based on the packing density and frequency of occurrence. Our jammed packings are mapped onto
a density-order-metric plane, which provides a broader characterization of packings than density
alone. Other packing characteristics, such as the pair correlation function, average contact number,
and fraction of rattlers are quantified and discussed. © 2011 American Institute of Physics.
�doi:10.1063/1.3524489�

I. INTRODUCTION

The fundamental study of disordered jammed packings
has a long history dating back at least to the pioneering work
of Bernal1,2 on the so-called random-close-packing �RCP�
state. That was traditionally thought to correspond to the
densest “random” packing with a unique packing fraction �or
density� ��0.64 for frictionless monodisperse three-
dimensional �3D� spheres. That work spawned substantial
research on disordered jammed packings.3–12 About a decade
ago,7 it was argued that the RCP state is ill-defined for vari-
ous reasons, including the fact that “randomness” was never
quantified and the idea that a “random” packing can ever
achieve a maximal density is not meaningful because one
can infinitesimally increase the density of the putative RCP
state, which indeed is dependent on the packing protocol and
container boundaries, with imperceptible change in the amor-
phous pair correlation function. It was suggested that the
RCP state should be replaced by the maximally random
jammed �MRJ� state,7 which is the one that minimizes a
scalar order metric � subject to the condition of the degree of
jamming.12,13 Studies of different order metrics for 3D fric-
tionless spheres have consistently led to a minimum at ap-
proximately the same density ��0.64,7,8,14 for collectively
and strictly jammed packings in the �-� plane �i.e., the “or-
der map”�.13 This consistency among the different order met-
rics speaks to the utility of the order-metric concept, even if
a perfect order metric has not yet been identified. The fact
that this jammed state is epitomized by maximal disorder has
been advocated by other groups.9 Bernal originally studied
such jammed packings to understand the structure of liquids
but it is now known that 3D MRJ monodisperse sphere pack-

ings possess quasilong-range pair correlations.10 This prop-
erty is markedly different from typical liquids with short-
range interactions, which possess pair correlations decaying
exponentially fast. Thus, MRJ sphere packings can be re-
garded to be prototypical glasses in that they possess the
highest degree of disorder among all jammed packings with
diverging elastic moduli.15

The definition of the MRJ state implies that the density
� alone is not sufficient to characterize jammed packings,
since any packing configuration, jammed or not, is a point in
the �-� plane. This two-parameter description is but a very
small subset of the relevant parameters that are necessary to
fully characterize a configuration but it nonetheless enables
one to draw important conclusions.12 The frequency of oc-
currence of a particular configuration is irrelevant insofar as
the order map is concerned, i.e., the order map emphasizes a
“geometric-structure” approach to analyze packings by char-
acterizing individual configurations, regardless of their oc-
currence probability.12

One might argue that the maximum of an appropriate
“entropic” metric �based on the frequency of occurrence of
the packings� would be an ideal way to characterize the ran-
domness of a packing, and therefore, the MRJ state. How-
ever, as pointed out by Ref. 8, a substantial hurdle to over-
come in implementing such an order metric is the necessity
to generate all possible jammed states in an unbiased fashion
using a “universal” protocol in the large-system limit, which
is an intractable problem. Even if such a universal protocol
could be developed, the issue of what weights to assign the
resulting configurations remains. Moreover, there are other
fundamental problems with entropic measures. It is well
known that the lack of “frustration”12 in two-dimensional
analogs of 3D computational and experimental protocols thata�Electronic mail: torquato@electron.princeton.edu.
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lead to putative MRJ states result in packings of monodis-
perse circular disks that are highly crystalline, forming rather
large triangular coordination domains. Because such highly
ordered packings are the most probable outcomes for these
typical protocols, “entropic measures” of disorder would
identify these as the most disordered, which is clearly a mis-
leading conclusion.

On the other hand, an appropriate geometric-structure
order metric is capable of identifying a particular configura-
tion �not an ensemble of configurations� of considerably
lower density. For example, a jammed vacancy-diluted trian-
gular lattice packing �and its multidomain variant� or a
jammed packing containing many small crystalline regions
and “grain” boundaries that is consistent with our intuitive
notions of maximal disorder possesses small scalar order
metrics. However, typical packing protocols would almost
never generate such disordered disk configurations because
of their inherent implicit bias toward undiluted crystalliza-
tion. The readers are referred to Ref. 12 for further discus-
sion. Thus we seek to devise order metrics that can be ap-
plied to single jammed configurations, as prescribed by the
geometric-structure point of view. The geometric-structure
approach incorporates not only maximally dense packings
�e.g., Kepler’s conjecture� and random “Bernal” packings,
but an infinite class of other significant jammed states not
previously recognized, including “tunneled” crystals that are
putatively at the jamming threshold with ��0.493 65. . ..15

Furthermore, the geometric-structure approach naturally
incorporates the algorithmic variability of different packing
protocols that leads to a diversity of density and disorder in
jammed sphere packings.12 In a typical numerical packing
protocol, either the particle growth or system compression
leads to an increase in �,3,4,16,17 which makes the particle-
pair nonoverlap constraints consume larger and larger por-
tions of the configuration space.12 Further increase in �
causes the available configuration space to fracture, generat-
ing isolated “islands” that each eventually collapse into final
jammed states with distinct density and structure. Presum-
ably, any protocol would sample the disconnected regions of
the configuration space with fixed probability, leading to
well-defined average of any packing characteristic of
interest.12 Unless chosen to be highly restrictive, a typical
packing protocol applied to a system with N particles could
produce a large number of geometrically distinguishable
packings with some dispersion in their � and � values. A
narrowing of the distributions of the packing characteristics
with increasing N can be expected due to operation of a
central limit theorem. The particular values to which the dis-
tributions individually converge are protocol-specific, mean-
ing that these values can be controlled by choosing appropri-
ate protocols or tuning the parameters of a protocol. Indeed,
jammed packings with a diversity of density and disorder
have been produced via a variety of protocols,4,7,8,14,15,18,19

including ��0.64 which is empirically the outcome of a
considerable large number of laboratory experiments and nu-
merical simulations for identical frictionless spheres. Since
the jammed packings with ��0.64 are apparently the “most
probable states,” significance has been attached to the so-
called unique J �jamming� point, i.e., ��0.64, which is sug-

gested to correspond to the onset of collective jamming in
soft-sphere systems.9 However, the wide spectrum of density
values �e.g., �� �0.63,0.740 48. . .�� that has been achieved
clearly suggests that conclusions drawn from any particular
protocol are highly specific rather than general and thus
claims of uniqueness of packing states based on their fre-
quency of occurrence overlook the wide variability of pack-
ing algorithms and the distribution of configurations that
they generate. We will elaborate on this issue in the conclu-
sions and discussion �Sec. IV�.

In this paper, we show explicitly that exploring algorith-
mic variability of packing protocols can lead to a diversity of
density and disorder of jammed sphere packings, which is
consistent with the geometric-structure approach. In particu-
lar, we demonstrate that collectively jammed packings can be
generated with a narrow distribution centered at any density
� over a wide range �� �0.6,0.740 48. . .�. A novel sequen-
tial linear programming �SLP� packing algorithm20 is used to
produce jammed disordered packings with � as low as 0.6
for the first time, i.e., the onset of disordered jamming occurs
well below the MRJ density of about 0.64. The
Lubachevsky–Stillinger �LS� packing algorithm3 is em-
ployed to produce jammed packings with � spanning con-
tinuously from that of MRJ state ���0.64� all the way up to
the face-centered-cubic �fcc� close-packed density ��
=0.740 48. . .�.7,8,14 However, the standard LS algorithm as
well as all previously used numerical protocols do not pro-
duce disordered collectively jammed states with � well be-
low 0.64. We control the jamming density by tuning certain
parameters of the packing protocols. The jammed packings
with a diversity of disorder are mapped onto a density-order-
metric plane. Our results strongly support the view that there
is no universal jamming point that is distinguishable based
on the packing density and its frequency of occurrence.
Other packing characteristics, such as the pair correlation
function g2, average contact number Z, and fraction of rat-
tlers fr are quantified and discussed.

II. PACKING PROTOCOLS AND CONTROL
PARAMETERS

A. LS algorithm

The LS algorithm is an event-driven molecular dynamics
in which particles can grow in size at a certain expansion rate
�= 1

2dD /dt �D is the diameter of the sphere� in addition to
their thermal motion.3 Note that � is a key parameter that
controls the jamming density.7,10 Sufficiently small � enables
the system almost to be in equilibrium during the densifica-
tion, which will finally crystallize in three dimensions into a
fcc packing. For large �, the system will quickly fall out of
equilibrium and reaches a jammed state with an amorphous
structure. Intermediate � will result in various degrees of
partial crystallization in the system, which leads to a continu-
ous range of jamming densities. It is noteworthy that a very
small value of � should be used toward the jamming limit
such that a true particle contact network can be formed for
both crystalline and disordered packings.12,21 We use a modi-
fied version of the LS algorithm22 to generate jammed pack-
ings for ��0.64.
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B. SLP algorithm

A recently devised SLP algorithm20 is used here to pro-
duce disordered jammed sphere packings with ��0.64. This
algorithm solves an optimization problem called the adaptive
shrinking cell scheme:16,17 jammed particle packings are gen-
erated by maximizing the packing density subject to interpar-
ticle nonoverlapping constraints. The optimization variables
include particle positions as well as shape and size of the
simulation box. Starting from an initial configuration, a new
configuration is obtained by �locally� maximizing the density
via both individual particle motions and collective motions
induced by the deformation/shrinkage of the simulation box.
For spheres, the objective function and constraints can be
linearized for a given packing configuration and the SLP

method is used to solve the optimization problem. The final
packings produced by the SLP are at least collectively
jammed due to its incorporation of inherent collective par-
ticle motions. Details of this algorithm and its applications
for generating both disordered and maximally dense pack-
ings in high dimensional Euclidean space are given in Ref.
20.

By removing spheres from the fcc packing and its stack-
ing variants without destroying the rigidity of the contact
network, Torquato and Stillinger15 have constructed strictly
jammed “tunneled crystal” packings with � as low as
0.49 365…. Similar removal procedures can be applied to
MRJ packings. However the contact network of the remain-
ing packing is generally not rigid anymore. The removed
particles are required to have a large coordination number
and to be mutually separated by at least a few sphere diam-
eters. Compressing the remaining packing using the SLP al-
gorithm leads to a rejammed configuration, with a minimum
degree of structural relaxation �i.e., significant particle recon-
figurations are localized around the cavities�.20 The re-
jammed configurations generally possess ��0.64 and the
removal-compression procedure can be repeated several
times until a lower limit of � is reached. The control param-
eters of the SLP algorithm include the initial MRJ configura-
tions and the number of removed particles.

III. JAMMED PACKINGS WITH VARIABLE DENSITY
AND DISORDER

A. Histograms for jammed packings with �>0.64

We employ the LS algorithm to generate a large number
of jammed packings of monodisperse spheres in three di-
mensions for ��0.64 with N=250, 500, 1000, 2500, 5000,
and 10 000, and a wide range of initial expansion rate �
� �10−2 ,10−6�. Results are verified to be at least collectively
jammed,21 using either a linear programming protocol21 or
by monitoring the instantaneous pressure of the systems for
long time periods;10 and rattlers are included to compute the
reported densities. By tuning �, the density at which the
systems jam can be controlled. Figures 1�b�–1�d� contrast
distributions of � for two distinctly different system sizes
�N=250 and 2500� converging onto ��0.64, 0.68, and 0.72,
respectively. �The case of ��0.60 shown in Fig. 1�a� will be
discussed separately below.� It is clear that as N increases the
� distributions narrow for all three mean density values. We

also find that such narrowing becomes even more significant
for N=5000 and 10 000. Specifically, Fig. 2 shows how the
standard deviation � of the density distribution varies with
system size N for the case in which the mean ��0.66. Ob-
serve that � is a monotonically decreasing function of N and
� approximately scales N−1/2 for large N. A similar narrow-
ing of the � distribution occurs for ��0.60 shown in Fig.
1�a�, and this case will be discussed separately below. Thus,
one can expect that in the “thermodynamic” limit �i.e., N
→	� the jamming density will converge to a well-defined
value anywhere over the interval �� �0.60,0.740 48. . .�.
These results imply that any inclination to select a specific �
value as uniquely significant �e.g., ��0.64� is primarily
based on inadequate sampling of the full range of algorith-
mic richness and diversity that is available at least in the
underlying mathematical theory of jamming.

B. Histograms for jammed packings with �<0.64

We produce the majority of jammed packings with �
�0.64 using the SLP algorithm. MRJ packings generated via

FIG. 1. �Color online� Histograms of jammed sphere packings that are cen-
tered around different mean densities. Panel �a� shows packings generated
using the SLP algorithm with ��0.6. Panels �b�–�d� show packings gener-
ated using the LS algorithm with ��0.64, 0.68 and 0.72, respectively. The
distributions become narrower as the system size increases.
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FIG. 2. �Color online� The standard deviation � of the density distribution
with mean ��0.66 as a function of system size N. System sizes N=500,
1000, 2500, 5000, and 10 000 are used here. The linear fit for ln � vs ln N
gives a slope k�−0.533, which indicates that � approximately scales as
N−1/2 for large N. Such a �-N relation is also observed for density distribu-
tions with the other mean values studies here.
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the LS algorithm are used as initial configurations. Each time
approximately fs=0.1%–2.5% of the spheres are removed
from the initial packing and the remaining spheres are com-
pressed to a jammed state using the SLP algorithm. Such a
procedure is repeated nr=5–10 times before a lower limit on
� is reached. The fraction fs of removed spheres is decreased
as the limit is approached. We stress that our packings with
��0.64 are not so-called random loose packings,23 which
are not even collectively jammed.21 A few packings with
��0.62 are generated using the LS algorithm with open
simple-cubic lattice packings as initial configurations.8

Figure 1�a� contrasts � distributions for two distinctly
different system sizes �N=216 and 2235� converging onto
��0.60. It can be seen that as N increases the � distribu-
tions narrow. Such narrowing is also observed for other con-
vergence densities within the interval �0.6, 0.64�. We note
that it is very difficult to produce jammed packings with �
significantly lower than 0.6 using the SLP algorithm �though
removing the rattlers in the packing results in a slightly
lower density �0.595�, while it has been rigorously shown
that strictly jammed sphere packings �e.g., tunneled crystals
and the associated stacking variants� can possess � as low as
�2
 /9=0.493 65. . ..15 However, jammed packings that com-
bine the tunneled crystals and MRJ packings can be con-
structed. In particular, stackings of layers of honeycomb-
lattice packings of spheres stabilized with triangular-lattice
layers on top and bottom are inserted into the MRJ packings.
These “layered” packings are then compressed to jamming
using the SLP algorithm. This construction enables one to
obtain jammed packings with variable disorder within the
density range �� �0.49,0.64�.

C. Order metrics and other packing characteristics
for jammed packings with �« †0.49,0.74‡

It has been established that a variety of different useful
order metrics are positively correlated7,8,14 and hence any
one of them can be used to characterize the packings. To
quantify the order of the packings, we compute the transla-
tional order metric T,7 defined as

T = 	

i

Ns

�ni − ni
ideal�/


i

Ns

�ni
FCC − ni

ideal�	 , �1�

where ni is the average occupation number for the shell i
centered at a distance from a reference sphere that equals the
ith nearest-neighbor separation for the open FCC lattice at
that density and Ns is the total number of shells for the sum-
mation �Ns=45 is used here for N�2500�; ni

ideal and ni
FCC are

the corresponding shell occupation numbers for an ideal gas
�spatially uncorrelated spheres� and the open FCC lattice.
For a completely disordered system �e.g., a Poisson distribu-
tion of points� T=0, whereas T=1 for the FCC lattice.

Figure 3 shows the �-T plane on which representative
jammed packings with N�2500 and �� �0.49,0.74� are
mapped. The packings generated using the LS algorithm are
shown as black circles. Note that for these packings each �
is associated with a range of T values. Moreover, increasing
� from the MRJ state can be achieved at the cost of decreas-
ing the degree of disorder, as pointed out in Ref. 7. Further

increase in � is associated with partial crystallization of the
packings, as indicated by the sharp peaks of the pair corre-
lation function g2 of the packings �see Fig. 4�. The fraction
of “rattlers” �i.e., locally unjammed individual particles that
can move freely within cages of jammed neighbors� de-
creases �from �2.8% with ��0.64 to 0% with �
=0.740 48. . .� and the average contact number per particle Z
increases �from 6 to 12� as the density increases due to the
�partial� crystallization of the packings, and we have Z
�6.00, 6.45, and 7.96, respectively, for densities ��0.64,
0.68, and 0.72 �rattlers are excluded when computing Z�.

Several representative packings obtained via the SLP al-
gorithm are also mapped onto the �-T plane �red squares in
Fig. 3�. It can be seen that jamming at ��0.64 is necessarily
associated with an increase in the degree of order, which is
also indicated by the increase in average contact number per
particle �i.e., Z�6.37 for ��0.6� and the decrease in the
fraction of rattlers �i.e., �1.1% for ��0.6�.24 The pair cor-
relation function g2 of a representative packing configuration
�with N=2235� is shown in Fig. 4.

The “tunneled crystal” packings are mapped onto the
�-T plane �green up-triangles�. The FCC tunneled crystal
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FIG. 3. �Color online� Order map for jammed sphere packings with N
�2500: translational order metric T vs packing density �. The dashed blue
lines �which are consistent with the qualitative trends indicated in the order
maps discussed in Ref. 12� show the spectrum of packings generated by
randomly filling the vacancies in the corresponding tunneled crystal pack-
ings, which leads to perfect FCC, HCP, and Barlow packings at the maximal
density. The simple-cubic �SC� and body-centered-cubic �BCC� packings
�not jammed� are also shown.
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FIG. 4. �Color online� Pair correlation function g2 and average contact
number Z of representative jammed sphere packings at different densities,
where D is the sphere diameter.
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possesses the highest translational order metric T, the “dis-
ordered” Barlow tunneled crystal �a random stacking of lay-
ers of honeycomb-lattice sphere packings� possesses the low-
est T, and the “zig-zag” tunneled crystal �analog of the
hexagonal-close sphere packing�15 is in between. The dashed
blue lines show the spectrum of packings generated by ran-
domly filling the vacancies in the corresponding “tunneled
crystal” packings, leading to perfect FCC, HCP, and “disor-
dered” Barlow packings at the maximal density.12 Several
representative layered packings are also mapped onto the
�-T plane �purple diamonds� in Fig. 3. The simple-cubic
��=0.5235. . ., blue left-triangle� and body-centered-cubic
��=0.6801. . ., orange right-triangle� packings are also shown
in Fig. 3. Note the SC and BCC packings are not collectively
jammed.

IV. CONCLUSIONS AND DISCUSSION

In summary, we have shown that jammed sphere pack-
ings can be produced with a narrow distribution centered at
any � over a wide range �� �0.6,0.740 48. . .� with a diver-
sity of disorder, by exploring the algorithmic variability of
packing protocols. This suggests that any temptation to select
a specific � value as uniquely significant or universal �e.g.,
��0.64� based on its frequency of occurrence is primarily
due to an inadequate sampling of the full range of algorith-
mic richness and variability of packing protocols. Our pack-
ings are characterized by a “geometric-structure” approach,
i.e., they are mapped onto the �-T plane; and we have
shown that moving away from the MRJ density in both di-
rections �i.e., lower or higher �� leads to a higher degree of
order and a larger average contact number.

It is claimed that the protocol �e.g., the athermal relax-
ation method used in Ref. 9� in which the jammed states of
soft spheres are weighted by the volume of their basins of
attraction has a clear interpretation in terms of the energy
landscape, e.g., an ensemble of jammed states is considered.
In fact, the conceptual framework of such a protocol �e.g.,
the energy landscape picture and the ensemble of inherent
structures� was introduced by one of us over 40 years
ago.25–27 Although this approach is well-defined and theoreti-
cally possible, it is inevitable that all protocols sample the
energy landscape in their own biased fashion. Therefore,
there is no compelling mathematical criterion for selecting
one protocol over the others. For example, from completely
random initial configurations �i.e., Poisson distribution of
points�, it is found the jamming density sharply peaks at �
�0.64.9 However, it was shown nearly a decade ago that a
much wider density range can be achieved for both mono-
disperse and polydisperse sphere packings using the LS
packing algorithm;7,8,14,28 and recently similar results for
polydisperse spheres have been obtained18 using the same
athermal protocol as in Ref. 9. More recently, we have de-
vised a novel �athermal� linear-programming packing proto-
col that enables one to obtain a spectrum of inherent struc-
ture ranging from disordered jammed packings up to the
maximal density packings starting from random initial

configurations.20 All of these results suggest that there is no
“universal” protocol that can generate all possible jammed
states in an unbiased fashion.

Moreover, it is not clear how the jammed states should
be weighted in an ensemble. It has been suggested that the
volume of the basins of attraction for systems starting from
Poisson distributions of interacting points9 should be used
for the weighting. However, in reality virtually no jammed
systems are experimentally produced using a Poisson distri-
bution as an initial configuration. In addition, the jammed
packings produced either numerically or experimentally al-
ways contain a small but different fraction of rattlers. Strictly
speaking, these jammed states are not single points on the
energy landscape but bounded regions with dimensions equal
to the number of degrees of freedom of the rattlers. The
dimension of the jamming basins are different, and therefore,
it is ambiguous to consider their volumes for weighting and
to characterize them on the same footing. Ideally, each jam-
ming basin should be characterized individually as empha-
sized in the “geometric-structure” approach. Removing the
rattlers will not affect the jamming nature of the packings,
but leads to the lower jamming density. This further adds
ambiguity to a density-alone characterization of jammed
packings, which is employed in the “ensemble” approach.

We also would like to note that as exercised the “en-
semble” approach has focused on protocols that dispropor-
tionately generate disordered packings, presumably because
such packings have a high frequency of occurrence in typical
experiments or simulations. The specific protocols employed
discriminate against the ordered structures such as the FCC
packing �and its stacking variants� and the tunneled crystals15

and result in an inappropriate narrow vision of the set of all
possible collectively jammed packings. Thus, the physical
relevance of jammed packings should not be determined
based on their frequency of occurrence in experiments or
simulations, which again are protocol dependent.

From our point of view, the “ensemble” and “geometric-
structure” approaches do not conflict with each other but
rather are complementary. For example, the “geometric-
structure” approach characterizes individual packing con-
figurations drawn from well-defined ensembles. However, in
our experience, the “geometric-structure” approach can al-
ways provide nontrivial solutions when the “ensemble” ap-
proach breaks down, such as the possible identification of
disordered jammed two-dimensional packings discussed in
the Introduction. Therefore, we believe that the “geometric-
structure” approach, when utilized in the broad context of a
full set of available protocols, has a capability to discover,
integrate and characterize packing structures that go well be-
yond the disordered set. We emphasize that all of the afore-
mentioned issues have been addressed in the
literature.7,8,12,14,29 In this paper, we have examined the ap-
plications of the “geometric-structure” approach in a broader
context by amplifying and quantifying some of these issues.

An interesting open question that naturally arises is
whether ��0.60 is the lower limit on the density of jammed
amorphous sphere packings? We note that the distribution of
density for N�2500 shown in Fig. 1�a� can be fitted with a
Gaussian with mean �=0.602 and standard deviation �
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=0.002. This strongly indicates that there is a small but finite
probability of finding jammed packings with even lower den-
sities. Given enough number of trials, such packings could
be obtained in principle. It is noteworthy that the density �
=�2
 /9=0.493 65. . . associated with the “tunneled crystals”
is likely to be the threshold �i.e., lowest possible� density for
strictly jammed sphere packings in three dimensions.15 How-
ever, neither the LS nor the SLP algorithms as normally
implemented is able to produce such packings, presumably
because both algorithms tend to densify the packing and jam-
ming is a consequence of their “compression” nature. Lower
� is attainable via the SLP algorithm because jamming is
achieved through local reconfigurations. However, it is cur-
rently not designed to find highly unsaturated jammed pack-
ings, such as the tunneled crystals. Therefore, we see no
reason that jammed amorphous sphere packings with even
lower density cannot be produced via carefully designed pro-
tocols.

A limitation of current protocols designed to produce
jammed packings is that they invariably lead to packings
with high densities. It is highly desirable to devise protocols
that explicitly take into account the requirement of jamming
as well as other packing characteristics �e.g., � and Z�. One
possible approach is to delineate the conditions for jamming
�and other characteristics� in a quantitative way and to in-
clude them as constraints of an optimization problem. We
have suggested possible solutions to the problem of produc-
ing low-density jammed amorphous packings in Ref. 20. In
future research, we will focus on the development of such
packing protocols, which is a highly nontrivial challenge.
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