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We generate inherent structures, local potential-energy minima, of the “k-space overlap potential”
in two-dimensional many-particle systems using a cooling and quenching simulation technique. The
ground states associated with the k-space overlap potential are stealthy (i.e., completely suppress
single scattering of radiation for a range of wavelengths) and hyperuniform (i.e., infinite wavelength
density fluctuations vanish). However, we show via quantitative metrics that the inherent structures
exhibit a range of stealthiness and hyperuniformity depending on the fraction of degrees of freedom χ

that are constrained. Inherent structures in two dimensions typically contain five-particle rings, wavy
grain boundaries, and vacancy-interstitial defects. The structural and thermodynamic properties of
the inherent structures are relatively insensitive to the temperature from which they are sampled,
signifying that the energy landscape is relatively flat along the directions sampled, with wide shallow
local minima and devoid of deep wells. Using the nudged-elastic-band algorithm, we construct paths
from ground-state configurations to inherent structures and identify the transition points between
them. In addition, we use point patterns generated from a random sequential addition (RSA) of hard
disks, which are nearly stealthy, and examine the particle rearrangements necessary to make the
configurations absolutely stealthy. We introduce a configurational proximity metric to show that only
small local, but collective, particle rearrangements are needed to drive initial RSA configurations to
stealthy disordered ground states. These results lead to a more complete understanding of the unusual
behaviors exhibited by the family of “collective-coordinate” potentials to which the k-space overlap
potential belongs. © 2011 American Institute of Physics. [doi:10.1063/1.3615527]

I. INTRODUCTION

Recently, we have been interested in a family of soft,
long-ranged isotropic pair interactions that give rise to novel
physical behaviors of two- and three-dimensional many-
particle systems, including classical disordered ground states
for a range of densities, negative thermal expansion, and
vanishing normal-mode frequencies.1–9 Such interactions fall
within the class of stable radial pair potentials v(r) that are
bounded and absolutely integrable (i.e., whose Fourier trans-
forms exist).3 The mathematical nature of these soft interac-
tions replaces one to make rigorous statements about the cor-
responding many-particle ground-state configurations.3, 8, 10, 11

This family of soft pair interactions includes so-called
collective-coordinate pair potentials v(r) with Fourier trans-
forms V (k) that are positive, bounded, and vanish at
some finite wavenumber k = K and beyond. The collective-
coordinate approach is an inverse statistical-mechanical
optimization procedure that involves constraining related
collective-density variables or, equivalently, the structure fac-
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tor S(k) to some specified targeted form for a set of wavevec-
tors k up to the radial cutoff K . The optimized configurations
are guaranteed to be ground states of the systems. Depend-
ing upon the fraction of the degrees of freedom χ that are
constrained, the ground states can be counterintuitively disor-
dered or periodic, among other possibilities.1, 2, 4, 7, 12

The collective-coordinate potentials have been used to
construct “stealthy” and “hyperuniform” materials in two
and three dimensions.2, 4 “Stealthy” materials refer to point
patterns that completely suppress single scattering of radia-
tion for certain wavelength ranges, i.e., the structure factor
S(k) = 0 for those k’s. While nonstealthy materials may al-
low for some small amount of scattering, stealthy materials
are absolutely transparent at those wavelengths. “Hyperuni-
form” refers to point patterns in which infinite-wavelength
density fluctuations vanish.13 (These terms are defined more
precisely in Sec. II.) The hyperuniformity notion enables the
rank ordering of crystals, quasicrystals, and special disordered
many-particle systems according to the degree to which den-
sity fluctuations are suppressed on large length scales.13–15

Interestingly, disordered hyperuniform many-particle ground
states and, therefore, also point distributions, with substantial
clustering can be constructed.9
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Constructed ground states are now the basis for novel dis-
ordered materials with tunable, photonic bandgaps.16, 17 Us-
ing a model potential from the family of collective-coordinate
potentials in two dimensions, the “k-space overlap potential,”
described in Sec. II, we observed negative thermal expansion
and vanishing normal-mode frequencies for ground-state con-
figurations. We attributed these phenomena to the nature of
the underlying energy landscape, which we described as hav-
ing ground-state “valleys” that weave between the higher en-
ergy portions of the landscape.5, 6

Despite the discovery of the existence of such unique
properties, the fundamental mechanisms allowing for disor-
dered ground states and stealthy point patterns still need to
be fully elucidated. Here, we analyze the energy landscape
further by examining the associated inherent structures, or lo-
cal potential-energy minima, for the aforementioned k-space
overlap potential in two dimensions to better understand these
properties.

The potential energy � of a system of N particles in
a fundamental cell with volume � under periodic boundary
conditions can be written as

φ = �/N = 1

N

N∑
j>i

v(rij ) (1)

= 1

2�

∑
k

V (k)[ρ(k)ρ(−k)/N − 1], (2)

where rij ≡ |ri − rj | is the distance between particles i and j ,
ρ(k) are the Fourier coefficients of the density field, and k are
the wave vectors appropriate for the system size and shape.
The focus of this paper will be on a collective-coordinate
potential that produces stealthy ground states (k-space over-
lap potential defined below), and hence one that possesses
long-range oscillations in real space.3 Because of the finite
cutoff in k-space, an analytic lower bound for the poten-
tial energy per particle φ is easily obtainable, and numer-
ical methods allow for the construction and investigation
of ground states with extremely high precision. A series of
studies has examined the structural characteristics of ground
states in one,12 two,1 and three dimensions.2 Three structural
ground-state regimes were found to characterize these two-
dimensional systems. Increasing the fraction of degrees of
freedom that are constrained χ , equivalently decreasing den-
sity, spans regimes that are disordered, wavy-crystalline, and
crystalline. Recently, an analytical connection between the
fraction of constrained degrees of freedom within the system
and the disorder-order phase transition for a class of target
structure factors has been provided9 by examining the realiz-
ability of the constrained contribution to the pair correlation
function.

We have two primary motivations for this work. First,
through the course of our previous research, we have observed
several paradoxical phenomena related to local potential-
energy minima and glassy behavior. While an “inherent struc-
ture” is in general any local potential-energy minimum, the
term “glass” refers to an amorphous solid that is kinetically
trapped in a potential-energy well. In Ref. 2, we observed an
unusual equation of state when cooling a system compared to
a more familiar (e.g., Lennard-Jones) glass-forming system,

FIG. 1. Schematics of the equilibrium equation of state (solid lines) and the
nonequilibrium path that results in glassy behavior (dotted lines) along an iso-
bar. (a) With familiar potentials (e.g., Lennard-Jones), the equilibrium curve
shows a first-order phase transition while the glassy curve undergoes super-
cooling and a glass transition. (b) With the soft, long range k-space over-
lap potential, high-pressure systems result in a first-order transition that is
not present for low-pressure systems. Both collective-coordinate systems un-
dergo negative thermal expansion.

as Fig. 1 demonstrates schematically. In Fig. 1(a), the dark and
dotted lines represent the equilibrium equation of state and
nonequilibrium isobaric cooling path for a Lennard-Jones sys-
tem. Figure 1(b) shows the corresponding cooling paths for a
system interacting with the k-space overlap potential. In the
more familiar glass-forming system, there is a well-defined
glass transition below the freezing point that is dependent on
the rate at which the system is cooled.18 It is well known that
the glass-forming behavior of a system is a function of the
underlying energy landscape.19 The depths of the potential-
energy wells in the energy landscape dictate the dynamics
of structural rearrangements of the system.20, 21 For the k-
space overlap potential, we observed that at high pressure
the nonequilibrium curve deviated from the equilibrium curve
at a temperature above the melting temperature, as demon-
strated in Fig. 1(b). At lower pressures where there is no
well-defined melting temperature, as in the wavy-crystalline
regime, the nonequilibrium curve deviates similarly from the
equilibrium curve. In addition, the k-space overlap potential
gives rise to negative thermal expansion, generally for low
temperatures.5, 6
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Other paradoxical behaviors have led us toward a broad
analysis of the energy landscape. We have observed that
some ground-state configurations, particularly crystalline
structures, had many zero-energy normal modes. These
ground states are therefore not mechanically rigid. However,
while using numerical minimization algorithms to construct
ground-state configurations, we encountered many mechani-
cally stable local potential-energy minima. Finally, there ex-
ists a large density range in which the energy landscape was
evidently devoid of all local minima. An increment in χ just
outside this range introduced local potential-energy minima
into the landscape.

While we have previously observed these phenomena,4–6

the fundamental mechanisms that underlie them are not
fully understood. The inherent-structure analysis has proven
to be a fruitful method for relating the energy landscape
to low-temperature phenomena. Many studies have exam-
ined inherent-structure characteristics in glass-forming liq-
uids with strong repulsive cores, such as the Stillinger-Weber
potential,22–24 water-like pair potentials,25 binary Lennard-
Jones-like systems,26–29 and general repulsive potentials.30, 31

The inherent structures for Lennard-Jones and steeply repul-
sive potentials are in general not hyperuniform or stealthy
due to the dominance of grain boundaries and vacancy
defects.

In contrast to the above list of strongly repelling poten-
tials, the k-space overlap potential is a soft interaction. Soft
interactions are often useful models for soft-matter systems
such as colloids, polymers, and microemulsions.32 In addi-
tion, these k-space overlap interactions are also qualitatively
similar to Friedel oscillations in molten metals.33 The k-space
overlap potential is localized in k-space and delocalized in
real space as a result of the Fourier transform. Certain du-
ality relations link the ground-state energies of the k-space
overlap potential to the ground-state energies of the real-space
counterparts.3, 8 There have been several investigations of the
inherent structures of various soft interactions. The Gaussian-
core model in two dimensions has polycrystalline inherent
structure with a large correlation length even when sampled
from the liquid state.34 Energy landscape analyses revealed
that the range of the Morse potential affects the relation be-
tween temperature and the potential-energy distribution of
sampled inherent structures,35 while for the Yukawa potential,
inherent structures varied depending on whether they were
obtained from the liquid, crystal, or hexatic phase.36

Novel, stealthy dielectric materials are currently being
fabricated,17 and nearly stealthy ceramic materials are of in-
terest for optical applications.37, 38 Because of these recent ex-
perimental applications and the unusual physical behaviors
discovered,4–6 we are also motivated to understand the funda-
mental differences between point patterns that absolutely sup-
press scattering for certain wavelengths and those that nearly
suppress scattering. Our ground-state construction procedure4

automatically distinguishes stealthy and hyperuniform config-
urations from those that do not possess such properties. In
particular, we want to understand whether the particle rear-
rangements required to transform nearly hyperuniform and
stealthy materials to configurations that are perfectly hyper-
uniform and stealthy are global or local in nature.

While a general method for understanding these particle
rearrangements would require a new algorithm to search for
collective motions that increase stealthiness, the collective-
coordinate approach provides an excellent framework from
which this question would be addressed. Here, we provide
two methods for identifying rearrangements in particle sys-
tems to achieve stealthy and hyperuniform materials. For
large χ , we use the nudged-elastic-band algorithm to connect
inherent structures, which are nearly hyperuniform and nearly
stealthy, to ground states along a minimum-energy path. For
small χ values, we have identified that there are no inherent
structures higher up in the energy landscape. Therefore, we
study the rearrangements from a saturated random sequen-
tial addition (RSA) of hard disks39 to ground states of the k-
space overlap potential. We use saturated RSA systems as ini-
tial conditions because upon saturation they suppress scatter-
ing for small wavenumbers and are nearly hyperuniform.37–39

We also introduce a stealthiness metric and a configurational
proximity metric to quantify characteristics of these transi-
tions.

In this paper, we use a collective-coordinate potential
and a simulation methodology to find stealthy point patterns
and local potential-energy minima above the ground state. We
probe the following fundamental questions:

� How are the inherent structures and their thermody-
namic properties in collective coordinate systems dif-
ferent from those found in other soft-potential sys-
tems?

� To what extent are the inherent structures stealthy
and/or hyperuniform?

� How are the features of inherent structures related to
the pair potential function?

� Which collective particle rearrangements are neces-
sary to construct a path from an inherent structure to
a ground state?

� Which global and/or local particle rearrangements are
necessary to convert a nearly stealthy and nearly hy-
peruniform system into one that is absolutely stealthy
and hyperuniform?

The remainder of this paper is organized as follows. In Sec.
II, we define the k-space overlap potential, introduce sev-
eral definitions, and briefly review the ground-state structural
regimes. In Sec. III, we detail the methods we used to obtain
and characterize inherent structures. In addition, we discuss
the methods we used to find transition states between inher-
ent structures and ground states. In Sec. IV, we examine the
thermodynamic properties of inherent structures as a function
of system size and cooling rate. The inherent structures are
characterized in Sec. V. Paths connecting inherent structures
to ground states are provided in Sec. VI, while the rearrange-
ments from RSA systems to ground states are explored in Sec.
VII. Concluding remarks are provided in Sec. VIII.

II. COLLECTIVE COORDINATES AND THE
OVERLAP POTENTIAL

While a fully detailed summary of collective coordinates
is provided in Ref. 2, we provide a brief summary of the
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relevant mathematical relations and definitions here. Recall
that the potential energy of the system of interacting particles
in a periodic simulation box is defined in Eq. (1). The collec-
tive density variables ρ(k) are given by

ρ(k) =
N∑

j=1

exp(ik · rj ), (3)

where rj is the position of the j th particle. The wave vectors
for a periodic box correspond to linear combinations of the re-
ciprocal lattice vectors associated with the periodic box. For a
rectangular box of dimensions Lx and Ly , those wave vectors
are k = [2πnx/Lx, 2πny/Ly], where nx and ny are integers.
The structure factor S(k), proportional to the intensity of scat-
tering of radiation, is related to the collective density variables
via

S(k) = 〈|ρ(k)|2〉
N

, (4)

where 〈· · ·〉 is the appropriate ensemble average. When an-
gularly averaged, the structure factor S(k) is only dependent
on the wavenumber k ≡ |k|. Since the collective-coordinate
class of potentials is bounded positive for k ≤ K and zero for
k > K , any configuration for which S(k) is constrained to be
zero for all 0 < |k| < K is a ground state.

For such potentials, it is useful to refer to the dimension-
less parameter,

χ = M(K)

dN
≤ 1, (5)

as the fraction of degrees of freedom that are constrained,
where M(K) is the number of independent wave vectors
0 < |k| < K and dN is the total degrees of freedom.1 In two
dimensions, χ is limited to the range χ < 0.91. This limit
was discussed in Ref. 2 and arises from the inability to sup-
press Bragg scattering of the triangular lattice.40 Here, we fix
K = 1, and therefore, χ is inversely related to the number
density ρ = N/�. Some relations between χ and ρ are given
in Ref. 2. Three structural regimes exist for ground-state con-
figurations in two dimensions. For χ < 0.577, ground states
are disordered. For 0.577 ≤ χ < 0.780, they are wavy crys-
talline, while for 0.780 ≤ χ ≤ 0.91, crystalline structures are
the most viable ground-state configurations identified via nu-
merical search techniques.1, 6 We have observed that quench-
ing systems with χ < 0.5 always resulted in a ground state.
The energy landscape is evidently devoid of local potential-
energy minima above the ground state when χ < 0.5 and thus
inherent-structure analysis is limited to those systems with
χ ≥ 0.5.

We continue to use the k-space overlap potential, intro-
duced by Torquato and Stillinger,3 since it is exactly repre-
sentable in real and reciprocal space and is sufficiently short-
ranged in real space for computational purposes (see Fig. 2).
The k-space overlap potential is proportional to the intersec-
tion area between two disks of diameter K with centers sepa-
rated by k, and hence for k ≤ K is

V (k) = 2V0

π

[
cos−1

(
k

K

)
− k

K

(
1 − k2

K2

)1/2
]

, (6)
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FIG. 2. The overlap pair potential function v(r) in the infinite-volume limit
and its corresponding Fourier transform V (k), the k-space overlap potential,
as adapted from Ref. 2.

and zero for all k > K , where V0 is a positive constant. In the
infinite-volume limit, the associated real space pair potential
is

v(r) = V0

πr2

[
J1

(
Kr

2

)]2

, (7)

where J1 is the Bessel function. Henceforth, we refer to this
v(r) as the “overlap potential.” The potential v(r) is bounded
at r = 0 and behaves as cos2(Kr/2 − 3π/4)/r3 for large r .

In this paper, we choose to report a scaled potential
energy ε, omitting the structure-independent contribution at
k = 0 and removing the additive constants, i.e.,

ε = 1

2�

∑
k �=0

V (k)S(k), (8)

so that ground state energies are equal to zero regardless of χ

for χ < 0.91. This new scaled energy provides a sense as to
how much a configuration differs energetically from a ground
state, and is related to the actual potential energy, choosing
V0 = 1, via

φ = �/N = 1

�N

∑
k

[V (k)C(k)] (9)

= ρ

2
− 1

2�

∑
k

V (k) + ε, (10)

where C(k) is the quantity within the square brackets of
Eq. (2) multiplied by N/2.1, 2 Note that the structure-
independent terms sum to be non-negative because v(r) is a
non-negative function. We choose the cutoff for ground states
to be those configurations in which ε < 10−10.

We also compute a stealthiness metric η as the average
of the values of the structure factor for all |k| < K , defined to
be

η =
∑

0<|k|<K

S(k)/M(K). (11)

This metric is a measure of the stealthiness because it vanishes
for completely transparent systems but remains nonzero for
nonstealthy systems. While there is a numerical limitation of
10−16 for double precision computing, there are certain practi-
cal limits on stealthiness. Because of the weights assigned by
V (k) for k near K , the metric η may not necessarily be sup-
pressed to zero for ground states due to numerical precision
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of the quantity V (k)S(k). Therefore, the stealthiness metric
is best used as a relative comparison of stealthiness between
configurations and not as a determination of a configuration
as a ground state.

III. METHODS

Our method to generate inherent structures follows that
of Sastry et al.,20 which is based on the initial algorithms of
Stillinger and Weber.22, 23, 27 Initially, we simulate the atomic
motions of the system interacting via the k-space overlap po-
tential in Eq. (1) by integrating the Newtonian equations of
motions, assuming unit mass,

d2ri

dt2
= −∇φ. (12)

We use the velocity Verlet algorithm40 with a time step δt of
0.4, which is chosen so as to accurately conserve total energy
in the constant NV E ensemble (where N is the number of
particles, V is the system volume, and E is the system en-
ergy). Throughout the dynamical simulation, configurations
were sampled and subjected to a quenching of the potential
energy. Here, the sampled configuration is used as the initial
condition for a conjugate gradient minimization.

Upon termination of the conjugate gradient quenching,
we subject the system to an additional quenching via the
MINOP algorithm.41, 42 We previously reported the efficiency
of the MINOP algorithm compared to the conjugate gradient
method.2, 4 We add this final quench for reasons of increased
efficiency and precision compared to simply using the conju-
gate gradient method to high precision. Many of the inherent
structures that we have found have very slight differences in
the scaled potential energy ε that can be on the order of mag-
nitude 10−8. Our implementation of the conjugate gradient
method becomes inefficient at these tolerances. While there is
a possibility that the MINOP algorithm can traverse to other
capture basins, we suspect that the system is quenched suffi-
ciently deeply into a potential-energy well after the conjugate
gradient step that the MINOP algorithm will not push the sys-
tem into another capture basin.

We initialize the dynamical trajectories at a temperature
associated with the liquid state. Here, we report the dimen-
sionless temperature T ∗ = kBT /V0, where kB is the Boltz-
mann constant and T is the simulation temperature. We pre-
viously reported that the transitions from ground states to
highly disordered liquids occur in the range of T ∗ = 0.0003–
0.001, depending on χ .6 We initialize our simulations at
T ∗ ≥ 0.0018. Configurations are sampled every ns time steps
until at least 50 are obtained. Then, the velocities of the sys-
tem are rescaled to a lower temperature by dT ∗, typically a
value of 0.00015, and the configurations are sampled again
at the reduced temperature. The rate at which the system is
effectively cooled becomes γ = dT ∗/(50nsδt). We have ex-
plored a range of cooling rates from 10−6 ≤ γ ≤ 10−9 with
ns varying from 3 to 750. Surprisingly, as discussed in Sec.
IV, while the properties of the thermal structures are sensitive
to the cooling rate, the properties of the inherent structures are
not.

To construct pathways between ground-state configura-
tions and inherent structures for χ > 0.5, we use the “nudged-
elastic-band (NEB) algorithm” used for finding minimum-
energy transition paths.43, 44 This method requires as an input
two local minima that are nearby in the energy landscape. We
generate this pair of structures by initializing a known ground-
state configuration (obtained by the search methods in Ref. 3),
assigning a small temperature to the system, and integrating
the equations of motion. The configurations are quenched by
the conjugate gradient/MINOP minimization every five time
steps. A simulation run is terminated when the quenching of
a configuration produces a local minimum in a new capture
basin. This new inherent structure is presumed to be near the
original ground state in configuration space.

We then apply the nudged-elastic-band algorithm43, 44 to
the ground state/inherent structure pair. The algorithm dis-
cretizes the path between two local minima in a potential-
energy landscape into “beads,” or image configurations.
These beads, representing configurations, are connected via
harmonic springs of zero natural length. Then, a minimiza-
tion algorithm is applied to minimize simultaneously the force
parallel to the string of beads and the force perpendicular
to the true force. The algorithm bends the string of beads
around the “hills” in the energy landscape. The end result is
a discrete path that provides the minimum-energy path from
one potential-energy minimum, through a low-order saddle
point, and to the other potential-energy minimum. While a
large number of “beads” allows for a more refined minimum-
energy pathway, we find that using 50 beads serves our pur-
poses well by yielding a smooth transition pathway and a rea-
sonable approximation to the saddle point.

Occasionally, there are other inherent structures in the
vicinity of the straight-line interpolation between the inher-
ent structure and ground state used as an initial condition. In
these cases, the NEB algorithm will not produce a smooth
transition from the ground state to the original inherent struc-
ture, and therefore, we refine our initial ground state/inherent
structure pair. For example, when using the triangular lattice
as an initial condition, for say χ = 0.6004, there are number
of zero-energy modes that the system can traverse during the
molecular dynamics trajectories. When applying the NEB al-
gorithm to a triangular lattice/inherent structure pair, the path-
way has a preference to bend toward the zero-energy path
before moving uphill toward the saddle point. This caused
the energy of the transition-state pathway to appear rugged
since the string of beads was pushed near a different inherent
structure. In these cases, we searched the string of beads for
a new ground-state/inherent structure pair. We minimized the
potential energy of each bead until we found a new ground
state/inherent structure pair closer together than the original
pair and applied the NEB algorithm again. This method does
not guarantee that we find the closest inherent structure to a
ground state nor does it guarantee that the saddle point is a
first-order (single negative eigenvalue) saddle.

For χ < 0.5, we examine particle rearrangements from
RSA configurations to ground states. To generate RSA pack-
ings, disks of diameter D are randomly, sequentially, and
irreversibly placed inside a simulation cell so that they do
not overlap with any other particles. The process is saturated
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when additional particles cannot be placed without overlap-
ping other particles. In practice, this occurs after a very large
number of attempted particle insertions are rejected. Here,
we terminate the process after 1.5 million attempted particle
placements. Since K is fixed to be unity, we must select a
target number density ρt that corresponds to our target χ . Us-
ing a desired number of particles in a saturated system of 750
particles, we then identify the appropriate system area. The
simulation cell is chosen to be a square box. We can then as-
sign the particles a diameter D so that upon saturation of the
RSA process, we achieve close to the desired number density.
For RSA processes in two dimensions, the saturation pack-
ing fraction fs is 0.547.39 The assigned diameter becomes
D = 2(fs/πρt )1/2. In our RSA patterns, the number of par-
ticles did not match the target number of particles due to fi-
nite system effects. Given the dimensions of the box and the
number of particles, we can then assign the appropriate wave
vectors and χ value to the system. The potential energy of the
system is then quenched using the conjugate gradient method
followed by a quenching using the MINOP algorithm as was
detailed above.

To characterize inherent structures, we use several quan-
titative metrics. The structure factor S(k), cf. Eq. (4), provides
structural information on the long-ranged ordering of the sys-
tem. As defined above, ε is a scaled potential energy and η

is a metric for the extent of stealthiness. In addition, we use
the small-k features of S(k) to compare the extent of hype-
runiformity between structures. Hyperuniform systems have
the feature that S(k) vanishes as k approaches zero. We fit the
small-k regime (i.e., k < 0.5) to a log-polynomial equation,

log S(k) = C0 + C1k + C2k
2 + C3k

3. (13)

The parameter C0 can be considered to be a metric for the
extent of hyperuniformity, where a value that diverges to −∞
indicates that a system is hyperuniform. This metric is best
used for relative comparisons among systems since numerical
precision is limited. For example, one could say system A
is more hyperuniform than system B because it has a lower
value of C0. However, C0 is not a sufficient test to determine
if a configuration is absolutely hyperuniform (i.e., one should
refrain from saying system A is absolutely hyperuniform).

We also employ the bond-order parameter �6 defined as

�6 =
∣∣∣∣ 1

Nbonds

∑
j

∑
k

e6iθjk

∣∣∣∣, (14)

where θij is the angle between two particles with respect to a
fixed, but arbitrary, coordinate axis, to quantify the local ori-
entation order. Particles are considered “bonded” if rij < 10,
chosen so as to include nearest-neighbors. For the perfect tri-
angular lattice, �6 has a value of unity, while for the ideal gas
�6 vanishes. Wavy crystals have value of �6 that can range
from about 0.4 to 0.8.

We introduce a configurational proximity parameter p

defined as

p =
(∑N

i=1 |ro,i − rf,i |2
)1/2

rNN

, (15)

where ro,i and rf,i are the positions of the RSA configuration
and ground state configuration, respectively, and rNN is the
mean-nearest-neighbor in the RSA configuration. This metric
p quantifies the closeness of two different particle configu-
rations. In what follows, we will apply it to characterize the
relative particle displacements required for a configuration to
relax to the ground-state energy.

IV. RESULTS: COOLING AND QUENCHING

Before discussing the results of the quenching and cool-
ing simulations, we briefly discuss some aspects of system-
size effects related to the inherent structures of this system.
While we previously showed that system-size effects were
negligible when characterizing the ground states4 and the
equilibrium properties,6 we find that there are appreciable
system-size effects when considering the inherent structures
and energy landscape.

We have compared inherent structures containing 418
particles to 2340 particles sampled from the same temper-
ature. In general, larger systems provide a slightly deeper
quenching of the potential energy. In addition, the bond-order
parameters for larger systems tend to be less than that of
smaller systems. This is expected since larger systems often
have various polycrystalline-like domains that impart destruc-
tive interference on �6. The fraction of quenchings from a
fixed temperature that achieve the ground state varied consid-
erably across system sizes. While the quenching of the en-
ergy of small systems occasionally resulted in achieving a
ground-state structure, quenches of the large systems never re-
sulted in a ground-state structure. The measure of the ground-
state manifold becomes increasingly small as the system size
increases. Given that the number of inherent structures in-
creases exponentially with respect to system size,45 it is un-
surprising that larger systems would not sample the capture
basins for ground states as frequently as smaller systems.
System-size effects have been also been identified in the bi-
nary Lennard-Jones system.28 Due to the system-size effects,
we should not extrapolate true dynamical information from
our results. Here, we present the analysis for 418-particle sys-
tems, noting that the trends across χ values are similar to
those in the 2340-particle system.

The properties of the excited-state (or thermalized) struc-
tures behave as expected. The thermodynamic properties
lagged the equilibrium values as the system was cooled, and
for slower cooling rates, the lag in thermodynamic proper-
ties was smaller than that for fast cooling rates. However, we
find that the rate at which the system was cooled provided
no distinguishable effects on the properties of the inherent
structures when compared across various cooling rates. This
should be contrasted with conventional glass-forming systems
such as binary Lennard-Jones where systems cooling at slow
rates found deeper wells in the energy landscape than systems
cooling at faster rates.20

In our previous research, we have identified the approxi-
mate range for transitions from crystalline or wavy-crystalline
to liquids to be in the temperature range of T ∗ < 0.00075.6

We find that the temperature at which the inherent struc-
tures were sampled had no distinguishable effect on the
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FIG. 3. Scaled potential energy ε of inherent structures as a function of time
for χ = 0.6004 and 0.8086. The lower plots show the temperature schedules
as a function of time. The temperature was reduced in a piecewise linear
manner with an effective cooling rate of γ = 10−7. Inherent structures were
sampled every 30 time steps. As a function of time, the systems continually
hop from one capture basin to another since no two consecutively sampled
structures have identical energies. We found that the effective cooling rate
did not have a significant effect on the fluctuations of the energies of inherent
structures. At low temperatures, systems evidently are not trapped in deep
energy wells. For χ = 0.6004, a significant fraction of inherent structures
have an energy below the ground-state threshold of ε < 10−10, while only a
few inherent structures lie below this threshold for χ = 0.8086.

thermodynamics properties or structures. As the system was
cooled, the systems hopped across various capture basins
without regard to temperature.

Figure 3 exhibits the dynamics of systems as they sam-
ple inherent structures for χ = 0.6004 and 0.8086 for 418
particles cooled at a rate of γ = 10−7. The figure shows
the potential energy of inherent structures sampled every 30
time steps. In the figure, there are two classes of behav-
iors. For χ = 0.6004, the system samples higher energy in-
herent structures and also frequently samples ground states.
For χ = 0.8086, the system samples mostly higher energy
structures and occasionally, though far less frequently than
for smaller χ , samples ground states. For both values of χ ,
the system hops to a new inherent structure between sam-
plings. There were no consecutive samples that were iden-
tical except for very low temperatures far below the melt-
ing point (e.g., T ∗ = 0.00015). The rate at which the sys-
tem samples capture basins does not appear to slow down
significantly when the temperature is reduced as one might
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FIG. 4. Structure factor for inherent structures with χ = 0.6004 and N = 418
and at various dimensionless temperatures T ∗—0.00195 (circles), 0.00135
(squares), 0.0075 (diamonds), and 0.00015 (triangles). Each temperature is
ensemble averaged over 50 configurations sampled from a molecular dynam-
ics trajectory. Despite the range of temperatures, temperature has little effect
on the inherent structures.

expect. This phenomenon occurred for all cooling rates we
tested. In addition, even when sampling inherent structures
every three time steps, the system never remained in the
same basin for consecutive samplings. Note that the depths
of the quenches for ground-state structures were deeper
for χ = 0.8086 than for χ = 0.6004. This demonstrates the
issue that arises with finite-precision computing because these
scaled energies should vanish to zero in a mathematical
sense. In a practical sense, systems with energies below this
threshold and orders of magnitude below the clusters of sys-
tems higher up are ground states.

We find that the structural features of the inherent struc-
tures did not vary with temperature either. Figure 4 shows
the structure factor for inherent structures with χ = 0.6004
ensemble-averaged for several temperatures. However, when
observing the structure factors for individual configurations,
there is some small variability in the shape of S(k). Never-
theless, there are no clear correlations with temperature. In
the figure, the structure factors associated with each temper-
ature overlay nearly perfectly. Even at very low temperatures
(T ∗ = 0.00015), the structure factor for the inherent struc-
tures does not differ from those obtained from a liquid state.

For familiar systems, as the temperature is reduced, the
potential energy of the inherent structures typically becomes
lower as the system continues to reduce the potential en-
ergy through structural rearrangements, sampling deeper and
deeper basins. However, we find as the temperature is re-
duced, the energy of the inherent structures does not appear to
decrease. This reveals that the energy landscape is relatively
flat and insensitive to temperature. The heights of the barri-
ers, which we explore in Sec. VI, are therefore expected to be
relatively small.

While there is no fundamental reason why a system
should fall to the same inherent structure at subsequent times
steps, this phenomenon is highly unusual in soft-matter sys-
tems. Since these systems jump across energy barriers fre-
quently, at temperatures ranging from nearly zero to 2.5 time
the melting temperature, this implies that there are many
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FIG. 5. Fraction of inherent structures obtained via the cooling and quench-
ing procedure with γ = 10−8 and N = 418 that are ground states (i.e., scaled
potential energy ε < 10−10). Data represent the average of four independent
cooling runs with 750 samples for each run. χ values of 0.6004 and 0.7033
achieved the highest fraction of ground states.

modes in the system that have nearly zero energy. While there
are large energy barriers in some directions of configuration
space, such as pushing two particles toward complete overlap,
along the subset of configuration space sampled by molecu-
lar dynamics the energy landscape has shallow basins with
small energy barriers. This corroborates our prior work in
which we have shown that there are zero-energy modes as-
sociated with ground states.6 In addition, we have shown that
for χ < 0.5, all inherent structures are ground states and have
at least one zero-energy mode. Because the energy landscape
is so flat along the directions sampled by molecular dynam-
ics, entropic effects play an important role in the physics of
low-temperature motions. Recent studies by some of the au-
thors have identified the entropy of analogous systems in one
dimension.9

In Fig. 5, we plot the frequency in which the cooling and
quenching procedure yielded a ground state for 418 particles.
The plot shows the fraction of inherent structures that were
ground states as a function of χ for 3000 inherent structures
for each χ . We have found that the temperature from which
the inherent structures are sampled does not have a significant
effect on the rate at which the ground state is achieved. How-
ever, the value of χ affects the frequency at which the ground
state is found. In general, as χ is increased from 0.6 to 0.9, the
rate at which the ground states are found is reduced. However,
for the “disordered-ground-state” region, χ < 0.58, ground
states were found infrequently. For example, in Fig. 5, the
frequency in which ground states are found for χ = 0.5622
is much smaller than that of χ = 0.6004. This suggests that
the relative availability of the ground-state manifold is small
for χ < 0.58, becomes larger in the wavy-crystalline region
(χ > 0.58), and then diminishes as the terminal χ of 0.9 is
reached. This shows that changes in χ (and equivalently, den-
sity for fixed K), fundamentally affect the shape and size of
the ground state manifolds. An expansion or compression of
the system does not simply rescale the energy landscape while
maintaining its overall shape. Systems containing 2340 par-
ticles never achieved ground state energies, presumably be-
cause of the exponential growth in the number of inherent
structures with system size.45

FIG. 6. Inherent structures produced from the cooling and quenching proce-
dure sampled from a high-temperature liquid (T ∗ = 0.0018) for χ = 0.5191
(a), 0.5622 (b), and 0.6004 (c) for 418 particles. These structures demonstrate
the five-particle clusters that are common in inherent structures for these χ

values. The five-particle rings are highlighted by a surrounding circle. The
buildup of wavy grains are visible for χ = 0.6004.
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V. RESULTS: STRUCTURAL CHARACTERISTICS

Figures 6 and 7 show inherent structures obtained via
the cooling and quenching procedure. These structures
display features that are common among inherent structures.
Upon examining the inherent structures, we found several
structural motifs—five-particle rings, wavy grain boundaries,
and vacancy-interstitial defects. The frequency of these
features varies depending on χ . For 0.5 < χ < 0.6, the
five-particle ring, as demonstrated in Fig. 6, is the most
prevalent feature. The five-particle ring arises due to the local
interactions of constituent particles. The nearest- and second-
nearest-neighbor distances lie within the first and second
wells of v(r), respectively. The ratio of the relative distances
creates a frustration that favors the local five-particle ring.
Evidently, these local forces are more dominant than the
long-range forces that promote stealthiness.

For 0.58 < χ < 0.89, a common feature of inherent
structures is a wavy grain boundary as evident in Figs. 6 and
7. In these images, the grain boundaries manifest themselves
in a more wavy form than one might see in a Lennard-Jones
inherent structure, in which particles prefer to align in straight
lines. This χ range is associated with wavy-crystalline ground
states, which appear as a uniformly sheared triangular or
square lattice. This behavior evidently manifests itself in the
inherent structures where the grain boundaries appear to have
some waviness. For these χ values, the long-range nature
of the potential is sufficiently strong to inhibit five-particle
rings in favor of the wavy grains. Finally, for χ = 0.8995,
the last image in Fig. 7, the inherent structures either have a
large grain boundary of perfectly aligned particles, vacancy-
interstitial pairs, or both. These inherent structures also ex-
hibit polycrystallinity. In the cases of χ > 0.58, the multiple
wavy domains appear to be in structural conflict with each
other. This is best demonstrated by Fig. 6 for χ = 0.6004,
where several domains appear to meet in the middle of the
system. This conflict evidently “jams” the system and pre-
vents it from reaching the ground state.

Observing the structure factor for inherent structures
shows that inherent structures with smaller χ are more
stealthy and more hyperuniform than those at higher χ . How-
ever, inherent structures that are not ground states were nei-
ther completely stealthy nor hyperuniform. In Fig. 8, we show
the ensemble-averaged S(k) for 50 inherent structures sam-
pled at T ∗ = 0.00105 for various χ . For the smallest χ value,
the small-k tail of the structure factor initially decreases and
then rapidly increases as k is increased toward unity. The
shape of the small-k tail of S(k) remains constant but is
shifted to higher values (less hyperuniform) as χ increases
to χ = 0.5813.

However, as χ leaves the disordered-ground-state
regime, the shape of the curve changes, as exemplified by
the curves for χ = 0.6004 and 0.7033. In Fig. 8, the curve
for χ = 0.6004 demonstrates the new shape. For the small-
k region, S(k) initially has a negative slope which quickly
turns positive, and nearly flattens before diverging near K .
The shape of this ensemble-averaged S(k) is due to the rel-
atively large number of ground states that arise in the inher-
ent structure analysis for this χ . For χ = 0.6004, nearly 40%

FIG. 7. Inherent structures produced from the cooling and quenching proce-
dure sampled from a high-temperature liquid (T ∗ = 0.0018) for χ = 0.7033
(a), 0.8086 (b), and 0.8995 (c) for 418 particles. These structures demonstrate
the wavy grains and vacancy-interstitial defects common to inherent struc-
tures for χ > 0.58. As χ increases, the inherent structures are more ordered,
though grain boundaries prevent the systems from minimizing the energy.
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FIG. 8. Structure factor for inherent structures as a function of χ ensemble
averaged over 50 configurations sampled from a molecular dynamics trajec-
tory at T ∗ = 0.00105 for a system of 418 particles. As χ increases, the in-
herent structures become less stealthy. Also, the extent of hyperuniformity
decreases when χ is increased.

of inherent structures are ground states, and this S(k) repre-
sents the average of the ground-state S(k) and the inherent
structure S(k). A similarly large fraction of inherent structures
are ground states for χ = 0.7033. If the ground states are
removed from the ensemble-averaging, the structure factor
appears more like those associated with χ = 0.8086 and
0.8995. For these χ , S(k) has a initial negative slope that turns
positive near k = 0.5, which then diverges near K .

It is interesting to note that the way in which systems
get “stuck” in an inherent structure for χ in the disordered
regime is different than that of the wavy-crystalline regime.
For χ < 0.58, the systems struggle most to minimize S(k)
for k > 0.5. The length scale associated with k > 0.5 corre-
sponds to local interactions in real space (i.e., on the order of
a few particle diameters). This manifests itself with the five-
particle rings. For χ > 0.58, the systems have difficulty min-
imizing S(k) near zero and unity. The k-values near zero rep-
resent longer range interactions than the k-values near unity.
The inherent structures for χ > 0.58 are therefore “stuck”
on a longer length scale. It is of no surprise that the inher-
ent structures appear locally ordered but are frustrated with a
grain boundary.

It is obvious that as χ increases, the extent of hyperuni-
formity of the inherent structures diminishes. This is shown
in an ensemble sense in Fig. 8. However, we have also shown
this general relationship for individual structures. In Fig. 9,
we display the hyperuniformity coefficient C0 for the log-
polynomial fit to S(k) in Eq. (13). In the figure, each data
point represents one inherent structure. There are two clus-
ters of points, where the cluster of points on the lower left are
typically ground states where S(k) vanishes as k approaches
zero, but due to numerical precision the hyperuniformity co-
efficient C0 remains finite. In the cluster in the upper right of
Fig. 9, there is a linear relation between C0 and log η. Also,
it is clear that as χ increases, the hyperuniformity parameter
C0 also increases. A few outlying structures are present for
χ = 0.7003, 0.8086, and 0.8995. These structures appear as
triangular lattices with very slight waves or shear applied to
them, a sufficient amount that they are not ground states, but
still have very small limiting values of S(k) as k approaches
zero.
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FIG. 9. Hyperuniformity parameter C0 versus stealthiness metric η for in-
herent structures generated from the MD and quench procedure. There is a
clear relation between the hyperuniformity coefficient C0 and the stealthiness
metric η, although there exist outlying configurations. There is also a posi-
tive relation between C0 and χ . Those configurations in the lower left with
η < 10−9 are typically ground states. 800 configurations are shown for each
χ value.

The stealthiness of the inherent structures, as character-
ized by the metric η, in general does not have a relation to the
six-fold orientational order of a system. Figure 10 shows the
bond-order parameter �6 as a function of stealthiness η for
various inherent structures. For each χ value, there is a range
of available η and �6. Initially, for χ near 0.5, these ranges
are rather narrow, and as χ increases, these ranges become
much broader. For large χ = 0.8086, there is a large diver-
sity of �6 and η available for inherent structures. However,
for χ = 0.8995, there is a narrow band of available η but a
large range of �6 depending on the number and orientation of
opposing crystalline domains. The group of structures for χ

= 0.8995 and η ∼ 0.02 are those structures with only
vacancy-interstitial defects.

The bond-order parameter also shows considerable vari-
ation when plotted against the hyperuniformity parameter C0.
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FIG. 10. Bond-order parameter �6 versus stealthiness metric η for inherent
structures generated from the MD and quench procedure. As χ increases,
there is an increasing degree of six-fold ordering. However, for large χ , the
range of available �6 extends larger due to the polycrystalline nature of the
configurations. 800 configurations are shown for each χ value. For clarity, we
omit those structures with η < 10−5 so that the plot can provide more detail
about the inherent structures.
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FIG. 11. Hyperuniformity parameter C0 versus bond-order parameter �6 for
inherent structures generated from the MD and quench procedure. Despite
the broad range of six-fold ordering at larger χ , the level of hyperuniformity
remains consistent across χ values. 800 configurations are shown for each χ

value. For clarity, we omit those structures with C0 < −12 so that the plot
can provide more detail on the inherent structures.

Figure 11 shows C0 as a function of �6 for various χ values.
As χ increases, the variation in �6 grows, while C0 gener-
ally falls into a narrow range of values. This figure demon-
strates that hyperuniformity does not necessarily require local
six-fold ordering. Systems with χ = 0.7033 have the largest
range of available local six-fold ordering for more hyperuni-
form structures because �6 ranges from as low as 0.1 to just
below unity.

VI. PATHS FROM INHERENT STRUCTURES
TO GROUND STATES

The nudged-elastic-band algorithm was used to deter-
mine a minimum-energy path from a ground-state structure to
an inherent structure nearby in configurational space. While
dynamical information could potentially be obtained from the
NEB method, we use this method simply to gain a qualita-
tive understanding of the types of rearrangements needed to
convert nonstealthy point patterns to stealthy point patterns.
We find that the height of the barrier between the ground state
and the inherent structure generally increases with χ . How-
ever, there are instances that deviate from this general situ-
ation. Figure 12 illustrates the minimum-energy paths found
for various χ from the ground state (point zero on the reac-
tion pathway) to the inherent structure (last point on the re-
action pathway). The pathway is discretized over 50 images.
In all the cases, the landscape is locally quadratic near the
ground state and inherent structure. The maximum for each
pathway represents the saddle point in the energy landscape
separating the ground state and inherent structures. Connec-
tions from the triangular lattice to inherent structures were
challenging to construct because of the zero-energy modes
present in triangular-lattice systems. The nudged-elastic-band
algorithm encountered difficulty in traversing through zero-
energy valley and then uphill toward a saddle point. In all
cases except χ = 0.8995, we report transitions from nonlat-
tice ground states to inherent structures.
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FIG. 12. Representative minimum-energy paths from ground states (point
zero on the reaction coordinate) to inherent structures (last point on the re-
action coordinate) along a generalized reaction pathway for N = 418 for (a)
0.5 < χ < 0.6, (b) χ = 0.6004 and 0.7033, and (c) χ = 0.8086 and 0.8995.
The local maximum corresponds to a saddle point in the energy landscape.

For χ < 0.6 (left in Fig. 12), the barrier height, εsad is
significantly large compared to the difference in the energies
of the ground-state and inherent structures (i.e., εinh − εgs

� εsad ). When χ becomes larger, as in the case for χ

= 0.7033 and higher, middle and right in Fig. 12, εsad is
nearly equivalent in height. For the case of χ = 0.8995, the
minimum-energy path appears to flatten out as it approaches
the inherent structure. In reality, there is a maximum energy
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FIG. 13. Configurations (top row) and associated Voronoi tessellations (bottom row) for the minimum-energy path from ground state (a) through the saddle
point (b) to the inherent structure (c) for χ = 0.5383. The transitions are from the set described in Fig. 12.

along the path, although it is difficult to discern due to the
scaling in the plot. In the cases where the energy of the inher-
ent structure is nearly equal to the barrier height, small per-
turbations from the inherent structure can allow the system
to relax to the ground state. On the other hand, for smaller
χ , relatively higher energy perturbations are necessary for the
inherent structure to climb the energy barrier and fall to the
ground state. While there are exceptions to this phenomenon,
they usually occur when the inherent structure and ground
state are not nearby in the energy landscape (i.e., there is a
another inherent structure closer to the ground state). Along
these paths, the configurational proximity metric p monoton-
ically decreases along the path from the ground state to the
inherent structure. The metric p/N for the proximity per par-
ticle between the inherent structure and the ground state is of
the order 0.1. On average, particles are collectively displaced
by 10% of the nearest-neighbor spacing to achieve a ground
state.

In Figs. 13 and 14, we display the ground state, sad-
dle point, and inherent structure and the associated Voronoi
diagrams for χ = 0.5383 and 0.7033. These are the same
paths shown in Fig. 12. These systems are representative of
the types of local rearrangements found in the transition from
ground states to inherent structures. In Fig. 13, the ground
state has wavy-crystalline characteristics where there is align-
ment in one direction. The Voronoi diagram appears to have
highly ordered arrangement of polygons. In the saddle point
images, one can see the appearance of the five-particle rings.

In the inherent structure, the defect appears to be localized;
however, the defects are more easily discerned in the Voronoi
diagram.

For χ = 0.7033, the buildup of the grain boundary is clear
in Fig. 14. The ground state is wavy-crystalline and the saddle
point shows the appearance of a vertical and horizontal grain.
The inherent structure shows the apparent mismatch between
lines of particles that is responsible for the inability to reach
the ground state. The Voronoi diagrams in this case visually
display the source of the frustration in the system. While far
from the grain, the polygons in the Voronoi diagram for the
inherent structure are quite regular and ordered, those near
the grain boundary have much more variation in shape. For χ

= 0.8995, the rearrangements found in the transition from
a perfect lattice to one with a vacancy-interstitial pair are
very local (albeit collective), only involving the few particles
immediately surrounding the interstitial-vacancy pair. In all
cases observed, the rearrangements from ground states to in-
herent structures involve only local, but collective, rearrange-
ments (within a few particle diameters). As highlighted here,
they typically involve the formation of a grain boundary or a
five-particle ring.

VII. PARTICLE REARRANGEMENTS FROM RSA
PATTERNS TO GROUND STATES

Configurations generated by random sequential addition
near the saturation densities are known to suppress long-
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FIG. 14. Configurations (top row) and associated Voronoi tessellations (bottom row) for the minimum-energy path from ground state (a) through the saddle
point (b) to the inherent structure (c) for χ = 0.7033. The transitions are from the set described in Fig. 12.

wavelength scattering, described as “ultratransparent,”37, 38

though images of the structure factor for the RSA configura-
tion demonstrate that it is not hyperuniform and not absolutely
stealthy.39 From Ref. 34, as k approaches zero, the structure
factor approaches a value of 0.059, corresponding to a value
of the hyperuniformity parameter C0 of −1.23.

In Figs. 15 and 16, we display the initial RSA con-
figurations and the final ground-state configurations as ob-
tained from the collective coordinate approach, for χ values
of 0.0991 and 0.3657. Each figure also displays the corre-
sponding Voronoi tessellation derived from the point patterns.
In both cases when observing the dynamics of the minimiza-
tion algorithm, one observes a general spreading of particles
due to the repulsion for small r . These collective rearrange-
ments are very local and there are no large global rearrange-
ments involved. While every particle is displaced collectively
from their initial location, each particle is displaced by a small
fraction of the mean-nearest-neighbor distance, as measured
by the proximity metric per particle, p/N .

In Fig. 15, one can observe similar arrangements of parti-
cles in both the RSA configuration and the ground-state con-
figuration. These images would be difficult to distinguish vi-
sually. Several structural features remain intact aside from the
general spreading of particles. In the Voronoi tessellations of
the RSA configuration, there are areas where the local density
appears higher than in other areas. However, in the tessellation
of the ground state, these areas of higher local density have
been relaxed away. The density appears much more uniform

FIG. 15. (Top) Configurations with ρ = 0.1953 and χ = 0.0991 and (bot-
tom) the associated Voronoi diagrams for the initial RSA configurations (a)
and the ground states (b). The trajectory from the RSA configuration to the
ground state appears to arise from a gentle repulsion. The diameters of the
particles correspond roughly to the assigned RSA diameter. The dark lines
represent the system box.

Downloaded 28 Sep 2011 to 128.112.11.57. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/about/rights_and_permissions



054104-14 Batten, Stillinger, and Torquato J. Chem. Phys. 135, 054104 (2011)

FIG. 16. (Top) Configurations with ρ = 0.05434 and χ = 0.3657 and
(bottom) the associated Voronoi diagrams. The left images are the initial RSA
configurations and the right images are the ground states. The trajectory from
the RSA configuration to the ground state appears to arise from a gentle re-
pulsion. The diameters of the particles correspond roughly to the assigned
RSA diameter. The dark lines represent the system box.

in the ground state than the RSA configuration. However,
the visual difference between the two images are subtle. In
Fig. 16, the spreading remains local, although it is clear that
the repulsion is stronger. The particles, on an average, travel
a larger distance and fewer structural features of the RSA pat-
tern are maintained. The Voronoi tessellation of the ground
state appears to have more uniform cell sizes than the RSA
configuration, though the differences are subtle.

We have quantified the differences between the RSA
structures and the ground states for several RSA configura-
tions at various χ values. Table I displays the parameters of
these systems as well as the differences in potential energy
φ between the RSA system and ground state, the stealthiness
metric for RSA configurations ηrsa , and the configurational
proximity metric p. The stealthiness metric η for ground
states vanishes identically.

There are some variations in energies and metrics that
are attributed to finite system size. Structural features of the

RSA patterns can vary across samples, and these variations
are shown in Table I, particularly for small χ . In general, the
difference between the potential energy of the RSA system
and the ground state increases uniformly with χ , but is on
the order of 10−4. The stealthiness metric also increases uni-
formly with χ as is expected, since decreasing the density of
RSA configurations will rescale the structure factor to be less
stealthy. The configurational proximity metric p increases
uniformly with χ , ranging on a per particle basis of 0.00621 to
0.01478 for these χ . These metrics show that particles in the
RSA configuration need to be collectively displaced locally
by a small fraction of the mean-nearest-neighbor distance in
order to produce stealthy, hyperuniform systems.

VIII. DISCUSSION

In this paper, we have shown that the energy landscape
associated with the k-space overlap potential is relatively flat
and devoid of deep energy wells. This is to be contrasted with
Lennard-Jones systems, which possess rugged energy land-
scapes. The sampling of inherent structures from the energy
landscape is independent of the temperature from which the
system was sampled and the rate at which the system was
cooled. Five-particle rings, which are related to the local in-
teractions between particles, disrupt the ability of a system
to become a stealthy ground state, while grain boundaries,
which arise for χ values in the wavy-crystalline regime, are
attributed to the longer range interactions in a system. While
the hyperuniformity parameter C0 and the stealthiness param-
eter η are positively correlated with each other, the bond-order
parameter �6 can display a broad range of characteristics for
various χ values. We have used the nudged-elastic-band al-
gorithm to show that local particle rearrangements can allow
systems to be perturbed over a relatively small energy barrier
from an inherent structure to a ground state. These rearrange-
ments correspond to a low configurational proximity metric
p. Finally, we have shown that highly local collective particle
displacements, as quantified via the configurational proximity
metric p, are sufficient to convert a RSA configuration into a
stealthy, hyperuniform ground state.

While these studies represent another contribution for
understanding the nature of these unusual long-ranged po-
tentials, there are some natural extensions to this work that
can further illuminate the relationship between particle in-
teractions, stealthiness, and hyperuniformity. We have used
simple metrics C0 and η as measures of stealthiness and

TABLE I. Comparison of RSA configurations to their associated ground states.

ρ χ N D φrsa − φgs ηrsa p p/N

0.19973 0.0974 749 1.866 5.928525 × 10−4 0.06614 4.653 0.00621
0.19653 0.0991 737 1.883 5.462281 × 10−4 0.05879 5.258 0.00713
0.14660 0.1364 733 2.155 5.962653 × 10−4 0.07407 4.915 0.00671
0.09893 0.1995 742 2.639 6.560097 × 10−4 0.07569 6.354 0.00856
0.06851 0.2902 734 3.154 7.001039 × 10−4 0.08924 6.535 0.00890
0.05434 0.3657 741 3.559 7.501234 × 10−4 0.09812 6.943 0.00937
0.04678 0.4227 731 3.809 8.202199 ×10−4 0.11910 8.342 0.01141
0.04161 0.4818 743 4.072 8.081648 × 10−4 0.14692 10.99 0.01478

Downloaded 28 Sep 2011 to 128.112.11.57. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/about/rights_and_permissions



054104-15 Inherent structures for soft interactions J. Chem. Phys. 135, 054104 (2011)

hyperuniformity; there is a multitude of other metrics that
can be constructed. Measuring hyperuniformity for a single
finite system is challenging due to the fluctuations and noise
that can arise in the small-k behavior of S(k). Ideally, one
would prefer to have a large system where the number vari-
ance in an observation window can be measured accurately.
However, we are limited in system size because of numerical
methods. While our measurement of stealthiness is directly
related to the structure factor, we assumed equal weights for
all the S(k), while one could assign weights differently to fa-
vor small-k scattering or near-K scattering. Currently, there
are no obvious metrics that stand out as superior to those used
here. However, the development of new, improved metrics re-
mains a potential direction of future research.

While our paths connect ground states to inherent struc-
tures, a more generic algorithm taking inherent structures to
ground states would be valuable. For instance, our methods
relied on knowledge of the ground state and inherent struc-
ture a priori. However, a more useful method would be to
find the nearest ground-state structure given only an inherent
structure. This algorithm would be far more powerful than the
current method. One could further quantify the possible rear-
rangements in the inherent structures in order to help produce
such an algorithm that relies on trial displacements that search
for small energy barriers nearby. This could lead to a statisti-
cal analysis of the types of rearrangements made in a system
to determine which are more likely to lead to a ground state.
In addition, a more in-depth study of the rearrangements from
RSA configurations to hyperuniform and stealthy configura-
tions would be meaningful. Perhaps one can distinguish the
relative contributions of the features of the interaction poten-
tial that contribute to the hyperuniformity and stealthiness of
a system.

The precise role of the pair interactions in the formation
of disordered ground states and stealthiness is unknown. Here,
we have determined that five-particle rings are a consequence
of the first two minima in the overlap potential v(r) defined
by Eq. (7). The ground-state behavior holds for a class of
potentials,4 and we strongly suspect that similar behavior in
the inherent structure analysis may generally hold as well. A
systematic study involving the determination of ground states
for the truncated overlap potential in Eq. (7) might help un-
derstand how many local minima in v(r) are necessary for
disordered ground states to arise. The potential could be trun-
cated at the first, second, third, etc., minimum and numerical
procedures could be used to find ground-state structures. This
would encounter issues of rigor in that the structures found by
numerical methods may not touch the lower bound on φ. The
trivial lower bound for φ is zero (due to the non-negativity of
the overlap potential), but for the densities associated with the
disordered and wavy-crystalline regimes, the improved lower
bound, being S(k) must vanish for all k < K , is not applicable
to the truncated k-space overlap potential.

In addition, we observed that the shape of V (k), which
assigns weights to S(k) in the potential-energy function, ap-
parently influences the shape of the function S(k) for the in-
herent structures for χ < 0.58. Above this χ value, there was
no obvious connection between V (k) and S(k) for the inher-
ent structures. This raises the question as to whether the shape

of V (k) actually influences the shape of the function S(k) for
inherent structures. A simple study varying the shape of V (k),
but maintaining the compact support at K and the positivity
of V (k) would help answer this question.

Finally, while this collective coordinate setup was used
to understand and design new materials in two dimen-
sions, such as photonic bandgap materials,16 the extension
to three dimensions should be particularly fruitful. While we
have some understanding of stealthy ground states in three
dimensions,2, 4 the relations between inherent structures and
ground states may be different in three dimensions than in
two dimensions. Connecting these structural rearrangements
and physical properties can help to contribute to the next class
of three-dimensional photonic bandgap materials.
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