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We investigate numerically the structure, thermodynamics, and relaxation behavior of a family of

(n, 6) Lennard-Jones-like glass-forming binary mixtures interacting via pair potentials with variable

softness, fixed well depth, and fixed well depth location. These constraints give rise to progressively

more negative attractive tails upon softening, for separations greater than the potential energy min-

imum. Over the range of conditions examined, we find only modest dependence of structure on

softness. In contrast, decreasing the repulsive exponent from n = 12 to n = 7 causes the diffusiv-

ity to increase by as much as two orders of magnitude at fixed temperature and density, and pro-

duces mechanically stable packings (inherent structures) with cohesive energies that are, on average,

∼1.7 well depths per particle larger than for the corresponding Lennard-Jones (n = 12) case. The

softer liquids have markedly higher entropies and lower Kauzmann temperatures than their Lennard-

Jones (n = 12) counterparts, and they remain diffusive down to appreciably lower temperatures. We

find that softening leads to a modest increase in fragility. © 2011 American Institute of Physics.

[doi:10.1063/1.3627148]

I. INTRODUCTION

Understanding the microscopic origin of the pronounced

temperature dependence of structural relaxation in super-

cooled liquids, and the laboratory glass transition to which

this behavior gives rise, is a major open question in condensed

matter physics (see, e.g., Refs. 1–16). An important aspect of

this question is elucidating how specific features of molecu-

lar interactions, such as attractive and repulsive forces, influ-

ence the rich variety of phenomena associated with the glass

transition.17 Computer simulations are ideally suited to the

pursuit of this question because they allow interactions be-

tween particles to be varied in a systematic manner, thereby

enabling the investigation of the effects of changes in individ-

ual variables to be conducted with a level of specificity not

generally possible in experiments.

To date, relatively few investigations have explored

systematically the effects of changes in the interaction

potential upon viscous liquid behavior. Bordat et al.18, 19

investigated the dynamics of three different binary mixtures:

the Kob-Andersen Lennard-Jones mixture20 (80%A, 20%B,

ǫAA = 1.0, ǫBB = 0.5, ǫAB = 1.5, σAA = 1.0, σBB = 0.88,

and σAB = 0.8), and the two variants thereof in which the AA

interaction potential had repulsive and attractive exponents of

(8, 5) and (12, 11), respectively, while the well depth and its

location remained fixed. The anharmonicity of the pairwise

interaction energy is largest for the (8, 5) case and smallest for
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the (12, 11) model, with the Kob-Andersen mixture falling in

between. These authors found a positive correlation between

fragility,21 a measure of the sensitivity of the structural relax-

ation time to changes in temperature, and the anharmonicity

of the interaction potential. Berthier and Tarjus17, 22 inves-

tigated the effect of attractive forces in viscous liquids by

comparing the structure and dynamics of the Kob-Andersen

binary Lennard-Jones mixture to those of the corresponding

Weeks-Chandler-Andersen23 purely repulsive mixture, which

lacks the attractive tail. These authors found that at liquid-like

densities and at temperatures characteristic of viscous liquid

behavior, the dynamics is strongly influenced by the attractive

forces. Michele et al. investigated the scaling of the dynam-

ics of soft spheres upon varying the repulsive exponent,

and found that the temperature dependence of the diffu-

sivity collapses onto a universal curve upon rescaling the

temperature.24 It has recently been shown experimentally that

colloidal particles exhibit decreasing fragility with increasing

softness,25 in apparent contradiction with the computational

studies of Bordat et al. Krekelberg et al.26 investigated

the effects of short-range attractions on fluid structure and

dynamics by comparing the properties of the hard-sphere and

square-well systems. Pond et al.27 compared the applicability

of the generalized entropy-scaling approach28, 29 for estimat-

ing transport properties in several repulsive models (soft-

sphere, Gaussian,30 and Hertzian31). In addition to the above-

mentioned studies, in which explicit perturbations of the

interparticle interactions were investigated, it should also be

mentioned that the accepted liquid-state picture whereby

repulsive forces play a dominant role in determining the

structure, with attractive forces providing a uniform co-

hesive background,23 underlies important recent work on
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viscous liquids. This includes the successful temperature

and density scaling of supercooled liquid dynamics (e.g.,

Refs. 32–36), and a promising picture of liquid-state reg-

ularities based on the notion of strong pressure-energy

correlations (e.g., Refs. 37–41).

It appears useful, in light of the above-cited work, to for-

mulate models in which the specific aspects of interparticle

interactions can be systematically perturbed, and to investi-

gate the consequences of such perturbations on structure, dy-

namics, and thermodynamics, with emphasis on supercooled

states. This is the task that we undertake here. Specifically,

we construct a family of generalized Lennard-Jones binary

mixtures with tunable softness, fixed well depth, and fixed

well location. We investigate computationally a broad spec-

trum of the thermodynamic and dynamic properties as a func-

tion of softness. In Sec. II, we define the model and provide

details of the computational methods utilized in our investiga-

tion. The thermodynamic properties of the family of mixtures

are presented and discussed in Sec. III, and the corresponding

analysis for dynamic properties is the subject of Sec. IV. The

principal conclusions and suggestions for further inquiry are

presented in Sec. V.

II. METHODS

A. Definition of potentials

Starting from the well-known (12, 6) Lennard-Jones (LJ)

potential,

φLJ (r) = 4ǫ

[

(σ

r

)12

−

(σ

r

)6
]

, (1)

we define, for a given repulsive exponent n, a generalized

(n, 6) potential with the following functional form:

φ = 4ǫ

[

λ
(σ

r

)n

− α
(σ

r

)6
]

, (2)

where

λ =
3

2

(

2n/6

n − 6

)

, α =
n

2(n − 6)
. (3)

λ and α are chosen such that the well depth and location of the

minimum of the generalized (n, 6) potentials coincide with

the minimum of the standard (12, 6) LJ potential (Figure 1).

The second and third derivatives of φ with respect to r , eval-

uated at r = 21/6σ , where φ′(r) = 0, are given by

σ 2φ′′/ǫ = 22/3 · 3n, (4)

σ 3φ′′′/ǫ = −21/2 · 3n(n + 9). (5)

Thus, we have a family of potentials of varying softness,

with the repulsive exponent n as the tuning parameter, with all

members of the family sharing identical characteristic energy

and length. It is important to point out that the constraints of

invariant energy and length scales (well depth and well depth

location) give rise to progressively stronger attractive energies

(more negative attractive tails) for r > 21/6σ upon decreasing

n (see Figure 1). Such constrained softening will be shown

FIG. 1. The family of potentials used in this work. The arrows show the

effect of softening.

to have a pronounced effect, particularly on the energy of the

liquid and its inherent structures.42

In this study, we consider the family of potentials defined

by Eq. (2), with n = 7, 8, 9, 10, 11, 12. Ahmed and Sadus43

investigated solid-liquid equilibria in a family of potentials

closely related to those used in this work. Several authors

have investigated vapor-liquid coexistence in (n, 6) or (n,m)

potentials.44–47 The usefulness of such models in the coarse-

graining applications has also received attention.47, 48

B. Simulation details

For each interaction potential, we study the well-known

binary glass-forming mixture as parameterized by Kob and

Andersen,20 namely, a mixture of 80%A particles and 20%B

particles, with parameters ǫAA = 1.0, ǫBB = 0.5, ǫAB = 1.5,

σAA = 1.0, σBB = 0.88, and σAB = 0.8. Both types of parti-

cles have the same mass, m. Throughout this paper, all quan-

tities are expressed in reduced units: length in units of σAA,

temperature in units of ǫAA/kB , where kB is the Boltzmann’s

constant, and time in units of σAA(m/ǫAA)1/2. In order to

ensure continuity of the potential and its first derivative at

the potential cutoff (continuity needed for energy minimiza-

tion calculations), we apply a shifted force correction to the

potentials:

φsf (r) =

{

φ(r) − φ(rc) − (r − rc)φ′(rc) r ≤ rc

0 r > rc

, (6)

where φ(r) is the pair potential. To minimize the effects of the

shift on the shape of the various potentials, we choose a rather

large cutoff, rc = 3.5. Our computational cell consists of 500

particles in a box of volume V = (7.368)3, corresponding to

a reduced density of ρ = 1.25. Periodic boundary conditions

are applied in all directions. The velocity Verlet algorithm

of numerical integration is used, and the molecular dynamics

time step is 0.002. The system is initialized as an fcc lattice,

where the identity of a particle is selected at random, while

maintaining the overall 4 : 1 ratio of A to B particles, and is

then melted at a high temperature of T = 5.0. It is then cooled

to the desired temperature and equilibrated for 2.5 × 105 time
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FIG. 2. Sastry curves showing the dependence of inherent structure pres-

sure upon density. Each point is the average of 100 energy minimizations at

constant volume starting from equilibrated liquid configurations at T = 1.0.

Note the progressive destabilization of inherent structures upon softening,

such that for n = 7, inherent structures with ρ ≤ 1.2 are fractured and spa-

tially inhomogeneous.

steps. A coordinate snapshot is taken at every 5000 time

steps thereafter. The simulations are run at fixed particle

number, total volume, and temperature (N,V, T ), with a

Nose-Hoover thermostat.49

To study the underlying inherent structures42 embedded

in the system’s multidimensional energy landscape,1 we

perform energy minimization on each coordinate snapshot

by applying the Fletcher and Reeves50 method of conjugate

gradients. The particles in the system are moved iteratively

along the gradient of the potential energy landscape until

U (rN ), the potential energy as a function of the system’s

3N translational degrees of freedom, is at a local minimum.

The criterion for convergence is satisfied when successive

iterations reduce the energy per particle by less than 10−7.

The simulation density of 1.25 is slightly higher than

used in the earlier studies of the same 80-20 Kob and

Andersen system interacting via the standard (12, 6) LJ

potential.51 It was found that at a density of 1.2, a system

interacting via the n = 7 potential cavitates upon isochoric

energy minimization, creating fractures in the inherent

structure configurations. The reason for this is apparent when

we examine the so-called Sastry curves52 for this family of

potentials (i.e., the relationship between inherent structure

pressure and density, also called the equation of state of the

energy landscape53)(Figure 2). The Sastry density, which cor-

responds to the minimum pressure along the curve, is the limit

of mechanical stability of the inherent structures.54 Below the

Sastry density, fractures form in the inherent structure because

the system cannot simultaneously satisfy mechanical stability

and spatial homogeneity. Thus, as the interaction potential is

softened, the inherent structures become mechanically unsta-

ble at progressively higher densities. We thus choose a density

of 1.25 to ensure that the inherent structures are fracture-free

for all values of the repulsive exponent used in this work.

FIG. 3. The AA, AB, and BB radial distribution functions for both liquid configurations (top row) and inherent structures (bottom row) at ρ = 1.25, for three

values of the repulsive exponent. The liquid configurations are equilibrated at T = 1.2; the inherent structures are obtained from the corresponding equilibrated

liquids at T = 1.2.
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III. RESULTS AND DISCUSSION: THERMODYNAMIC
AND STRUCTURAL PROPERTIES

A. Radial distribution

For each of the six repulsive exponents considered,

we calculate the three radial distribution functions, gAA(r),

gAB(r), and gBB(r), for both liquid and inherent structure

configurations. Representative results for gAA(r), gAB(r), and

gBB(r) of the liquid configurations, equilibrated at T = 1.2,

are shown in the top row of Figure 3, for exponents n

= 7, 9, 12, and the corresponding inherent structure radial

distribution functions are shown in the bottom row of

Figure 3. It can be seen that radial distribution functions are

very similar for the three exponents; the inherent structure

curves are nearly identical, while the corresponding liquid

configuration curves obtained before minimization exhibit

only a modest dependence on n. Qualitatively similar results

are obtained across the range of temperatures explored

in this work (0.3 ≤ T ≤ 2.0). Thus, across the range of

conditions investigated in this work, the softening of the

interaction potential and the resulting increase in attractive

energies beyond the potential minimum have only a modest

effect on the liquid structure, and a negligible effect on the

corresponding inherent structures. This is in contrast with

several transport and thermodynamic properties reported in

the following sections.

B. Energy

Figure 4 shows the equilibrium potential energy as a

function of temperature for n = 7, . . . , 12. The marked de-

crease in energy upon softening is in sharp contrast with the

corresponding insensitivity of structure (compare Figures 3

and 4). Although surprising at first given that the family of

potentials has fixed well depth by construction, the behavior

shown in Figure 4 is a direct consequence of the progressively

stronger attractions upon decreasing n (see Figure 1).

The same pronounced energetic stabilization upon soft-

ening of the potential (and the consequent increase in attrac-

tive energies beyond the potential energy minimum) can also

FIG. 4. Configurational energies per particle, for the equilibrated liquids

at ρ = 1.25.

be seen in the inherent structures (IS), as shown in Figure 5,

where each point is the average of 2000 minimizations. Note

that the lowest attainable mean inherent structure energy per

particle decreases from −8.28 (n = 12) to −9.93 (n = 7). It

is clear that the increase in attractive energies caused by soft-

ening allows the system to sample deeper basins in its energy

landscape. In addition, the onset temperature, below which

the depth of sampled inherent structures depends sensitively

on the temperature at which the liquid is equilibrated prior

to minimization, decreases upon softening. Thus, our con-

strained softening, which preserves the characteristic energy

and length scales and thereby gives rise to enhanced attrac-

tions at separations exceeding the potential energy minimum,

allows the system to more effectively sample its underlying

energy landscape at fixed temperature. Equivalently, it en-

ables the extension of liquid-like behavior to progressively

lower temperatures. Indeed, a low temperature for n = 12

(e.g., T = 0.55; see Figure 5) still corresponds to a high tem-

perature for n = 7.

C. Entropy

We calculate the entropy associated with sampling

different basins in the underlying energy landscape,1 com-

monly referred to as configurational entropy, Sconf , in the

literature on supercooled liquids.55, 56 Following the method-

ology of Sciortino and co-workers, we approximate this

quantity as the difference between the entropy of the

equilibrium liquid, Sliq , and the harmonic entropy of a

disordered solid, Ssol . The later is obtained from the eigen-

frequency spectrum of inherent structures generated from the

equilibrium liquid at the given T and ρ.

The liquid entropy is calculated by thermodynamic in-

tegration. We begin with an ideal gas reference point (T

= 5.0, ρ = 0.01), where the entropy is known, and integrate

along the T = 5.0 isotherm to the density studied, ρ = 1.25,

using the thermodynamic identity

S(T , ρ) = Sideal gas(T , ρ) +
U (T , ρ)

T
+

∫ N/ρ

∞

PexdV ′

T
,

(7)

where U is the potential energy and Pex is the excess pressure

over the ideal-gas value at the same temperature and density.

For a binary ideal gas mixture,

Sideal gas(T , ρ)

NkB

= −
NA

N
ln

(

NA

N

)

−
NB

N
ln

(

NB

N

)

+
3

2
ln

(

mV 2/3

β¯22π

)

− lnN +
5

2
, (8)

where NA and NB are the number of A and B particles, re-

spectively, N = NA + NB , V is the volume, and β = 1/kBT .

The last integral in Eq. (7) is evaluated numerically (Pex is

calculated at discrete steps of the density ρ from 0.01 to 1.25

in steps of 0.01).
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FIG. 5. Mean inherent structure energies as a function of the temperature prior to energy minimization, at ρ = 1.25, for the various potentials investigated in

this work.

Once we have S(T = 5.0, ρ = 1.25), we can then

integrate along the isochoric path ρ = 1.25 to any

temperature T :

Sliq (T , ρ = 1.25)

= S(T = 5.0, ρ = 1.25) +

∫ T

T =5.0

CV (T ′)

T ′
dT ′, (9)

where CV (T ) = (∂U (T )/∂T )ρ + 3/2NkB . For all the in-

teraction potentials considered, we find that U (T ) obeys

Rosenfeld-Tarazona scaling,57 U ∼ T 3/5 (Figure 6). This

allows us to compute the integral in Eq. (9) analytically

and provides a reliable extrapolation below the temperatures

studied.

FIG. 6. Configurational energies of the equilibrated liquids plotted as a func-

tion of T 3/5. Lines are linear fits to the data, showing precise agreement with

Rosenfeld-Tarazona scaling, U ∼ T 3/5.

The entropy of the disordered solid, Ssol is computed by

a normal mode analysis performed on the underlying inherent

structures by applying the harmonic approximation:

Ssol(T , V ) =

3N−3
∑

j=1

[1 − ln(β¯ωj )], (10)

where ωj is the eigenfrequency of the j th normal mode. For

each exponent n and temperature T , ωj was calculated by

evaluating the eigenvalues of the Hessian Matrix for 2000 in-

herent structure configurations.
∑

ln ωj was then averaged

over all configurations and used in Eq. (10) to calculate the

solid entropy in the thermodynamic limit. We find that when

the explicit T dependence is subtracted from Ssol , the result-

ing difference Ssol − ln T shows a weak T dependence and

can be fitted to a simple quadratic function.56 This fit allows

us to also extrapolate Ssol to lower temperatures than those

studied. To check the validity of the harmonic approximation

applied here, we evaluate u(T ) − eIS(T ) − 3/2kBT for each

of our potentials (Figure 7). This quantity vanishes for a har-

monic system. It can be seen that in the range of temperatures

for which entropy calculations were performed (see Figure 8),

deviations from harmonic behavior are quite minor.

Figure 8 shows sconf = sliq − ssol as a function of tem-

perature T , where s = S/N . We see that softening (lowering

n) results in an appreciable increase in the configurational en-

tropy for a given temperature. We also see a significant and

systematic lowering of the Kauzmann temperature, TK , de-

fined by the condition58 sconf (TK ) = 0, as the softness of

the interaction potential is increased. Furthermore, Figure 9

shows that the increase in the configurational entropy upon

softening is not simply a result of a lower Kauzmann tem-
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FIG. 7. Deviation of the difference between the average equilibrium config-

urational energy u(T ) and the average inherent structure energy, eIS(T ), and

the corresponding quantity for a purely harmonic system, 3/2kBT

perature; when plotted as a function of T/TK , sconf increases

more rapidly with the scaled temperature as the potential is

softened. This shows that softening of the interaction poten-

tial results in an increase in the number of basins that the sys-

tem samples, illustrating the fact that a modest change in the

interaction potential has a pronounced effect on the system’s

low-temperature thermodynamics.

IV. RESULTS AND DISCUSSION: DYNAMIC
PROPERTIES

A. Diffusion

For each repulsive exponent n, we calculate the diffusion

coefficient using the standard Einstein equation:

D =
1

6
lim
t→∞

d

dt
〈�r(t)2〉, (11)

where D is the diffusion coefficient and 〈�r(τ )2〉 is the

mean squared displacement of the particles after an in-

terval of time τ . Figure 10 shows the diffusion coeffi-

cient of the A particles for the various potentials as a

FIG. 8. Configurational entropies per particle as a function of temperature,

at ρ = 1.25, for the various potentials investigated in this work. The inset

shows the dependence of the temperature where sconf = 0, upon the repulsive

exponent.

FIG. 9. Configurational entropies as a function of scaled temperature, at ρ

= 1.25. The increase in configurational entropy upon softening is evident.

function of temperature. While we report here the dif-

fusion results for A particles, we note that the diffu-

sion properties of B particles are qualitatively similar. It

can be seen that softening causes a pronounced increase

in the diffusion coefficient, resulting in particles interacting

via softer potentials to remain diffusive down to appreciably

lower temperatures. The inset to Figure 10 shows the temper-

ature at which D = 10−4, as a function of n (the line though

the D vs. T data is a simple logarithmic fit). Note that this

characteristic temperature, like TK (Figure 8, inset), decreases

by a factor of 2 upon decreasing n from 12 to 7.

B. Self-intermediate scattering function

To further quantitatively describe the dynamics

of the systems under consideration, we compute the

self-intermediate scattering function (SISF) Fs(k, t)

= 〈exp[ik · �r(t)]〉, where �r(t) is the displacement

experienced by a particle in time t . This quantity, evaluated

for A particles, is shown in Figure 11. The trajectory of

FIG. 10. Diffusion coefficients of A particles at ρ = 1.25, as a function of

temperature, for the various potentials studied in this work. Lines are fits of

the form logD = A + B log(T + C). The inset shows the dependence of T0,

such that D(T0) = 10−4, upon the repulsive exponent.
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FIG. 11. Shifted and normalized self-intermediate scattering function for A

particles, evaluated at ρ = 1.25 and k = 7.28σ−1
AA, with t0 = 2.0. The curves

shown correspond to n = 12.

the system was recorded for 1.5 × 107 times steps, with

new time origins chosen every 1000 time steps, to provide

independent “experiments” over which to average. The wave

vector chosen is k = 7.28σ−1
AA, which is close to the first

peak of the static structure factor. We shift the time origin to

t0 = 2.0 to eliminate the Gaussian time dependence at short

t , and normalize Fs(k, t) to the value at t0. We now define

a relaxation time τ such that the shifted and normalized

self-intermediate scattering function equals 1/e.

Figure 12 shows the characteristic relaxation times as a

function of temperature for the family of interaction potentials

considered in this study. The solid lines are fits to the data

using the Vogel-Tammann-Fulcher (VTF) equation,

ln

(

τ

τ0

)

=
B

T − TVTF

, (12)

where TVTF is the VTF singular temperature, τ0 is the high-

temperature limit of τ , and kBB is a characteristic energy (τ0,

TVTF, and B were used as fitting parameters). For each ex-

ponent, the τ0 obtained from fitting is of order 1. The VTF

equation is used here simply as a fitting procedure, in order to

FIG. 12. Temperature dependence of the structural relaxation times at ρ

= 1.25, obtained from the self-intermediate scattering function (Figure 11),

using the condition Fs (k, t − t0)/Fs (k, t0) = e−1. The lines are VTF fits (see

text).

FIG. 13. Relationship between structural relaxation time obtained from the

self-intermediate scattering function, and the configurational entropy. Lin-

ear fits to the data show good agreement with the Adam-Gibbs expression,

Eq. (13).

extract the characteristic temperature where τ = 104 (dashed

line in Figure 12). This, as well as T0 (Figure 10) and TK

(Figure 8) is used to investigate the dependence of fragility

on the repulsive exponent n (see below). In general, for all of

the repulsive exponents considered, the fit of the data to the

VTF equation is quite good.

Figure 13 shows a linear relationship between the

logarithm of the characteristic relaxation time, τ and the

inverse of the configurational entropy multiplied by temper-

ature, 1/T sconf , calculated in Sec. III C. Thus, our systems

behave in a manner that is consistent with the Adam-Gibbs

equation:59

τ (T ) = A exp

(

B

T sconf (T )

)

, (13)

where A and B are constants. This correspondence between

dynamics and thermodynamics suggests that relaxation is

influenced by the topography of the energy landscape.51

FIG. 14. Fragility plot using diffusion as a relaxation rate measure, at ρ

= 1.25. The diffusion coefficients are for A particles (Figure 10), and T0 is

chosen such that D(T0) = 10−4.
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FIG. 15. Fragility plot using τ as a relaxation rate measure (see Figure 11),

at ρ = 1.25. T0 is chosen such that τ (T0) = 104 (see Figure 12).

C. Fragility

We now examine the effect of softening on the fragility

of the family of glass formers. From Sec. IV A and IV B, we

have two measures of relaxation rates for each repulsive inter-

action exponent: the inverse of the diffusion coefficient, 1/D

and the characteristic time τ where Fs(k, τ ) = 1/e. These

measures can be used to produce the Angell plot,1, 21 in order

to compare the fragility of the systems under differing inter-

action potentials. For inverse diffusion, we choose the char-

acteristic temperature, T D
0 , to be such that D(T D

0 ) = 10−4

(Figure 10). For the characteristic time based on the SISF, we

investigate two characteristic temperatures: T SISF
0 , such that

τ (T SISF
0 ) = 104, and TK .

Figures 14–16 are the resulting Angell plots. Figure 14

shows a clear collapse of all the curves, indicating no effect

of softening on fragility when diffusivity is used as a measure

of relaxation rate. It remains to be seen whether this trend

persists when longer simulations at lower temperatures are

used. A modest increase in fragility upon softening can be

seen from Figure 15 if τ is used as a relaxation measure. Use

of TK as the characteristic temperature accentuates this trend

(Figure 16), although the effect is not large. It should be noted

FIG. 16. Same as Figure 15, but using TK as the characteristic temperature

(see Figure 8).

though, that whereas in Figures 14 and 15 the attainable range

of T0/T is close to 1, the lowest scaled temperature attained

in Figure 16 is 0.65.

Figures 14–16 thus illustrate not only a modest de-

pendence of fragility upon constrained softening, but, more

broadly, they point to a challenge inherent in calculating

fragility computationally. This arises because, at the temper-

atures that can be sampled in MD simulations, the system is

considerably farther away from the structural arrest than in

the corresponding experimental determination of fragilities.

V. CONCLUSIONS

In this paper, we have investigated numerically the struc-

tural, thermodynamic and dynamic properties of a family

of potentials of variable softness, and fixed well depth and

well depth location. In order to explore the low-temperature

non-crystalline behavior we considered, for each value of

the repulsive exponent, a Kob-Andersen glass-forming binary

mixture.20 Simulations were conducted at a single density,

chosen to be high enough to prevent cavitation even for the

softest version of the potential investigated here.

Liquid structure, as described by the pair correlation

functions, is only moderately sensitive to constrained vari-

ations in softness, and inherent structures are remarkably

insensitive to such a perturbation. In sharp contrast, both

dynamics and thermodynamics exhibit marked sensitivity to

softness. Upon decreasing the repulsive exponent from 12

to 7, the translational diffusion coefficient increases by as

much as two orders of magnitude, and liquids interacting via

softer potentials remain diffusive down to appreciably lower

temperatures. The average configurational energy per particle

is larger in magnitude for the softer (n = 7) equilibrium liquid

mixture than for the Lennard-Jones (n = 12) counterpart by

more than two full well depths, reflecting the progressively

stronger attractions that ensue upon constrained softening,

while satisfying the fixed well depth and location constraints

(Figure 1). Accordingly, the average inherent structure ener-

gies are appreciably more negative for the softer mixtures.

The lowest-energy mechanically stable packings (inherent

structures) that we were able to form, corresponding to the

softer extreme considered here (n = 7), possess on average

an additional cohesive energy of roughly 1.7 well depths per

particle relative to their n = 12 counterparts (Figure 5). This

is a consequence of the stronger attractive energies (more

negative attractive tails) at separations greater than the well

depth that arise as a result of softening.

Progressive softening also results in an increase in en-

tropy, a decrease in the Kauzmann temperature, and a marked

extension towards lower temperatures of the conditions at

which equilibrium liquid behavior can be observed. Con-

strained softening, in other words, leads to enhanced entropy

and mobility, more stable particle packings, and diffusive be-

havior at lower temperatures. We find only a modest increase

in the fragility upon softening, and in order to uncover this

trend it is necessary to use both extrapolated relaxation times

and extrapolated characteristic temperatures. This points to

the challenge of calculating fragilities by molecular-based
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computer simulation, a challenge that originates with the dif-

ficulty of sampling low enough temperatures.

The rich behavior identified in the course of this research

suggests several directions for future work. In light of the

contrast of our results with experimental observations for

colloidal particles25 in which softening leads to a progressive

decrease in fragility, it would be interesting to extend the

present fragility calculations to other densities. This would

allow exploration of regimes in which particles sample

different regions of their respective pair potentials. More

generally, extending the present structural, dynamic, and

thermodynamic calculations to a broader range of conditions,

including low-density states leading to cavitation in the softer

models (Figure 2), is important in order to acquire a fuller

picture of this family of potentials. It is also of interest to

explore the possibility of scaling behavior, whereby physical

properties for the various models may be collapsed into a

single curve by appropriate scaling of temperature and/or

density. The pronounced sensitivity of inherent structure

energy to softness (Figure 5) may be of relevance in opti-

mization problems, where strategies involving appropriately

chosen cycles of softness perturbations might be useful

for locating deep potential energy minima. Other families

of models can be formulated, with an eye to introducing

similar systematic perturbations of alternative aspects of the

interaction potential, such as attractions. We plan to report

our results on several of these topics in future papers.
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