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I. INTRODUCTION

Kinetic processes in condensed phases display a wide di-
versity of observable time scales and measurable outcomes.
These processes typically involve cooperative rearrangement
motions of many of the constituent particles (atoms, ions,
molecules). This contrasts starkly with the dynamical situa-
tion in dilute gas phases where conceptually simpler indepen-
dent particle pair collisions dominate. It is hardly surprising
that both experimental and theoretical research continue to be
challenged in providing quantitative explanations for many
condensed phase kinetic phenomena. In particular, relaxation
processes in strongly supercooled liquids and in the glasses
they form, as well as in other classes of amorphous solids,
present many of these kinds of challenges to physical chem-
istry, chemical physics, and materials science.1 The objective
of the present paper is to describe, analyze, and interpret a
relatively simple model that mimics some aspects of coopera-
tive rearrangement processes in nearly jammed systems of
hard particles. A recent review article covers some background
information about the multidimensional configuration space
description that is a natural representation for the hard par-
ticle phenomena to be considered.2 Although the model de-
scribed below involves oversimplification of physical reality, it
does contain features that may serve to stimulate creation of
more sophisticated approaches that are capable of producing
deeper physical insights.

Attention focuses here on an elementary family of dynamical
systems. Each of these contains ng 6 identical hard disks that are
mutually trapped just inside the circumference of a large im-
penetrable circular boundary. Basic geometric details appear in
the following section II. This is followed in section III with an
analysis of the limited configuration space available to the disk set
when the outer boundary radius lies in the trapping interval for a
chosen n. With that background, section IV then describes the
“escape gateway” that opens up once the boundary radius has
been incremented slightly above the trapping threshold. Utilizing

those concepts, section V presents an estimate of the escape rate.
Final remarks appear in section VI.

As a matter of passing interest, it may be worth noting that the
dynamics of the model investigated here presents a rough analog
to the Lindemann�Hinshelwood picture of unimolecular de-
composition.3 In that description of chemical kinetics, following
collision-induced energy activation, a fluctuation in vibrational
intensity localized at a chemical bond in a molecule causes that
bond to rupture. In the present model, a specific configurational
fluctuation in the trapped cluster described below produces local
disruption of an ordered initial structure, causing that initial
structure subsequently to fall apart.

II. MODEL

Figure 1 presents the geometric starting point, for the specific
case of n = 12 unit-diameter rigid disks placed just inside, and in
contact with, a circular confining boundary. These disks are
subject to strict nonoverlap restrictions among themselves, and
with the encompassing circular boundary. As illustrated, the
outer circle has the minimum radius Rmin(n) + 1/2 that is
possible with the given number of disks, where Rmin(n) in this
configuration is the distance from the center of the bounding
circle to the center of any one of the n disks. Simple trigonometry
leads to the relation

RminðnÞ ¼ 2�1=2½1� cosð2π=nÞ��1=2 ð1Þ

Although the set of n disks in this configuration can rotate as a
whole around the interior of the boundary, they are otherwise

Special Issue: H. Eugene Stanley Festschrift

Received: May 26, 2011

ABSTRACT: A simple kinetic model is introduced as an elementary contribution to
understanding cooperative relaxation processes in condensed matter. This model
involves n hard disks mutually trapped initially just inside an impenetrable circular
boundary. Disk invasion of the interior of the system requires one of the disks to
discover an exit passageway that only appears when the other disks collectively move
out of the way. Cell approximations have been used to estimate the escape rate, in
particular to show how that rate depends on n and on the increment of the boundary
circle radius above the escape threshold.



14185 dx.doi.org/10.1021/jp204928j |J. Phys. Chem. B 2011, 115, 14184–14189

The Journal of Physical Chemistry B ARTICLE

trapped by their nonoverlap property and thus are unable to
move into the interior of the large circular area.

Increasing the radius of the outer boundary by a small
increment will allow the disks to move a limited amount relative
to one another and relative to the boundary, in particular to
eliminate all contacts. But unless that increased boundary radius
has exceeded a threshold value Resc(n) + 1/2 > Rmin(n) +1/2 for
escape, the disks will still be trapped radially by one another in the
vicinity of the outer boundary, maintaining their same sequential
order around the circumference. The geometric criterion that
determines Resc(n) is illustrated in Figure 2. Before the increasing
boundary radius attains that threshold value, displacing any one
of the n disks to the maximum extent possible toward the system
center (i.e., to the greatest inward separation from the circular
boundary) forces the other n� 1 disks radially outward and into
contact with the boundary and with one another. The escape
threshold is finally attained when the chosen disk with maximum
inward displacement and its two immediate neighbors have their
centers along a straight line. As a result this disk can just slip past
those neighbors, ultimately permitting unjamming of all disks,

which then are free to occupy the central portion of the large
circular system. Although it is not possible to produce an explicit
closed form for Resc(n), simple trigonometric analysis yields the
following implicit relation (involving arc sine functions asn) that
can be used to evaluate that threshold quantity numerically:

asn
1

RescðnÞ
� �

þ ðn� 2Þ asn 1
2RescðnÞ
� �

¼ π ð2Þ

Table 1 presents computed values for the two quantities
Rmin(n) and Resc(n) when the number of disks lies in the modest
range 6e ne 16. It is also worth noting that eqs 1 and 2 can be
used to develop asymptotic expansions applicable to the large-n
regime. The results are the following:
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These expressions imply that the trapping interval for the boun-
dary radius has a large-n shrinkage obeying the asymptotic form

Resc � Rmin ¼ π

2n2
þ O

π

n

� �4
" #

ð5Þ

III. AVAILABLE CONFIGURATION SPACE

If the radius R + 1/2 of the bounding circle is sufficiently large,
the 2n-dimensional configuration space available to the unit-
diameter disks within that boundary is connected. In other
words, any one arrangement with disk centers at r1, ..., rn that
does not violate overlap conditions can be continuously de-
formed into any other nonoverlap arrangement r10, ..., rn0 along a
path whose entirety also avoids overlaps. However, as R declines
to a value just above Resc(n), this connected manifold begins to

Figure 1. Cooperative radial trapping of twelve unit disks at a circular
boundary. In the configuration shown, choice of the boundary radius
Rmin + 1/2 forces all twelve disks to remain in contact with the boundary
and with two neighboring disks. The disk arrangement can rotate as a
rigid object around the boundary, but any inward displacements are
prevented by nonoverlap constraints.

Figure 2. Critical inward escape configuration. This occurs when the
boundary circle radius increases to Resc + 1/2. For any one of the disks to
slide inward past its two neighbors as indicated by the short arrow, all but
that escapee must remain strictly in contact with the boundary and with
neighbors.

Table 1. Numerical Values for the Minimum and Escape
Radii Rmin and Resc for Small Numbers n of Unit-Diameter
Disks

n Rmin(n) Resc(n)

6 1.000 000 000 1.072 356 268

7 1.152 382 436 1.197 605 338

8 1.306 562 965 1.338 166 692

9 1.461 902 200 1.485 469 731

10 1.618 033 989 1.636 385 973

11 1.774 732 766 1.789 477 262

12 1.931 851 652 1.943 983 369

13 2.089 290 734 2.099 462 579

14 2.246 979 604 2.255 640 000

15 2.404 867 173 2.412 335 361

16 2.562 915 448 2.569 425 450
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extrude a group of geometrically equivalent small portions that
correspond to clustering of the n disks just inside the boundary
circumference. This clustering can occur in (n � 1)! distinct
ways, depending on the circumferential arrangement order
adopted by the n disks. When R declines through Resc(n), very
narrow connection tubes (whose details are analyzed below)
close up, disconnecting the (n � 1)! extruded pieces from the
dominant available region and isolating them from one another.
Continued reduction inR causes shrinkage of the 2n-dimensional
content of each of the boundary-clustering regions, all (n� 1)! of
which simultaneously vanish at R = Rmin(n).

Although it is not a matter of primary concern in the
following, it should be noted in passing that if n is sufficiently
large this kind of disconnection process for the available
configuration space can in principle repeat upon further decline
in R. It is possible for n � 1 disks to become trapped along the
circular boundary, while one disk enjoys motion freedom
within the interior of the circular boundary. Subsequently,
provided that n is sufficiently large, n � 2 disks could be
boundary-trapped at even smaller R with 2 disks free to move
in the interior, followed by further analogous disconnection
events. This sequence of disconnections and jamming pro-
cesses eventually terminates as boundary radius R + 1/2 shrinks
toward the minimum possible value that can accommodate n
disks jammed within its interior.4

The natural way to specify the n disk positions is to use polar
coordinates whose origin is at the center of the encompassing
boundary circle. These coordinates will be written as rj, θj
respectively for the radial distance and polar angle of disk j
(1e je n). For themoment attention will focus on disk trapping
resulting from Rmin(n) < R < Resc(n), with restriction to the disk
arrangement for which index j increases counterclockwise within
the outer boundary circumference. There are 2n nonoverlap
constraints that maintain the trapping situation. The first n are
simply due to the boundary confinement:

rj e R ð1 e j e nÞ ð6Þ
The remaining n constraints are the disk�pair nonoverlap
conditions:

jrjþ1ðrjþ1;θjþ1Þ � rjðrj;θjÞj g 1 ð1 e j e nÞ ð7Þ

with the convention that disk index n + 1� 1. When this last set
of constraints is expressed explicitly in terms of the polar
coordinates, one obtains

rj
2 þ rjþ1

2 � 2rjrjþ1 cosðθjþ1 � θjÞ g 1 ð1 e j e nÞ
ð8Þ

Inequalities (6) and (8) uniquely define the isolated region in the
2n-dimensional configuration space for the boundary-trapped
disk arrangement. The corresponding equalities define the 2n
bounding hypersurfaces for the trapping region.

As R approaches Rmin(n) from above, the 2n constraining
inequalities squeeze the isolated region to zero size in all but one
degree of freedom, specifically the one associated with simulta-
neous circumferential rotation of the full disk set. To describe this
asymptotic limit in detail, it is convenient to set

R ¼ RminðnÞ þ Δ ð9Þ

and for the trapped disk coordinates

rj ¼ R� δj � RminðnÞ þ Δ� δj ð1 e j e nÞ
θj ¼ θ1 þ ½2πðj� 1Þ=n� þ εj ð2 e j e nÞ ð10Þ

As the second of the expressions 10 indicates, by measuring j� 1
of the polar angles relative to θ1 the global rotation mode
becomes isolated from the details of disk relative displacements
that produce the vanishing of the region at Δ = 1. This directs
attention to the (2n � 1)-dimensional subspace of allowed
configurations that is orthogonal to coordinate θ1, and which
the 2n bounding hypersurfaces force to collapse to a point at R =
Rmin(n) in that subspace.

After linearization in terms of the vanishingly small quantities
Δ, δj, and εj, the constraint conditions in eqs 6 and 8 appear as
follows (1 e j e n):

δj g 0; 2Δ� δjþ1 � δj

þ 2�1=2½1� cosð2π=nÞ��3=2 sinð2π=nÞðεjþ1 � εjÞ g 0

ð11Þ
These 2n linear constraints on the δj and εj define a simplex
polytope in the (2n � 1)-dimensional subspace, i.e., a convex
bounded region enclosed by the minimum possible number of
flat hyperfaces.5 The fact that inequalities (11) are homogeneous
with degree unity implies that to be inside the simplex the
coordinates δ1, ..., δn, εn, ..., εnmust scale as the first power of the
control parameter Δ. This in turn implies that the (2n � 1)-
dimensional content of the simplex in the small-Δ limit must
have the form

CðnÞΔ2n � 1 ð12Þ
where C(n) > 0 will depend on n as indicated. When the
remaining rotational degree of freedom is included, the small-
Δ limit of the content for any one of the (n � 1)! separated
trapping regions will be

2πCðnÞ RminðnÞΔ2n � 1 ð13Þ
This expression represents the leading-order term in an expres-
sion for the content K(Δ,n) of each trapping region when
Rmin(n) e R e Resc(n):

KðΔ;nÞ ¼ 2πCðnÞ RminðnÞΔ2n � 1 þ OðΔ2nÞ ð14Þ
When R is close to, but slightly less than, its trapping upper limit
Resc(n), the trapping-region content expressed by K(Δ,n), com-
pared to its small-Δ limiting simplex form, is enhanced slightly by
bounding hypersurface curvature effects. These effects create the
precursor of n narrow escape channels into the large nontrapped
portion of available configuration space. One basic measure of
this developing protuberance is how close to the system center
one of the disks, e.g., disk number k, can approach as a function of
R. By comparison with the R = Resc(n) threshold illustrated in
Figure 2, the arrangement with the minimum possible distance rk
whenR is slightly less thanResc(n) would have the center of disk k
located slightly above the line connecting centers of its two
contact neighbors k� 1 and k + 1. As mentioned earlier, all disks
except k are then forced outward into contact with the large
bounding circle and into contact with one another. Denote this
R-dependent minimum distance available to disk k by s(R,n). It is
straightforward to derive the following quadratic equation which
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determines that distance:

s2 � ½2R cos ψðR;nÞ�s þ R2 � 1 ¼ 0 ð15Þ
in which the quantityψ(R,n) involves an arc cosine function acs:

ψðR;nÞ ¼ π� n� 2
2

� �
acs 1� 1

2R2

� �
ð16Þ

The formal solution pair is

sðR;nÞ ¼ Rfcos ψðR;nÞ ( ½cos2 ψðR;nÞ � 1 þ R�2�1=2g
ð17Þ

the upper sign is the relevant choice for disk trapping, while the
lower sign corresponds to a “mirror image” alternative disk-k
position that also contacts the two neighbors but has its center
below the straight line segment connecting the centers of those
neighbors.

Figure 3 provides a graph of s(R,n) vs R for n = 16. Both the
outer (s+) and the inner (s�) branches from eq 17 are shown,
with only the former directly relevant to the impending escape
process. The diverging rates of change of s+ and s� as R ap-
proaches Resc are a result of hypersurface curvature at the
boundary of the trapping region. Qualitatively similar results
would be obtained for other n values.

IV. ESCAPE PROCESS

The main objective of this investigation is to analyze the
escape rate from the multidimensional region of boundary-
trapped configurations when R slightly exceeds the threshold
value Resc(n). This radial excess will be denoted by

Δ� ¼ R� RescðnÞ ¼ Δ þ RminðnÞ � RescðnÞ ð18Þ
The escape rate can be inferred from an ensemble of nominally

identical systems whose initial configurations (t = 0) are uni-
formly distributed within one of the extrusion regions, with all
n disks of mass m subject to a Maxwell�Boltzmann velocity
distribution for absolute temperature T. Because each ensemble
member will be regarded as isolated, its subsequent dynamics
(t > 0) conserves both energy and angular momentum. The
relevant part of the ensemble’s time evolution can be summarized
by the time-dependent probability P(t) that escape has occurred.

With this convention one has

Pð0Þ ¼ 0
Pð þ∞Þ ¼ 1

ð19Þ

The latter of these relations is based on the supposition that the
disk system collisional dynamics within the trapping region is
ergodic, owing to the various relative orientations of the bound-
ing hypersurfaces, as well as to their small curvatures. The
ensemble-average mean lifetime of the temporarily trapped disk
arrangements prior to escape would be

τ ¼
Z ∞

0
½1� PðtÞ� dt ð20Þ

Of course with equal probability in the ensemble any one of the n
disks could be the one to lead the way to escape.

To complete the definition of P(t), it is necessary to specify
precisely what disk configurations amount to the escape “gate-
way” when Δ* > 0 . This involves identifying the location of the
narrowest part of the escape channel. For present purposes this
location will be identified as the radial coordinate rl for the first-
escaping disk, e.g., l, declining (i.e., passing inward) through the
value:

rl ¼ ̅sðR;nÞ
¼ R cos ψðR;nÞ
¼ ½RescðnÞ þ Δ�� cos ψ½RescðnÞ þ Δ�;n� ð21Þ

Note that this choice is formally the average of the two
solutions for s(R,n) presented in eq 17 above. This is the position
at which a disk hypothetically would have to experience the
greatest shrinkage in size to slip past its two unit-diameter
neighbors when Δ* < 0, but which functionally smoothly
continues to Δ* > 0. Alternatively, this can be identified as the
radial location of the midpoint connecting centers of disks l � 1
and l + 1 when all but disk l are forced against the outer bounding
circle, and forced into contact with one another. Figure 3 shows
the R dependence of s = (s+ + s�)/2 for n = 16 as a dashed curve.

The trapping region content K(Δ,n) shown earlier in eq 14
referred only to Rmin e R e Resc. However, it is now useful to
extend the definition of this symbol to refer to the content of one
of the extruded trapping regions for R > Resc (i.e., Δ* > 0) by
appending to the constraints in eqs 6 and 8 the escape gateway
conditions:

rj g ̅s ðR;nÞ ð1 e j e nÞ ð22Þ
This increases the number of bounding hypersurfaces defining
K(Δ,n) from the previous 2n to 3n. Provided that the increment
Δ* ofR above Resc is not too large, the escape gateways for each of
the n disks remain geometrically separated from each other. That
is, if prior to any escape one of the n disks were to move radially
inward to s, the other n � 1 disks would be constrained by the
nonoverlap conditions to remain at radial distances greater than
s. Let L(Δ*,n) stand for the (2n � 1)-dimensional manifold of
configurations for which one specific disk is at the escape
gateway, while the n � 1 others still have rj > s . As was the case
forK(Δ,n), this manifold also includes collective angular rotation
of the full disk set inside the large circular boundary. The set of n
suchmanifolds with total measure nL(Δ*,n) constitutes the set of
“leaks” through which K(Δ,n) loses its initial occupancy, as
described by P(t), eqs 19 and 20.

Figure 3. Outer (s+) and inner (s�) solutions of eq 15 vs R for n = 16
unit disks. The dashed curve shows s = (s+ + s�)/2, which specifies the
radial location of the exit gateway when R > Resc(n).
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Prior to an escape event for a given ensemble member, a K(Δ,n)
region contains a single 2n-dimensional configuration point, but
after escape it is empty. Formally speaking, that escape event causes
the multidimensional interior number density F(t) for K(Δ,n) to
drop discontinuously from 1/K(Δ,n) to zero. Upon averaging over
the postulated ensemble of systems, the time dependence of the
K(Δ,n)-contained number density would be described as

ÆFðtÞæ ¼ ½1� PðtÞ�=KðΔ;nÞ ð23Þ
This quantity will decline monotonically with time at a rate
determined by configurational point leakage across the n exit
manifolds each of measure L(Δ*,n). The expected average
current across these gateways depends on the hyperarea of the
n gateways, and on the exit current per unit hyperarea. At time t
the latter is determined by the presumed Maxwell�Boltzmann
velocity distribution, and the average number density. As a result
one has

dPðtÞ=dt ¼ nLðΔ�;nÞÆFðtÞæ

�
Z ∞

0
ð2πmkBTÞ�1=2v expð � v2=2mkBTÞ dv

ð24Þ
where kB is Boltzmann’s constant, and v represents the velocity
component from the full hyperspherically symmetric Maxwell�
Boltzmann distribution that is normal to the gateway hypersur-
face. By carrying out the velocity integration and inserting the
expression for mean density from eq 23, one finds that eq 24 is
equivalent to the following differential equation:

d½1� PðtÞ�
dt

¼ � mkBT
2π

� �1=2nLðΔ�;nÞ
KðΔ;nÞ ½1� PðtÞ� ð25Þ

Upon integrating this relation subject to the conditions in eqs 19,
one obtains the simple result

PðtÞ ¼ 1� expð � t=τÞ ð26Þ
where

τ ¼ mkBT
2π

� �1=2nLðΔ�;nÞ
KðΔ;nÞ ð27Þ

is the estimated mean residence lifetime in the trapping region,
eq 20.

V. ESCAPE RATE ESTIMATE

The next step requires evaluating, or at least estimating, the
magnitudes of the content measures K(Δ,n) and L(Δ*,n) for
small escape rates, i.e., for small Δ*. The specific objective is to
generate an expression for lifetime τ that explicitly indicates its
dependence on n andΔ* . For this purpose, a self-consistent “cell
approximation” will be utilized for the ring of n disks in the
vicinity of the bounding circle. Although such an approximation
may not be very precise for either quantity K(Δ,n) or L(n,Δ)
separately, the corresponding errors should be of comparable
relative magnitude, and hence tend to cancel in their ratio that is
required to determine τ, eq 27.

First consider the trapping situation, Rmin < R < Resc.
Introduce a “standard” configuration of the n disks for which

δj ¼ δ̂ ð1 e j e nÞ
εj ¼ 0 ð2 e j e nÞ ð28Þ

Nonoverlap restrictions require 0 e δ̂ e Δ . That is, in this
standard arrangement the n disks have a common radial distance
and a regular polar angle separation. Then if any one of the disks
is allowed to wander from its own standard position while the
remaining n� 1 remain fixed, that one disk will be confined to a
small isosceles triangle (in leading order in the unjamming
parameter Δ). Simple geometry leads to the conclusion that
the area of that triangle of single-disk displacements will be

Δ2 tanð2π=nÞ ð29Þ
which in the leading order considered is independent of δ̂. A
feasible cell approximation for K(Δ,n) can then be composed
multiplicatively of n� 1 triangle areas (29), and the radial and full
circumferential motion of disk j = 1:

KðΔ;nÞ ≈ ½Δ2 tanð2π=nÞ�n � 1
3Δ 3 2πRminðnÞ

¼ 2πRminðnÞΔ2n � 1½tanð2π=nÞ�n� 1 ð30Þ

To produce a corresponding cell approximation for L(Δ*,n),
first observe that the bounding circumference for the centers of
the n� 1 disks that are not at the escape threshold has increased
from 2πResc to 2πResc + Δ* as Δ* has increased from zero. This
amounts to 2πΔ*/(n � 1) per disk, a distance that can serve
effectively as a tangential direction base for a cell-approximation
displacement triangle. The radial-direction height of such a
triangle can be reasonably estimated as Δ* itself, thus leading
to triangle area π(Δ*)2/(n�1). In analogy to the form shown in
eq 30 for K(Δ,n), the L(Δ*,n) estimate is built up from the
product of n � 1 disk displacement triangle factors, and the
circular rotational freedom for the single disk at the escape
threshold:

LðΔ� ;nÞ ≈ ½πðΔ�Þ2=ðn� 1Þ�n � 1
3 2π ̅s ½RescðnÞ þ Δ�;n�

≈2πnðn� 1Þ1 � nðΔ�Þ2n � 2
̅s ½RescðnÞ;n� ð31Þ

The latter form shown retains only the leading order in the small
parameter Δ*, which is sufficient for present purposes.

Substituting the last two results into eq 27 finally yields the
desired estimate for the escape lifetime:

τ ≈
mkBT
2π

� �1=2 πn � 1nðn� 1Þ1 � n
̅s ½RescðnÞ;n�ðΔ�Þ2n � 2

RminðnÞ½tanð2π=nÞ�n � 1Δ2n � 1

( )

ð32Þ
To partially clarify the implications of this form for τ, it is useful
first to restrict attention to its leading order in escape parameter
Δ*. This involves replacingΔ by its value at the escape threshold:

ΔescðnÞ ¼ RescðnÞ � RminðnÞ ð33Þ
the large-n behavior of which was specified earlier in eq 5. Further
simplification then emerges by extracting the large-n asymptotic
limit of this leading Δ*-order expression for τ, utilizing the
simplification:

lim
n f ∞ ̅s ½RescðnÞ;n�=RescðnÞ ¼ 1 ð34Þ

This leads specifically to the small-Δ* result:

τ ∼ mkBT
2π

� �1=2 2nen4n � 1

π2n � 1

 !
ðΔ�Þ2n � 2 ð35Þ
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An alternative version of this last expression involves scaling the
escape parameter Δ* by Δesc:

τ ∼ mkBT
2π

� �1=2 en3

2n � 2π

 !
Δ�

ΔescðnÞ
� �2n � 2

ð36Þ

This scaling converts the coefficient in eq 35 from a form that is
strongly divergent as n f +∞ to a strongly convergent form.
However, the key characteristic in either case is the power 2n� 2
for Δ*, indicating the aggravation with increasing n of the initial
difficulty that the dynamical system has in locating one of the n
exit channels as those channels just begin to open for escape.

VI. FINAL REMARKS

Although the family of models introduced here to illustrate
trapping and escape kinetics is conceptually simple, it illustrates
at least some aspects of the collective character of relaxation
processes that occur in condensed matter phases. The rather
elementary “cell approximations” invoked to determine the
qualitative implications of those models near their escape thresh-
olds no doubt could be improved quantitatively. One possibility
would invoke a reversible isothermal process in a numerical
simulation wherein the disk repulsive potentials are continuously
“turned on”, starting with an ideal gas of n particles confined
radially to Rmin(n) e rj e R or to s e rj e R. The respective
entropies for these processes could then be converted to accurate
values for K and L, and thus for the lifetime τ.

If the radius of the bounding circle is sufficiently large so that
Δ* > 0, then time reversibility permits the inverse of the escape
scenario to occur. In other words it is dynamically possible for a
set of n hard disks that initially occupy the center of the system to
reverse the escape scenario. Such an improbable event would
require a collision sequence causing the n disks spontaneously to
form one of the (n � 1)! rings just inside the large circular
boundary. That involves motion of the 2n-dimensional config-
uration point into, and through, one of the narrow escape
channels and thus into the interior of one of the small K(Δ,n)
regions. The appearance of such an unusual return event can be
described by an ensemble-average time to occurrence τret. It
would be related to the mean escape time τ by a factor
determined by the ratio of contents for the untrapped portion
of configuration space, M(Δ,n), to that of all (n � 1)! trapping
regions K(Δ,n):

τretðΔ�Þ ¼ MðΔ;nÞ
ðn� 1Þ!KðΔ;nÞ
� �

τðΔ�Þ ðΔ� > 0Þ ð37Þ

The trapping geometry and escape kinetics described in the
previous sections for single rings of hard disks can in principle be
extended to wider families of hard-particle models. One avenue
for generalization in two dimensions would be based on the
geometry of “curved hexagonal” packings of identical hard disks
inside a large circular boundary.6 These arrangements fill the
interior of the bounding circle with jammed concentric rings of
particles, where those rings involve fewer and fewer disks as the
center (a single disk) is approached. Evidently the central disk
and the innermost particle rings can be removed, while those
remaining rings continue to be trapped against the outer
boundary by nonoverlap constraints. For a chosen number of
remaining rings of disks it should be possible to identify the
corresponding Rmin and Resc parameters, referring as above to the
radial positions of the outermost ring of disks when they are in

contact with the boundary at jamming, and at the escape threshold
for the innermost remaining ring.

Three dimensional versions of the present simple model are
also possible. A conceptually straightforward example would
involve 12 identical hard spheres in an icosahedral arrangement,
pressed against a spherical impenetrable boundary by their own
nonoverlap constraints. Again it is feasible to identify numerically
the Rmin(12) and Resc(12) for this version. Whether there might
be other similar three-dimensional structures with larger num-
bers n of trapped hard spheres remains an unexplored possibility.
In particular, it is currently unknown if the “curved hexagonal”
family of disk configurations6 has a three-dimensional extension.
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