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Nonequilibrium static diverging length scales on approaching a prototypical model glassy state
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Maximally random jammed states of hard spheres are prototypical glasses. We study the small wavenumber
k behavior of the structure factor S(k) of overcompressed million-sphere packings as a function of density up
to the jammed state. We find both a precursor to the glassy jammed state evident long before the jamming
density is reached and two associated growing length scales, one extracted from the volume integral of the direct
correlation function c(r) and the other from the small-k behavior of the structure factor S(k), that can diverge at
the “critical” jammed state. We also define a nonequilibrium index X and use it to demonstrate that the packings
studied are intrinsically nonequilibrium in nature well before the critical state is reached. The extension of the
results reported in the present work to supercooled atomic-liquid models in which the atoms interact with both
repulsive and attractive forces is also discussed.
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I. INTRODUCTION

A sufficiently rapid quench of a liquid from above its freez-
ing temperature into a supercooled regime can avoid crystal nu-
cleation to produce a glass with a relaxation time that is much
larger than experimental time scales, resulting in an amor-
phous state (without long-range order) that is simultaneously
rigid [1]. The underlying physics of the glass transition is one
of the most fascinating open questions in materials science and
condensed-matter physics. Many conundrums remain, includ-
ing whether the growing relaxation times under supercooling
have accompanying growing structural length scales. Essen-
tially, two opposing explanations have emerged to address this
question. One asserts that a static structural length scale does
not exist and identifies growing dynamical length scales [2–4].
The other contends that there is a static growing length scale
of thermodynamic origin [5,6]. In this paper, we present both
theoretical and computational results that support an alterna-
tive view, namely, the existence of a growing static length scale
but one that is intrinsically nonequilibrium in nature.
Our model systems are disordered packings of identical

spheres with densities between the freezing transition and the
so-called maximally random jammed (MRJ) state [7]. The
MRJ state under the strict-jamming constraint is a prototypical
glass in that it lacks any long-range order but is perfectly rigid
(the elastic moduli are indeed unbounded) [8,9]. This endows
such packings with special attributes. For example, MRJ
packings are hyperuniform [10,11] (i.e., infinite wavelength
density fluctuations vanish) with a structure factor S(k)
that tends to zero linearly in the wavenumber k, implying
quasi-long-ranged negative pair correlations (anticorrelations)
decaying as a power law [11]. This large-scale property
is markedly different from typical liquids in equilibrium,
which tend to exhibit more rapidly decaying pair correlations
(including exponential decays).
It has been theoretically shown that hyperuniform point

distributions are at an “inverted” critical point; i.e., in contrast
to normal fluid critical points, the direct correlation function

c(r), rather than the total correlation function h(r) ≡ g2(r)−
1, with g2(r) the pair correlation function, becomes long-
ranged (decaying more slowly than 1/rd , where d is the space
dimension and r is the radial distance) [10]. This suggests that
the volume integral of c(r) for overcompressed hard-sphere
configurations [12] that follow Newtonian dynamics might
grow as the MRJ state is approached and ultimately diverge at
this inverted critical point. In this paper, we show that this
not only is the case but that the nonequilibrium signature
of quasi-long-range anticorrelations, which we quantify via a
nonequilibrium index X, emerges well before the jammed state
is reached; a rather subtle finding. This implies that the direct
correlation function of a glass formed by supercooling a liquid
(in which the molecules possess both repulsive and attractive
interactions) provides a static growing length as its glass
(jamming) transition is approached. Hence, our findings, based
on nonequilibriumhard-sphere systems, could be appliedmore
broadly to general glass formers, as we will elaborate below.
The present study focuses on prototypical glassy states

represented by three-dimensional identical nonoverlapping
spheres. For this system, it has been shown that MRJ packings
are characterized by quasi-long-ranged pair anticorrelations
in which h(r) decays as −1/r4 [11], reflecting an unusual
spatial patterning of regions of lower and higher local
particles densities relative to the systemdensity. This particular
quasi-long-ranged behavior of pair correlations for large r

is equivalent to linear behavior in the structure factor S(k)
near the origin with S(k) nonanalytic at k = 0. The structure
factor S(k) is defined in terms of the Fourier transform of h(r),
S(k) = 1+ ρh̃(k), with ρ the number density, equal to (6/π )φ
for unit-diameter hard spheres with packing fraction φ the
fraction of space covered. Quasi-long-ranged anticorrelations
have been shown to be present in the ground states of liquid
helium [13] and noninteracting spin-polarized fermions [14],
in the Harrison-Zeldovich spectrum of the early Universe [15],
and in MRJ states of Platonic solids [16]. Experimentally, the
most accurate measurements of the structure factor of bulk
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amorphous silicon have revealed a linear trend in the small-k
behavior of S(k) toward S(0) = 0 that appears to be roughly
consistent with hyperuniformity [17].
Linear behavior near the origin in S(k) for a hyperuniform

system indicates an inverted critical point [10], characterized
by long-range anticorrelations in a direct correlation function
c(r) that decays as −1/r2, where we define c(r), via the
standard Ornstein-Zernike integral equation, in terms of the
Fourier transform of c̃(k) as follows:

c̃(k) = h̃(k)

S(k)
= S(k)− 1

ρS(k)
. (1)

More information about this inverted critical point, including
the associated critical exponents, can be found in Ref. [10].

II. SIMULATION PROCEDURE

In this work, we studymillion-particle packings of identical
spheres overcompressed at various rates fast enough to avoid
the formation of crystallites. We employ an event-driven
friction-free Lubachevsky-Stillinger molecular dynamics pro-
tocol under periodic boundary conditions [18] in a cube of
side length unity where initial sphere velocities are Maxwell-
Boltzmann distributed such that mean energy per sphere
(of mass unity) is kBT = 1/2, where kB is Boltzmann’s
constant and T is temperature. Simulations are performed to
overcompress spheres from various initial states (including
equilibrium liquid) at densities below freezing φf = 0.494
up to various percentages of the jamming fraction φc. For
each packing, φc is dependent upon initial conditions and
compression rate, but it varies no more than 5× 10−5 for
packings compressed at the same rate due to the very large
system size. We study rates in this work corresponding to
sphere diameter growth per unit time from � = 0.0007 to
� = 0.03 [18], where � = 0.0007 appears to be the slowest
rate at which crystallites do not form.
We closely examine the small wavenumber k behavior

of the angularly averaged structure factor S(k), where k is
the magnitude of a wavevector k. We calculate S(k) by
direct Fourier transform, omitting forward scattering, for
N = 1,000,000 spheres of diameterD = 1 in a periodic cube
of length L replicated over all space, using the relation

S(k) = (1/N)

∣∣∣∣∣

N∑

j=1
eik·rj

∣∣∣∣∣

2

,

and angularly averaging over all k of equal magnitude k.
The smallest nonzero wavenumber kD/2π calculated by this
method is equal to D/L, which for 1,000,000 unit-diameter
spheres at jamming is roughly 0.01. Figure 1 compares the
behavior of S(k) for (a) a single packing overcompressed from
the equilibrium liquid at φ = 0.69φc to φ = 0.9999999φc and
(b) an average of 20 independently generated packings in the
equilibrium liquid state with φ = 0.45 ≈ 0.70φc.

III. RESULTS AND ANALYSIS

In this section, we present our central results for packings of
1,000,000 spheres compressed from various initial conditions
below the freezing density up to glass-forming densities. In
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FIG. 1. (Color online) Bottom curve: angularly averaged S(k)
versus dimensionless wavenumber kD/(2π ) calculated by di-
rect Fourier transform for a million-sphere packing with φ =
0.9999999φc . . ., with φc = 0.647032 . . . for this packing. Note the
linear behavior in S(k) as k → 0. Top curve: average of 20 angularly
averaged S(k) calculated by DFT for independently generated
million-sphere packings in the equilibrium liquid state withφ = 0.45.
Vertical bars represent an estimate of the standard deviation of the
distribution of values for S(k) at each k over the 20 packings.

particular, we identify a precursor to quasi-long-ranged pair
anticorrelations present over a broad density range from just
above freezing all the way up to jamming, manifest as linear
behavior in S(k), i.e., S(k) = ak + b. For φ greater than about
0.92φc, this behavior extends from the smallest k studied to
about k ∼ 0.4, whereas for φf < φ < 0.93φc, a linear trend is
clearly evident but does not extend to the smallest values of k
for all compression rates studied. This behavior is illustrated
in Fig. 2 for a wide range of densities [19].
Though plots of S(k) from individual packings show

variability at small k around the linear trend attributable
to the dynamics of particle movements as the spheres are
compressed, the average of several packings always illustrates
a distinctly linear trend. This trend additionally appears for
packings compressed at various rates from a random sequential
addition (RSA) state [20], and the trend appears for packings
compressed at fast but changing rates. Taken together, these
observations indicate that the linear trend is easily reproducible
across different compression rates and initial conditions, even
nonequilibrium conditions like RSA, so long as the compres-
sion rate is fast enough such that crystallites do not form.
As φ → φc, the values of c̃(k) [Eq. (1)] near k = 0

grow very large. In particular, in the limit as φ → φc for
a hyperuniform packing, c̃(0) → −∞. This behavior can be
seen in Fig. 3, which are plots of c̃(k) calculated using Eq. (1)
and the fits in Fig. 2.
The length scale ξDCF ≡ [−c̃(0)]1/3 grows continuously

with packing fraction and diverges as the hyperuniform state is
approached, indicating a long-ranged direct correlation func-
tion c(r) that decays asymptotically proportional to −1/r2.
The growth in ξDCF signals the incipient rigidity associated
with the formation of nearly jammed sphere-contact networks,
and for hyperuniform MRJ packings, ξDCF diverges when the
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FIG. 2. (Color online) Linear fits of the structure factor S(k)
versus dimensionless wavenumber kD/(2π ) for various percentages
of jamming fraction φc. The reported plots are generated from
20 angularly averaged structure factors S(k) calculated by direct
Fourier transform from million-sphere packings compressed at a rate
� = 0.03 from the equilibrium liquid. For these packings, the smallest
value of kD/2π at which the structure factor is nonzero is 0.01070,
corresponding to φc equal to about 0.6422. All fits achieve R-squared
values greater than 0.995. The curves in the figure from top to bottom
correspond to the labels in the legend from top to bottom. Inset: aver-
age data and estimate of the standard deviation (over the 20 packings)
for angularly averaged S(k) for packings compressed to φ = 0.97φc.

packing becomes completely rigid at the inverted critical point
φ = φc. The presence of this inverted critical point suggests
that renormalization groupmethodsmight be fruitfully applied
to study the behavior of c(r) in this and similar glassy systems.
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FIG. 3. (Color online) Fits of angularly averaged c̃(k) versus
dimensionless wavenumber kD/(2π ) calculated from the fits in
Fig. 2. Note that c̃(0) appears to diverge to −∞ as φ → φc. Inset:
average data and estimate of the standard deviation (over 20 packings)
for c̃(k) for packings overcompressed to φ = 0.97φc. For this data
set, geometric [μg = (

∏20
i=1 xi)1/20, with μg the mean and xi the data

points] and arithmetic averages were nearly identical.

In the mean spherical approximations [21], c(r) can be
thought of as the negative of an effective pair potential
veff(r), that is to say, −βveff(r) = c(r) with β = 1/kBT .
Following this interpretation, MRJ packings exhibit long-
ranged repulsions veff(r) that are asymptotically proportional
to 1/r2, which can be thought of as a generalized Coulombic
interaction 1/rn with n = 2 instead of n = 1, that drive the
system to have no infinite wavelength density fluctuations, i.e.,
to be hyperuniform. In comparison, one-component plasmas
in equilibrium interacting with a Coulomb potential [e.g.,
v(r) ∼ 1/r in 3D] are also hyperuniform [10,14,22].
Other quickly growing length scales can also be identified,

e.g., the inverse of the first point k in S(k) where linear behavior
becomes dominant, which we term ξSF. This length scale is
visually evident in S(k) for the systems studied beginning at φ
just above φf , and it can be shown [23] to correspond roughly
to the point in sphere packings where −1/r4 pair anticorre-
lations in h(r) cease to be dominant and are supplanted by
faster decay. This length scale ξSF grows far more quickly than
ξDCF; in particular, it is already greater than the size L of the
million-sphere systems studied once φ = 0.93φc.
The identification of static growing length scales that can

be extracted from pair information is a novel and unexpected
finding. Though diverging time scales have long been evident
in glasses, quickly growing length scales have been difficult
to find. Recent studies have highlighted the presence of
growing length scales using both static and dynamic four-
point correlation functions; however, none of these length
scales have been shown to grow very large, and it has been
suggested that standard pair correlation functions may lack the
information necessary to describe the static growing length
scales present in glasses [24,25]. Our results demonstrate
otherwise. By refocusing investigations to examining the
small-k behaviors of c̃(k) and S(k), which are accessible to
us via very large million-sphere packings, we are able to
determine the large-r behavior of c(r) and h(r) (which is
difficult to do in real space) to extract growing length scales.
Though there are growing length and time scales evident in

the structure factors of these prototypical glasses, the packings
are far from equilibrium. In particular, the compressibility
equation for a many-particle system at number density ρ

relating the isothermal compressibility κT = (1/φ)(dφ/dp)T ,
withp the pressure, to infinite-wavelength density fluctuations,

S(0) = ρkBT κT , (2)

which holds for systems in thermal equilibrium, does not
hold for the nonequilibrium packings that we study in this
paper. To investigate this concept further, we make use of
an expression for the reduced pressure p/ρkBT that is valid
continuously from the freezing point φf to near the jamming
density φc as obtained from the nearest-neighbor conditional
pair distribution functionG(r) [26]. Though this expression is
not exact for all values φf < φ < φc, it does have the exact
free-volume 1/(1− φ/φc) behavior of the reduced pressure
very near to jamming, and it has been shown to fit well to data
over a broad range of φ [27]. The expression is

G(∞) = p/ρkBT = 1+ 4φgf (1)
φc − φf

φc − φ
, (3)
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FIG. 4. (Color online) The dimensionless pressure versus percent
of φc obtained by averaging over 20 packings compressed at rate � =
0.03 of reduced pressure at various percentages of φc, compared to
the calculated values of reduced pressure from Eq. (3). Inset: average
values of ρkBT κT at each value of φ for four packings, compared
to the calculated values using Eq. (4). The standard deviation of the
measurement is about the size of the circle displayed for φ = 0.93φc

and much smaller than the circles for the other three measurements.

where gf (1) is the value of g2(1) for an equilibrium liquid at
φf . From Eq. (3), we can derive the right-hand side of Eq. (2),

ρkBT κT = (φc − φ)2

4φφcgf (1)(φc − φf )
. (4)

Our results, displayed in Fig. 4, show a good fit of Eq. (3)
to the data over the values of φ studied in this work. Values
of ρkBT κT calculated from Eq. (4) also fit the data well.
In Fig. 4, we calculate κT by rescaling velocities after each
particle has undergone two collisions so that temperature
remains constant. The expression ρkBT κT is computed once
every time particles have undergone 20 collisions each from
the relation ρkBT κT = (1/φ)[	φ/	(p/ρkBT )], with p the
pressure, and the average over ten calculations is taken. The
average of these values over five packings is reported as
the measured isothermal compressibility. Though reduced
pressure, and therefore κT , should change if spheres are
allowed to relax (collide with no compression), in our
simulations this change was undetectable within the error
even for values of ρkBT κT after relaxation times of 100,000
collisions per sphere at φ = 0.93φc.
With Eq. (4) in mind, we define

X ≡ S(0)

ρkBT κT

− 1 (5)

as a nonequilibrium index to quantify the degree to which the
systems under study deviate from thermal equilibrium X = 0
[cf. Eq. (2)]. Figure 5 shows a plot of X versus φ, which
demonstrates thatX not only increaseswith increasing packing
fraction φ, but that X diverges as φ → φc.
Using Eq. (4) and fitting a linear trend to values of S(0) with

φ from Fig. 2 (inset of Fig. 5), the behavior of X as φ → φc

for these systems can be calculated. Though both ρkBT κT and
S(0) approach zero as φ → φc, X still diverges with a pole
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FIG. 5. (Color online) Plot of X versus φ, where ρkBT κT is
calculated from Eq. (4) and S(0) taken from the linear fits in Fig. 2,
compared to where S(0) is calculated from a linear fit to the intercepts
S(0) in Fig. 2. Inset: linear fit to the intercepts S(0) in Fig. 2.

of order one at φ = φc. This is a noteworthy result, and it
strongly indicates that the jammed glassy state for this model
is fundamentally nonequilibrium in nature, though at this time
it is unclear precisely how X will behave near φc for other
glassy states and hyperuniform systems.

IV. CONCLUSIONS AND DISCUSSION

We have shown that for a variety of monodisperse hard-
sphere systems compressed at various rates from different
initial configurations there is a precursor to the jammed glassy
state evident far below the jamming packing fraction φc. This
precursor appears as linear behavior in the structure factor S(k)
near k = 0 associated with a quickly growing length scale ξSF,
and for hyperuniform systems is indicative of the onset of an
inverted critical point at φ = φc associated with a diverging
length scale ξDCF and a negative, long-ranged power-law
decay of the direct correlation function c(r). In future work,
it will be interesting to see whether renormalization group
methods could be applied to study the behavior of c(r) in
the vicinity of the inverted critical point. Our identification of
two nonequilibrium static growing length scales is a unique
finding that demonstrates the onset of the jammed glassy state
is detectable using standard pair information [28].
Due to the early onset and robustness of the jamming

precursor and the dynamics employed in our model of a
prototypical glass, we expect that our results are broadly
applicable to glass forming molecular systems (e.g., metallic
glasses, network glasses, etc.). Hard-sphere packings near
jamming are known to provide excellent structural models of
glassy molecular states [1,20,29]. Endowed with Newtonian
dynamics and quickly compressed, hard-sphere models are
driven by strong pair repulsion and free-volume dynamics,
which are the salient drivers in their molecular counterparts.
These drivers lead to diverging elastic moduli and time
scales in our disordered hard-sphere packings just as sudden
macroscopic rigidity and exponentially growing time scales
appear in molecular glass formers. Therefore, the precursor to
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the jammed glassy state and the growing length scales that we
have shown to be present in hard-sphere glasses are applicable
broadly to other glass formers [30,31], though it is not yet
clear if these length scales are directly related to accompanying
growing time scales and elastic moduli.
While we have demonstrated the existence of growing

length scales that ultimately diverge at the critical state,
we have also shown via a nonequilibrium index X that
hard-sphere glasses are intrinsically nonequilibrium in nature,
where X diverges as φ → φc. It is an interesting question
whether X will grow and become large with decreasing
temperature as glassy states are approached in a model
supercooled molecular glass. Indeed, in future work [32], we
will demonstrate that the nonequilibrium index X has such

behavior, and we will additionally demonstrate the existence
of accompanying growing static length scales analogous to
the ones studied in this paper. All of these results support
an alternative explanation for the nature of possible growing
structural length scales present in a liquid upon supercooling
and its transition to a glass, as noted in the Introduction.
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[32] É. Marcotte, F. H. Stillinger, and S. Torquato (to be published).

021505-5


