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We have previously shown that inverse statistical-mechanical techniques allow the determination of
optimized isotropic pair interactions that self-assemble into low-coordinated crystal configurations
in the d-dimensional Euclidean space Rd . In some of these studies, pair interactions with multiple
extrema were optimized. In the present work, we attempt to find pair potentials that might be eas-
ier to realize experimentally by requiring them to be monotonic and convex. Encoding information
in monotonic convex potentials to yield low-coordinated ground-state configurations in Euclidean
spaces is highly nontrivial. We adapt a linear programming method and apply it to optimize two
repulsive monotonic convex pair potentials, whose classical ground states are counterintuitively the
square and honeycomb crystals in R2. We demonstrate that our optimized pair potentials belong to
two wide classes of monotonic convex potentials whose ground states are also the square and honey-
comb crystal. We show that these unexpected ground states are stable over a nonzero number density
range by checking their (i) phonon spectra, (ii) defect energies and (iii) self assembly by numeri-
cally annealing liquid-state configurations to their zero-temperature ground states. © 2011 American
Institute of Physics. [doi:10.1063/1.3576141]

I. INTRODUCTION

The study of particle self-assembly has been an on-
going area of research since Whitesides1 coined the term
two decades ago. Self-assembly is defined as the sponta-
neous organization of particles, be they atoms, molecules
or supramolecules, into a given many-particle configuration.
This organization occurs without any external force through
noncovalent interaction between the particles. Naturally oc-
curring examples include the formation of DNA double
helices, lipid bilayers, and ionic crystals.

There are two main methods one can take to design self-
assembling systems: the forward and the inverse approaches.
The forward approach begins with a many-particle system
with specified interactions, and obtains the stable many-
particle configuration. This approach, used both computation-
ally and experimentally, has led to the discovery of a wide va-
riety of novel many-particle configurations,2–9 but is not best
suited to find new many-particle configurations with targeted
properties. To do this, it is necessary to use the inverse ap-
proach, which attempts to find the optimal interactions that
yield a targeted many-particle configuration with desirable
bulk physical properties.

This work continues our program on using inverse
approaches to optimize pair interactions to achieve novel
targeted ground-state configurations in d-dimensional
Euclidean space Rd . Previous investigations reported opti-
mized pair interactions that stabilize low-coordinated crystals
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as ground states, including the square and honeycomb
crystals10 in R2 and simple cubic11 and diamond12 crystals
in R3, materials with negative thermal expansion, and13

negative Poisson’s ratio.14 Moreover, potentials possessing
disordered ground states15, 16 have been produced with novel
optical properties.16, 17 We envision using colloids and/or
polymers to realize such designed potentials because it is
possible to manipulate and control their interactions.6, 18–20

Earlier uses of the inverse approach10 did not regard ex-
perimental feasibility as a constraint. These investigations
allowed a largely unconstrained class of spherically sym-
metric pair potentials. In some of these instances, multiple
potential wells were utilized to achieve the desired target
configurations,10, 12 which may be difficult to realize exper-
imentally. Our objective in the present study is to stabilize
low-coordinated crystal configurations in Euclidean space,
restricting ourselves to a class of monotonically decreasing
pair potentials, which are relatively easy to produce experi-
mentally. However, encoding information in monotonic po-
tentials to yield low-coordinated ground-state configurations
in Euclidean space is nontrivial. These potentials must not
only successfully discriminate against close-packed (highly
coordinated) crystal configurations but also the infinitesimally
close configurations obtained by slightly deforming the target
crystal. In addition, both of these theoretical challenges are
further complicated by the monotonicity constraint.

We are motivated by the work of Cohn and Kumar,21 who
have rigorously constructed potentials that stabilize unusual
targeted configurations on the surface of a d-dimensional
sphere using only monotonic convex pair potentials. A crucial
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difference between the work of Ref. 21 and this study is that
we consider noncompact (infinite) Euclidean spaces. The fact
that Cohn and Kumar restricted themselves to compact spaces
made their problem comparatively easy to solve because their
pair potentials had compact support set by the sphere radius.
A consequence of using repulsive monotonic potentials is that
such systems are required to be under positive pressure, a con-
dition that is easily enforceable experimentally.

In this paper, we specifically use the inverse approach to
obtain repulsive monotonic convex potentials whose ground
states in R2 are either the square lattice or the honeycomb
crystal. Thus, our work is a theoretical proof of concept
that monotonic convex potentials can counterintuitively stabi-
lize low-coordinated two-dimensional crystals. A summary of
preliminary results is available,22 but in this paper we present
a detailed explanation of our numerical methods, a complete
analysis of the stability of the resulting crystalline ground
states, and a thorough demonstration of how monotonic con-
vex potentials can stabilize the studied unusual ground states.
To better explain the characteristic features of the optimized
potentials, we introduce a new measure, the generalized co-
ordination functions, which to our knowledge have not been
previously used. We show the utility of these functions to en-
able the stabilization of the square and honeycomb crystals
via a large family of potential functions.

This paper is organized as follows: Sec. II is devoted to a
technical explanation of how the new potentials are devised.
Section III presents the family of monotonic convex poten-
tials that we use and analyzes their energetic and mechanical-
stability properties for the square and honeycomb crystal
ground states. We also relax the convexity condition to see
whether the square lattice can still be produced as a ground-
state configuration. Finally, Sec. IV summarizes the impacts
of these new results and speculates on how they could be
extended.

II. THEORY

A. Background

1. Pair potentials

We consider a system of N particles, with positions r1,
r2, ..., rN in a volume V contained in Rd . In the absence of an
external field, the potential energy of the system �N (rN ) is a
function of the particle positions:

�N (rN ) =
∑
i<j

v2(ri , rj ) +
∑

i<j<k

v3(ri , rj , rk) + · · · , (1)

where the vn are the intrinsic n-particle potentials. Our fo-
cus is on those cases in which only the pair potential v2 is
present and where it is also isotropic (i.e., a radial function):
v2(ri , rj ) ≡ v(rij ), with rij = |ri − rj |. This reduces the total
potential expression to

�N (rN ) =
∑
i<j

v(rij ). (2)

We recognize that systems encountered in the laboratory typ-
ically exhibit some nonpairwise contributions, but we defer
for later study how these contributions could be minimized

by selection of the specific systems for analysis and what their
residual effects would be.

If the number density ρ = N/V is kept constant, �N

is asymptotically proportional to N , so it is useful to define
a normalized energy value using their ratio. In this paper, a
key quantity that we will consider is twice the energy per
particle, i.e.,

u = 2�N/N. (3)

2. Finding the classical ground state

For a system with a given number of particles N in some
volume V and with a potential energy function �N (rN ), the
classical ground state is defined as the configuration set of
the particle positions rN with the globally minimal potential
energy. To find the putative targeted ground states, we use the
well-known simulated annealing method.10 We begin with
an initial configuration of N particles chosen from a Poisson
point process in a box of volume V with periodic boundary
conditions. Initially, a large temperature T is selected and the
particles are moved according to the Metropolis Monte Carlo
algorithm. The temperature T is then gradually reduced to
zero. If this procedure is done slowly enough, the resulting
configuration is likely the ground state. To improve the
efficiency of our method, we use a steepest–descent method
to relax the particles at the end of the simulated annealing.
Furthermore, since simulated annealing calculations often
tend to become trapped in deep local minima, we repeat this
process many times, only keeping the final configuration with
the lowest potential energy.

B. Methodology

1. Functional form

To simplify the notation, let us define a configuration C

as a set of particle positions r1, r2, . . . in Rd . A configuration
defined in this sense is perfectly general, incorporating both
periodic as well as disordered point processes.

Let us assume that a certain pair potential v has the target
configuration C∗ as its ground state. Thus, we have

u(v, C∗) ≤ u(v, C) ∀C, (4)

where u is defined by relation (3). Intuitively, it should be
possible to find a valid potential v by expressing it in terms of
a list of M parameters a1, . . . , aM and varying the parameters
until inequality (4) is satisfied for all possible configurations:

v ≡ v(a1, . . . , aM ). (5)

Since checking all possible configurations is impossible (be-
cause there is an uncountably infinite number of them), we
restrict ourselves to a subset, which we call the “competitor”
configurations C. In this way, we can redefine the problem as
an optimization,10 where we seek to maximize the energy dif-
ference between the targeted configuration C∗ and its closest
competitor configurations. To do so, we introduce �, a utility
variable which is maximized while constrained by

u
(
v(a1, . . . , aM ), C∗)
≤ u

(
v(a1, . . . , aM ), C

) − � ∀C ∈ C. (6)
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For a given potential v, � can be as large as the smallest
energy difference, u(v, C) − u(v, C∗), between a competitor
and the targeted configurations. Therefore, allowing v to vary
the optimization procedure enables us to find the potential that
maximizes the energy difference between the target configu-
ration and its closest competitor.

In the case where we do not want all competitors to
be treated on an equal footing and seek to prioritize some
of them, we can add a modulating factor m(C) to the
inequality:

u
(
v(a1, . . . , aM ), C∗)
≤ u

(
v(a1, . . . , aM ), C

) − m(C)�∀C ∈ C. (7)

One particularly useful property of the modulating factor is
that it can be chosen to be very small for configurations close
to C∗. Even the limiting case C∗ ∈ C can be considered if
m(C∗) = 0 is enforced.

2. Potential form

For inequality (7) to be usable, v({ai}), C, and m(S) must
be defined. The first choice to be made is the form of the
pair potential function v({ai}). Since inequality (7) is linear
with respect to twice the energies per particle u(v, C), and
the u(v, C) are linear in terms of the pair potential v({ai})
for each configuration C, making the pair potential linear
in the parameters {ai} ensures the overall linearity of the
system:

v(r) =
M∑
i=1

aifi(r), (8)

�(v, C) =
∑
j<k

M∑
i=1

aifi(rjk) =
M∑
i=1

ai

⎡
⎣∑

j<k

fi(rjk)

⎤
⎦ . (9)

This simplifies the optimization problem, since it allows one
to use many of the standard linear programming methods to
determine the optimal parameters, such as the simplex algo-
rithm. Another advantage of using a linear form for the pair
potential is apparent from Eq. (9): we need only to sum over
all particle pairs once for a given configuration, greatly reduc-
ing the computational cost. It bears mentioning that the sums
over j and k are over all particles of the configuration, making
them infinite in the large system limit. However, if the config-
uration is periodic, by using u instead of �, the normalized
sum reverts to a bounded lattice sum.

For this paper, the fi(r) are taken to be negative powers
of r , with a common cutoff at some distance R > 0:

v(r) ≡

⎧⎪⎨
⎪⎩

M∑
i=1

ai

ri
r ≤ R,

0 r > R.

(10)

Since we not only desire to have both the pair potential
v(r) and the corresponding force −dv/dr be continuous, but
need also to be able to calculate phonon spectra, we require
v(r) and both its first and second derivatives to be contin-
uous at r = R. This is equivalent to adding the following

constraints:
M∑
i=1

ai

Ri
= 0,

M∑
i=1

iai

Ri+1
= 0,

M∑
i=1

i(i + 1)ai

Ri+2
= 0.

(11)

The rationale for using the functions from Eq. (10) is that they
can accurately reproduce most other functions since they be-
come Taylor series in terms of 1/r as M and R grow larger.
Additionally, they can naturally reproduce a quasi-hard-core
repulsion: limr→0+ v(r) = ∞, as long as aM > 0. Other po-
tentials have been tried, such as those involving positive pow-
ers of r , but numerical experiments show that they are less
stable and more affected by numerical imprecisions, particu-
larly with longer cutoffs.

It is easy to see from Eq. (7) that multiplying all of the
ai by some positive constant amounts to multiplying the ob-
jective � by the same constant. From there, it is clear that
the problem as written is not bounded, and that if it is possi-
ble to obtain a solution for which � is greater than zero, then
solutions exist for any positive �, including arbitrarily large
values. To impose a scale, we fix the value of the potential
at the nearest-neighbor distance of the target configuration as
unity, which leads to the following constraint:

v(r = 1) =
M∑
i=1

ai = 1. (12)

Additionally, the ai are all constrained to be in the
[−1000,+1000] range, since the problem still is not totally
bounded after fixing v(r = 1).

While previous papers10–12 have succeeded in obtaining
pair potentials resulting in specific crystal ground-state
configurations, their functions use extrema (minima and
maxima) to either favor or disfavor certain nearest neighbor
distances. Doing so may allow the determination of pair
potentials with the desired classical ground state, but at the
same time, leads to potentials that may not be experimentally
realizable. In an attempt to find potentials that are more
experimentally feasible, two additional constraints have been
added: v(r) must be both monotonically decreasing [for all
r ′ > r , v(r ′) ≤ v(r)] and convex [for all r, r ′ and b ∈ [0, 1],
v(br + (1 − b)r ′) ≤ bv(r) + (1 − b)v(r ′)]. For our potential
form, these conditions can be written as

− dv

dr
=

M∑
i=1

iai

ri+1
≥ 0 ∀r < R, (13)

d2v

dr2
=

M∑
i=1

i(i + 1)ai

ri+2
≥ 0 ∀r < R. (14)

Inequalities (13) and (14) are both linear. However, they in-
troduce a condition for every possible value of r . To avoid the
numerical impossibility of dealing with an infinite number of
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conditions, we restrict ourselves to a large, but finite, number
of values of r at which we enforce the conditions.

3. Competitors

Once the functional form is chosen, the competitor set C
and modulation m(C) still have to be selected. Since a well
chosen C is sufficient to either find, or disprove, the existence
of a potential with the desired ground state, here we restrict
ourselves to a constant m(C) = 1 modulation. However, such
a choice puts all competitors on an equal footing, which often
results in potentials that do not discriminate against distinctly
different configurations.

The method employed to specify C is to start with it con-
taining only a single competitor (typically the triangular lat-
tice) and to create a trial potential v1 from that initial C, as
described in Sec. II B 1. After calculating the trial potential
ground state C1, its energy with the trial potential is compared
with that of the targeted configuration C∗. If the energy of C1

is lower than that of C∗, the trial potential is incorrect, so we
add C1 to the set of competitors and repeat the process with a
new trial potential v2. Otherwise, the ground state of the trial
potential is the target configuration and the trial potential is
the desired potential.23

Our method is an adaptation of the one presented by
Cohn and Kumar.21 It was modified to use simulated anneal-
ing instead of a gradient descent method to find the ground
states of the trial potentials due to the typically numerous lo-
cal minima of the �N (rN ) energy landscape, which makes it
almost impossible to find the ground state by simply using
a gradient descent technique. A second difference is that we
only add configurations to the set of competitors if they have
a lower energy than the target for the current trial potential.
Adding all of the obtained configurations was found to be
highly unstable because imperfect energy minimizations led
to adding configurations close to the target, causing inequal-
ity (7) to only consider close competitors.

Eventually, this algorithm will, in principle, find an
optimal potential v∗, or prove that no such potential exists
with the functional form used. But to do so, an infinite
number of iterations can be required, since over time it fills
C with all possible configurations but C∗ reverting slowly to
inequality (4). In practice, this is not necessary. For most, but
not all, of the studied target configurations in two-dimensions
having only the triangular lattice as a competitor is enough to
find an optimal potential.

C. Generalized coordination functions

For isotropic pair potentials, the list of the neighbor
separations and their multiplicities is a crucial piece of
information for understanding which configurations are
energetically favorable. However, while this list is useful
when dealing with pair potentials that have well-defined
minima or maxima, it does not convey much information for
strongly constrained pair potentials, such as the monotonic
convex potentials considered in this paper. Therefore, we
introduce generalized coordination functions, a new measure

that amplifies the differences between configurations that
are relevant to the restricted potentials. This is preferred,
especially if such differences can be correlated to the features
of the potentials. Of particular interest are the coordination
functions of order n, which apply to potentials that have nth
order derivatives restricted to either being non-negative or
non-positive (depending on the parity of n).

Writing u, twice the energy per particle [cf. Eq. (3)], in
terms of the set of particle positions C, we get

u = 1

N

∑
p �=q∈C

v(|p − q|). (15)

By replacing the sum with an integral using delta functions,
we now have a function that describes the radial distribution
of the neighbors,

u =
∫ ∞

r=0
drv(r)

⎡
⎣ 1

N

∑
p �=q∈C

δ(r − |p − q|)
⎤
⎦

=
∫ ∞

r=0
drv(r)Z0(r), (16)

where Z0(r) is the coordination function of order 0, defined
as

Z0(r) ≡ 1

N

∑
p �=q∈C

δ(r − |p − q|). (17)

Assuming that Z0(r) is zero at r = 0, and that v(r) and all its
derivatives go to zero as r goes to infinity, we can use integra-
tion by parts to write u as a function of the derivatives of v(r).
Let us first define the coordination function of order n, Zn(r),
recursively:

Zn+1(r) ≡
∫ r

r ′=0
dr ′Zn(r ′). (18)

Then, we have

u =
∫ ∞

r=0
drv(r)Z0(r) (19)

= (v(r)Z1(r))∞r=0 −
∫ ∞

r=0
dr

dv

dr
Z1(r) (20)

= −
∫ ∞

r=0
dr

dv

dr
Z1(r). (21)

The integration by parts can be repeated as many times as v(r)
is differentiable:

u = (−1)n
∫ ∞

r=0
dr

dnv

drn
Zn(r). (22)

Equation (22) is particularly relevant when we restrict our-
selves to pair potentials with constrained derivatives. As an
example, if we know that for two distinct configurations
A and B that ZA

2 (r) < ZB
2 (r) for all values of r , then the

configuration A will always have a lower energy than the
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configuration B in the presence of a convex pair potential.
Hence, no such potential will have the configuration B as a
ground state.

The Zn(r) functions can be generalized to yield infor-
mation for any problem where it is possible for the pair
potential to be expressed as a linear combination of a family
of functions f (r, s): v(r) = ∫

s
dsc(s)f (r, s), especially when

the coefficients c(s) are restricted to be non-negative:

u =
∫ ∞

r=0
drv(r)Z0(r) (23)

=
∫ ∞

r=0
dr

∫
s

dsc(s)f (r, s)Z0(r) (24)

=
∫

s

dsc(s)
∫ ∞

r=0
drf (r, s)Z0(r) (25)

=
∫

s

dsc(s)Z̃f (s). (26)

Here Z̃f (s) (the subscript f denoting a family of functions)
is defined as

Z̃f (s) ≡
∫ ∞

r=0
drf (r, s)Z0(r). (27)

Equation (22) can be obtained from Eq. (26) by using c(s)
= (−1)n dnv

drn (r = s) and f (r, s) = �(s − r)(s − r)n−1/

(n − 1)!.

III. RESULTS

The method presented in Sec. II B is applied to two tar-
get configurations in two-dimensions: the square and hon-
eycomb crystals. The obtained optimized pair potentials and
their properties are presented in Secs. III A and III B, respec-
tively.

A. Square lattice

Consider a square lattice with a nearest neighbor dis-
tance of unity as the target configuration. We restrict our opti-
mization to monotonic convex pair potentials with a cutoff of
R = 2. The simulated-annealing optimization method results
in the following pair potential:

v(r) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
28.424

r
− 245.756

r2
+ 786.742

r3

−1000

r4
− 24.043

r5
+ 1000

r6

−47.967

r7
− 1000

r8
+ 64.527

r9

+1000

r10
− 712.166

r11
+ 151.240

r12

)
r ≤ 2

0 r > 2

.

(28)

This function is plotted in Fig. 1. The choice of M = 12 terms
in our potential is a compromise between using many terms to
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FIG. 1. Optimized monotonic convex pair potential from Eq. (28) targeting
the square lattice at unit number density. The three vertical lines represent
the nearest-neighbor distances for the honeycomb crystal (black solid), the
square lattice (red dashed), and the triangular lattice (blue dotted) at the same
number density. The value of v(r) at these distances is 1.6542, 1 and 0.7937,
respectively

strongly discriminate against competitors and using few terms
to avoid numerical instabilities. Potential (28) is an illustrative
example from an infinite class of monotonic convex pair po-
tentials that have the square lattice as their ground state.

To confirm that the ground state of potential (28) is in-
deed the square lattice configuration, we performed simu-
lated annealing calculations. The result of these calculations
is shown in Fig. 2. Examining many different simulated-
annealing solutions, no other configuration is of lower en-
ergy than the square lattice. Of the four slowest simulated
annealing calculations performed, three of them reach the tar-
get ground state. In the remaining case, the particles align in
a square lattice, but do not align correctly within the peri-
odic simulation box, resulting in a line defect where the lat-
tice meets its periodic image. As with all other calculations
(with more rapid annealing) that did not reach the perfect
square-lattice configuration, the imperfect lattice total energy
is higher than that for the perfect square lattice.

Simulated annealing calculations are also conducted on
systems where the central cell shape is not kept constant. Even
if the central cell is allowed to deform to any parallelogram of
constant area, no configuration is found to be of lower energy
than the square lattice. This strengthens our confidence that
the square lattice is indeed the ground state for potential (28).

1. Discrimination against other crystals

Since we are using a pair potential with a short-ranged
cutoff, the value of twice the energy per particle u only de-
pends on the first few coordination shells. At unit density, we

0 5 10 15 20
0

5

10

15

20

FIG. 2. Ground state of the potential (28) with 400 particles in a 20×20
box with periodic boundary conditions as obtained by slowly annealing the
system starting from a fluid. For illustration purposes, the point particles are
shown to have finite sizes. This rotated square lattice has the same u as would
a square lattice aligned with the box boundaries.
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Z
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 Z
2(S

Q
)

Triangular lattice
Honeycomb crystal

FIG. 3. Differences between the coordination functions of second order Z2
of the triangular lattice and the honeycomb crystal and the square lattice. All
three lattices have a number density of unity.

can explicitly write u for the square, triangular, and honey-
comb crystals:

uSQ = 4v(r = 1) + 4v(r = 1.414) = 4.4556, (29)

uTR = 6v(r = 1.075) + 6v(r = 1.861) = 4.7635,

(30)

uHC = 3v(r = 0.877) + 6v(r = 1.520)

+ 3v(r = 1.755) = 5.2363. (31)

Furthermore, as can be seen in Fig. 1, potential (28) decreases
very quickly, being equal to only 0.1139 at the square lat-
tice second neighbor (r = 1.414). Therefore, examining only
the nearest neighbors provides insight on why potential (28)
succeeds at stabilizing the square-lattice configuration. While
the potential is definitely higher for the square-lattice nearest
neighbors [v(r = 1) = 1] than for the triangular-lattice near-
est neighbors [v(r = 1.075) = 0.7937], its coordination num-
ber is smaller (four compared to six), and hence its total en-
ergy is the lowest. The same argument does not hold for the
honeycomb crystal, since it has only three nearest neighbors.
A much higher associated energy [v(r = 0.877) = 1.6542]
prevents the honeycomb crystal from having a lower total en-
ergy than the square lattice.

While looking at the occupancy numbers of the succes-
sive coordination shells and the associated interactions of
these shells aids our understanding of why potential (28) sta-
bilizes the square lattice, it does not explain how such a mono-
tonic convex potential can exist. However, the differences
between the coordination functions of second order Z2 of
the square lattice and the triangular and honeycomb crystals
(Fig. 3) illustrate the necessary features for a monotonic con-
vex potential to favor the square lattice over the triangular or

0 0.5 1 1.5 2
Distance, r

0

2

4

6

8

10

d2 v/
dr

2

FIG. 4. Second derivative of the pair potential d2v/dr2 from Eq. (28) versus
the distance r .

honeycomb crystals. First, discriminating against the honey-
comb crystal is easy, as its Z2 is larger than the square Z2 near
r = 1. Therefore, a potential with a very large second deriva-
tive for values of r close to 1 will strongly discriminate against
the honeycomb crystal. Second, there is a range of values of
r where both the triangular and the honeycomb crystals’ Z2’s
are larger than that of for the square lattice, specifically from
r ∼ 1.2 to r ∼ 1.4. So a potential with a large second deriva-
tive in that range will favor the square lattice. Third, the trian-
gular lattice Z2 is smaller around r ∼ 1.1 and r ∼ 1.8. Thus
the second derivative must be close to zero at these points. Fi-
nally, the differences between the Z2’s become quite chaotic
for larger values of r (not shown here), something which
worsens if more competing configurations are considered.
Consequently, there is no advantage in increasing the cutoff
R to larger values. As can be seen in Fig. 4, the pair potential
function (28) possesses all of these features, which explains
how it succeeds in having the square lattice as its ground state.

As a test to see if Z2 can be used to design a monotonic
convex potential, we build a piecewise-polynomial potential
using only information from the Z2 analysis,

v(r) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

5r2 − 10.45r + 5.61875 r ≤ 1,

−0.45r + 0.61875 1 < r ≤ 1.15,

0.5r2 − 1.6r + 1.28 1.15 < r ≤ 1.6,

0 1.6 < r,

(32)
which has a second derivative of

d2v

dr2
=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

10 r ≤ 1,

0 1 < r ≤ 1.15,

1 1.15 < r ≤ 1.6,

0 1.6 < r.

(33)

Simulated annealing simulations confirm that this potential
has the square lattice as its ground state, which proves that
the precise form of the potential (28) is not necessary to
have the square lattice as a ground state, however, poten-
tial (32) is flawed, as its second derivative is not continuous
at the first neighbor distance (r = 1) preventing its phonon
spectrum from being calculated. Furthermore, since potential
(32)’s second derivative is exactly zero for r’s slightly larger
than 1, at lower densities the square lattice will not be the
ground state; it is replaced by a rectangular lattice. Never-
theless, potential (32) proves that it is possible to construct
a potential that stabilizes the square lattice using only infor-
mation from the generalized coordination functions. Further-
more, since such requirements are relatively nonrestrictive,
there is still a large class of potentials that stabilize the square
lattice, one of which is potential function (32).

2. Stability

There are three basic criteria which impact whether
the configurations created using the proposed potential
are stable square lattices: their response to changes in the
number density, their phonon stability and their response to
slight modifications in the potential. This last criterion is not
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FIG. 5. Phonon spectrum for the potential function (28) on a square lattice
with unit nearest neighbor distance (ρ = 1). Only a representative subset of
wave vectors is presented here, but all the wave vectors have been tested to
confirm that no mode is unstable.

formally studied here, due to the difficulty of modifying the
value of a polynomial only over a short range. However, as
shown in Sec. III A 1, as long as the second derivative of the
modified potential displays the features described therein, the
modified potential will maintain a square-lattice ground state.

Figure 5 shows the squared frequency of the different
phonon modes for the square lattice as a function of their
wave vectors. For any wave vector, if one of the modes has
a negative squared frequency, then the resulting imaginary
frequency mode is unstable, a sign that the square lattice
is not a local minimum in the energy landscape. Since
none of the mode squared frequencies are negative for any
wave vector, the square lattice is indeed at least a local
minimum for potential function (28). All branches except
one between the � and X points show a high deformation
energy. In addition, the low energy � − X branch contains
shear deformations modes, which are less energetic than
compression deformations for isotropic pair potentials, since
they only slightly modify interparticle distances.

Figure 6 presents the lattice sums of the triangular,
square, and honeycomb crystals for different number densi-
ties. The lattice sum for a given particle configuration C, in
which each particle is equivalent to all others, is defined as the
sum of the potential interaction energies between one of the
particles p and all the others. Twice the energy per particle, u,
is a generalization of the lattice sums that is well-defined for
any configuration, including those for which particles are not
equivalent.

At ρ−1 = 1, the value of u for the square, triangular,
and honeycomb crystal configurations is 4.4556, 4.7635,
and 5.2363, respectively. It is worthwhile to note that the
honeycomb crystal u never comes close to the square lat-
tice u, and thus can be discarded from the analysis. Over
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FIG. 6. Lattice sums in term of the inverse number density for the potential
function (28). The black vertical line shows the number density (ρ−1 = 1) at
which the optimization is conducted.

the ρ−1 ∈ [0.9, 1.2] range, the square lattice has a lower
energy than the triangular lattice. However, outside the
ρ−1 ∈ [0.91, 1.04] range, simulated annealing calculations
produce configurations with lower energy than the square
lattice. At ρ−1 < 0.91, a deformed triangular lattice becomes
the ground state; while at ρ−1 > 1.04, a rectangular lattice
is the ground state. In the case of the rectangular lattice, its
nearest neighbor distance stays close to r = 1. This is due
to the near linear dependence of the potential for values of
r slightly greater than one (as the second derivative nearly
vanishes). For such potentials, u decreases linearly with the
sum of the distances of the four nearest neighbors, which is
larger for a rectangular lattice than for a square lattice with an

equal number density. Furthermore, rectangular lattices have
farther third nearest neighbors than the corresponding second
nearest neighbors of the square lattice.

While the positivity of the phonon spectrum ensures that
the square lattice is stable under local deformations, it does
not lead to any insight as to how potential (28) succeeds in
stabilizing it. Alternatively, we can look at how u is affected
when the square lattice is sheared, which is equivalent to the
phonon modes near the �-point. The lattices obtained by the
two independent shear modes are the rectangular lattice, with
basis vectors (1 + ε, 0) and (0, (1 + ε)−1), and the rhomboidal
lattice, with basis vectors (1, ε) and (0, 1). For the rectangular
lattice,

urect(ε)=usquare + [4v′(1)+8
√

2v′(
√

2)+4v′′(1)]ε2+O(ε3)

= usquare + [4(−2.943) + 8
√

2(−0.917)

+4(10.640)]ε2 + O(ε3) (34)

= usquare + 20.407ε2 + O(ε3),

and for the rhomboidal lattice,

urect(ε)=usquare+[2v′(1)+
√

2v′(
√

2)+2v′′(
√

2)]ε2+O(ε3)

= usquare + [2(−2.943) +
√

2(−0.917)

+2(5.702)]ε2 + O(ε3) (35)

= usquare + 4.220ε2 + O(ε3).

We now clearly see that the monotonicity condition, which
forces the first derivative to always be negative, requires the
second-derivative to be large at both the first and second
neighbors in order to achieve stability, since each appears in
only one of the shear modes. An additional benefit of this
analysis is that it explains how the square lattice is stable for
a nonzero number density range; since both the first and sec-
ond derivatives of potential (28) are continuous, the nearest-
neighbor distance has to be modified by a positive amount
before the O(ε2) terms in the shearing mode energies become
negative (note: due to its symmetry, the O(ε) term is always
zero for the square lattice).

3. Point defects

While looking for the ground state of the potential func-
tion (28), we do not always obtain the actual ground state
shown in Fig. 2. When an insufficiently slow annealing is
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FIG. 7. Sample monovacancy defect on a 399-particle system (only a part of
which is shown) with ρ = 1 for the potential function (28).

applied to the system, the end result often contains defects.
Among these are polycrystalline configurations, where line
defects show up at the boundaries between grains. However,
some localized defects also arise. Such defects are caused by
the presence (or absence) of an extra particle in the lattice.

Simply removing (or adding) a particle in the square lat-
tice ground state does not reveal the actual behavior of such
point defects. The presence of a defect locally deforms the
lattice, which is necessary to minimize its energy. Starting
with a square lattice to which a particle is either added or re-
moved (while changing the lattice spacing to keep the overall
number density constant at ρ = 1), the configuration is then
relaxed using simulated annealing. The simulated annealing
temperature is chosen to be low enough so that the lattice is
not destroyed by melting and high enough so that the location
of the defect can move through the lattice.

Figure 7 shows a mechanically stable structure for a
monovacancy point defect, with a total energy difference of
0.62425 between the configuration with a single defect and
the perfect square lattice. Figure 8 presents the interstitial de-
fect, with an energy difference of 0.39646. These results are
computed using modified 20×20 lattices, with 399 and 401
particles, respectively, but larger systems give essentially the
same numbers. Starting with multiple defects also gives con-
sistent results, although vacancies tend to attract each other.
These single-defect numbers need to be compared with twice
the energy per particle of the square lattice: u = 4.45561.
It should be noted that there is no particular significance of
which defect is the most energetic, since calculations with a
similar potential (but with a larger cutoff R) find the intersti-
tial defect to be the more energetic of the two.

An unexpected result is the complete absence of symme-
try of the vacancy point defect configuration in Fig. 7. The
results of 100 slow annealing simulations confirm that the
configuration shown in Fig. 7 is indeed the stable configu-
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FIG. 8. Sample interstitial defect on a 401-particle system (only a part of
which is shown) with ρ = 1 for the potential function (28).
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FIG. 9. Optimized monotonic nonconvex pair potential, targeting the square
lattice at unit number density. The three vertical lines represent the nearest-
neighbor distances for the honeycomb crystal (black solid), the square lattice
(red dashed), and the triangular lattice (blue dotted), at the same number den-
sity. The value of v(r) at these distances is 14.4371, 1 and 0.9428, respec-
tively.

ration containing a monovacancy. Out of these, the system
converges to a configuration of the type shown in Fig. 7,
69 times. In all of the 31 other cases, the system reaches a
single type of alternative defect configuration. That other
configuration has a defect energy of 0.63223, only 0.00798
higher than the lowest one. It is also more symmetrical, since
it possesses a single axis of symmetry. The failure to find any
other configuration than these two, especially one with lower
energy, is compelling evidence that the configuration shown
in Fig. 7 is indeed the lowest-energy-vacancy defect for this
potential, even if it is asymmetric.

4. Dropping the convexity condition

It is possible to achieve the square-lattice ground state
without the convexity constraint, keeping only the mono-
tonicity requirement. Figure 9 depicts such an optimized
potential. Since the potential presented in Fig. 9 has a
short-range cutoff radial distance r = R = 2, u only depends
on the first few coordination shells. Similar to the analysis
in Sec. III A 1, we can explicitly write u for the square,
triangular, and honeycomb crystals at unit density as

uSQ = 4v(r = 1) + 4v(r = 1.414) = 4.1611, (36)

uTR = 6v(r = 1.075) + 6v(r = 1.861) = 5.6571, (37)

uHC = 3v(r = 0.877) + 6v(r = 1.520)

+ 3v(r = 1.755) = 43.3517. (38)
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FIG. 10. Phonon spectrum for the potential shown in Fig. 9 on a square lat-
tice with unit nearest neighbor distance (ρ = 1). Only a representative subset
of wave vectors is presented here, but all the wave vectors have been tested
to confirm that no mode is unstable.
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FIG. 11. Lattice sums in term of the inverse number density for the potential
shown in Fig. 9. The vertical black line shows the number density (ρ−1 = 1)
at which the optimization is conducted.

Again, since the Fig. 9 potential decreases steeply, almost all
of the energy contributions stem from the nearest neighbors.
For instance, the value of the potential at the square lattice
second nearest neighbors is only v(r = 1.414) = 0.0403,
which is much lower than its value at the nearest neighbors
v(r = 1) = 1. While v(r) is very low close to the second
square neighbor, it is mostly constant between the square
and triangular lattices nearest neighbors, only going down
to v(r = 1.075) = 0.9428 at the triangular lattice nearest
neighbors. This fact, combined with the higher nearest-
neighbor coordination number of the triangular lattice (six
versus the four for the square lattice), explains why the total
energy of the triangular lattice is significantly higher than the
total energy of the square lattice. In summary, removing the
convexity requirement increases the set of possible potential
functions that stabilize the square lattice. This is additional
evidence that there exists a large family of monotonic
potentials that stabilize the square lattice.

There are two important weaknesses of the method used
to obtain the optimized potential. While intuition predicts that
removing restrictions should result in a “better” potential, the
phonon spectrum (Fig. 10) and the lattice sums (Fig. 11) in-
dicate a ground state that is less stable than the monotonic

convex potential (compare Figs. 5 and 6). This behavior oc-
curs because for the Fig. 9 potential, only the triangular lat-
tice is considered a competitor, and the optimizer simply tries
to maximize the energy difference between both lattices at a
single number density. This is done at the expense of the sta-
bility of the lattice, represented by number density variations
(lattice sums) and local fluctuations (the phonon spectrum).
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FIG. 12. Optimized convex pair potential function (39), targeting the hon-
eycomb crystal at ρ = 4/3

√
3. The three vertical lines represent the nearest-

neighbor distances for the honeycomb crystal (black solid), the square lattice
(red dashed) and the triangular lattice (blue dotted), at ρ = 4/3

√
3. The value

of v(r) at these distances is 1, 0.7990 and 0.6795, respectively.
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FIG. 13. The ground state of the potential function (39) with 416 particles
in a 24×13

√
3 box with periodic boundary conditions, obtained by slowly

annealing the system from a fluid.

B. Honeycomb crystal

As with the square lattice, we also use our method to ob-
tain a pair potential for the honeycomb crystal with a nearest
neighbor distance of unity (ρ = 4/3

√
3). The optimization

is restricted to monotonic convex potentials with a cutoff at
r = 3. While intuition leads one to believe that the presence
of the square lattice in the competitor set C is required to find
an optimized potential for which the ground state is the hon-
eycomb lattice, this is not the case, since a set C consisting
only of the triangular lattice is sufficient to obtain a potential
with the desired ground state. The resulting optimized poten-
tial is

v(r) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
3.767

r
− 48.246

r2
+ 230.514

r3

−451.639

r4
+ 56.427

r5
+ 1000

r6

−868.468

r7
− 776.495

r8
+ 1000

r9

+521.638

r10
− 1000

r11
+ 333.502

r12

)
r ≤ 3,

0 r > 3.

(39)

This function is plotted in Fig. 12. Figure 13 shows the
ground-state configuration of potential (39), obtained using
simulated annealing down to zero temperature, starting with a
random arrangement of particles generated by a Poisson point
process. Whether the ground state is reached for a given simu-
lation depends greatly on the orientation the crystal takes dur-
ing cooling. Due to the boundary conditions, only two orien-
tations allow the honeycomb crystal to be formed without de-
fects, which makes reaching the ground state difficult. How-
ever, when the crystal is not oriented correctly, the resulting
configuration is still visibly a honeycomb crystal, albeit with
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FIG. 14. Differences between the coordination functions of second order Z2
of the triangular and square lattices and the honeycomb crystal. All three
crystal have a number density of 4/3

√
3.
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FIG. 15. Second derivative of the pair potential d2v/dr2 from Eq. (39) ver-
sus the distance r .

minor defects and deformation, as well as a higher energy
than the perfect honeycomb crystal configuration. During the
ground state simulations, no other configuration is found to
have a lower energy than the honeycomb crystal. Out of the
four slowest simulated-annealing calculations executed with
this potential, two of them reach the perfect honeycomb crys-
tal. The two others do not align correctly with the boundary
conditions and thus converge to honeycomb crystals with a
slight shear and some localized defects.

As with the square-lattice potential, we conduct
simulated-annealing calculations with variable periodic-box
dimensions. For boxes of constant area, all converged config-
urations have higher energy than the honeycomb crystal rein-
forcing our conclusion that potential (39) has the honeycomb-
crystal configuration as its ground state.

1. Discrimination against other crystals

Since we are using a pair potential with a short-ranged
cutoff, the value of twice the energy per particle u only de-
pends on the first few coordination shells. At ρ = 4/3

√
3,

we can explicitly write u for the honeycomb, triangular, and
square crystals:

uHC = 3v(r = 1) + 6v(r = 1.732)

+ 3v(r = 2) + 6v(r = 2.646) = 3.8812, (40)

uTR = 6v(r = 1.225) + 6v(r = 2.121)

+ 12v(r = 2.449) = 4.1919, (41)

uSQ = 4v(r = 1.140) + 4v(r = 1.612)

+ 4v(r = 2.280) + 8v(r = 2.649) = 4.0755. (42)
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FIG. 16. Phonon spectrum for potential (39) on a honeycomb crystal with
unit nearest neighbor distance (ρ = 4/3

√
3). Only a representative subset of

wave vectors is presented here, but all wave vectors have been tested to con-
firm that no mode is unstable.
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FIG. 17. Lattice sums in term of the inverse number density for potential
(39). The vertical black line shows the number density (ρ−1 = 3

√
3/4) at

which the optimization is conducted.

That potential (39) succeeds in having a lower u for the
honeycomb crystal than the triangular lattice is readily
explained by the observation that the triangular-lattice
coordination number is twice that of the honeycomb crystal.
The triangular-lattice nearest neighbors have an interaction
energy of v(r = 1.225) = 0.6795, which is much higher than
half of the honeycomb-crystal nearest-neighbors interaction
[v(r = 1) = 1]. The square lattice also has a larger coor-
dination number than the honeycomb crystal, with a value
equivalent to four-thirds of the latter. The square-lattice near-
est neighbors have an interaction energy slightly larger than
three-fourths of the honeycomb-crystal nearest neighbors
[v(r = 1.140) = 0.7990 versus v(r = 1) = 1]. This energy
difference is further supplemented by the second-nearest
neighbors of the square lattice, which are closer than those
of the honeycomb crystal. Even if they are less numerous
(four instead of six), their interaction energy is much larger
[v(r = 1.612) = 0.2123 versus v(r = 1.732) = 0.1292].

As with the square lattice, the coordination function of
second order Z2 can be used to determine which features are
required in a potential’s second derivative if the potential is
to have the honeycomb crystal as its ground state. Figure 14
shows the differences in Z2 between the honeycomb cry-
stal and its two main competitors, the triangular and the
square lattices. In this figure, we see that after the quasi-hard-
core repulsion region (r < 1), the second derivative must
be close to zero up to r ∼ 1.5, before becoming large up to
r ∼ 2, in order for the triangular and square lattices to be ener-
getically unfavorable relative to the honeycomb crystal. This
behavior can be observed in the second derivative of the pro-
posed potential (Fig. 15). The reason the second derivative has
two distinct r values at which it goes down to zero is a con-
sequence of the potential-function form restrictions, which
does not allow a wide well without adding another minimum.

As with the square lattice, we use the information ex-
tracted from Z2 to build a piecewise-polynomial potential for
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FIG. 18. Sample monovacancy defect on a 415 particles system (only part
of which is shown) with ρ = 4/3

√
3 for the potential function (39).

Downloaded 17 Aug 2011 to 128.112.11.57. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/about/rights_and_permissions



164105-11 Ground states via monotonic convex potentials J. Chem. Phys. 134, 164105 (2011)

10 12 14 16 18

6

8

10

12

FIG. 19. Sample interstitial defect on a 417 particles system (only a part of
which is shown) with ρ = 4/3

√
3 for the potential function (39).

which the honeycomb crystal is the ground state,

v(r) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

5r2 − 10.5r + 5.875 r ≤ 1,

−0.5r + 0.875 1 < r ≤ 1.5,

0.5r2 − 2r + 2 1.5 < r ≤ 2,

0 2 < r,

(43)

with a second derivative

d2v

dr2
=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

10 r ≤ 1,

0 1 < r ≤ 1.5,

1 1.5 < r ≤ 2,

0 2 < r.

(44)

Simulated annealing calculations show that the ground state
of potential (43) is indeed the honeycomb crystal. However,
as is the case for the square lattice equivalent potential [cf.
Eq. (32)], some caveats apply; mainly the discontinuity of the
second derivative at r = 1 prevents the verification of the hon-
eycomb crystal stability by its phonon spectrum.

2. Stability

As for the case of the square lattice, three properties
must be checked to determine whether the proposed potential
forms a stable honeycomb crystal: is the honeycomb crystal

the ground state over a nonvanishing number density range,
are the phonon modes stable, and what are the effects of per-
turbing the potential form? Again, only the first two of these
are appraised in this paper.

Figure 16 shows the squared frequency of the different
phonon modes as a function of their wave vector. An ex-
haustive search confirms that there is no mode for which the
squared frequency is negative indicating that the honeycomb
crystal is at least a local minimum in the energy landscape for
the pair potential function (39).

Figure 17 compares the lattice sums u at different number
densities for the triangular, square, and honeycomb crystals.
At ρ−1 = 3

√
3/4, the u for the honeycomb, triangular, and

square crystals are equal to 3.8812, 4.1919, and 4.0755, re-
spectively. For ρ−1 ∈ [1.15, 1.6], the honeycomb crystal has
a lower energy than both the square and the triangular lattices.
This range is further refined to ρ−1 ∈ [1.2, 1.4], where simu-
lated annealing calculations produce configurations recogniz-
able as the honeycomb crystal as the ground state. However,
many of these configurations are not actually the honeycomb
crystal, but rather deformed versions of it. By calculating the
phonon spectrum of the honeycomb crystal over this range,
we determine that the honeycomb crystal is only stable over
ρ−1 ∈ [1.25, 1.35]. At larger densities (ρ−1 < 1.2), the po-
tential favors a configuration consisting of pentagonal rings
(compared to the hexagonal rings of the honeycomb crystal),
while at lower densities (ρ−1 > 1.4), the potential favors par-
ticles in evenly spaced chains, effectively reducing the num-
ber of nearest neighbors to only two.

Similar to the square lattice, we can explore the effect of
shearing on the honeycomb crystal to understand how poten-
tial (39) stabilizes it against local deformations. Unlike the
square lattice, which has two independent shear modes, both
of the honeycomb crystal modes have equal energy up to a
constant, so we only need to verify one of them. Looking at
the crystal obtained by stretching the honeycomb crystal by
(1 + ε) in the x-direction and (1 + ε)−1 in the y-direction, we
obtain

ustretched(ε) = uHC +

⎡
⎢⎣

9

2
v′(1) + 9

√
3v′(

√
3) + 9v′(2) + 9

√
7v′(

√
7)

+3

2
v′′(1) + 9v′′(

√
3) + 6v′′(2) + 21v′′(

√
3)

⎤
⎥⎦ ε2 + O(ε3),

= uHC +

⎡
⎢⎣

9

2
(−1.561) + 9

√
3(−0.564) + 9(−0.189) + 9

√
7(−0.003)

+3

2
(8.882) + 9(1.971) + 6(0.873) + 21(0.0280)

⎤
⎥⎦ ε2 + O(ε3), (45)

= uHC + 19.303ε2 + O(ε3).

Again, as in the square lattice case, large second-derivative
values for a monotonic potential are necessary to stabilize the
honeycomb crystal.

3. Point defects

As for the potential with a square lattice ground state, it
is also relevant to study the behavior of point defects for the
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FIG. 20. Sketch of possible colloids with a pair potential similar to those
from Eqs. (28) and (39). The hard-core colloids are covered with attached
repelling polymers, whose average extension is controlled by the dissolved
polymer chains.

potential with a honeycomb ground state. Figure 18 shows the
monovacancy defect, which has an energy of 0.28414, while
Fig. 19 shows the interstitial defect, which has an energy of
0.44761. Similar to the square lattice, there is no fundamental
reason for why the vacancy is less energetic than the intersti-
tial defect.

IV. CONCLUSIONS AND DISCUSSION

The possibility of designing pair potentials that result
in the self-assembly of unusual targeted many-particle con-
figurations is not surprising if one allows for one or a few
potential wells at strategic locations.10, 12 Whether it is pos-
sible to find potentials that stabilize novel classical ground
states in Euclidean space without any wells is not at all ob-
vious. In this paper, we have shown that potentials without
wells, namely, monotonic convex repulsive pair interactions,
can produce low-coordinated ground states in R2 such as the
square lattice and the honeycomb crystal. Indeed, our work
demonstrates that there exists a large family of monotonic po-
tentials that stabilize the square and honeycomb crystals.

Lindenblatt et al.18 have fabricated the so-called “hairy
colloids” (see Fig. 20). These colloids are formed by graft-
ing polymer chains onto the surface of nanoscopic micro-
gel spheres in a matrix of polymer chains. The swelling of
the grafted chains can be controlled by varying the molecular
weight of the matrix chains, going from “wet brushes,” with
a lot of swelling for short matrix chains, to “dry brushes,”
with little swelling for long matrix chains. The coronas of
the grafted polymers avoid each other, giving rise to a short-
range repulsive effective pair potential between the resulting
colloids. Together with a hard-core repulsion when the mi-
crogel spheres touch, these colloid interactions offer promise
of being similar to Eqs. (28) and (39), although experimental
realization remains an unfulfilled endeavor.

However, there is no evidence that the pair potentials
of these “hairy colloids” have a strong dip in their second
derivative, a feature is crucial for the self-assembly of both
the square lattice and the honeycomb crystal. Instead of try-
ing to synthesize colloids with potentials identical to those
presented in this paper, another approach would be to deter-
mine what monotonic repulsive potentials are possible using
grafted polymers of variable length. If the resulting potentials
can be written in the form of v(r) = ∫

s
dsc(s)f (r, s), then the

generalized coordination function formalism from Sec. II C

could be used to explore which length distribution of grafted
polymers should be used for the colloids to self-assemble in
targeted configurations.

We reiterate that we have shown there are monotonic
convex potentials with low-coordinated ground states in two-
dimensional Euclidean spaces. While it has been suggested
that such potentials exist in three dimensions,2, 9, 24 phonon
spectra were not computed in these studies. An interesting
area for further research would be to verify whether the
generalized-coordination-function techniques introduced in
this paper can be extended to optimize monotonic convex po-
tentials to stabilize low-coordinated three-dimensional crystal
ground states, such as the simple cubic and diamond crys-
tals. Another topic that warrants further research is whether
purely repulsive interactions can be achieved in the laboratory
to yield low-coordinated ground-state configurations.
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