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ABSTRACT: Of the numerous mechanisms that have been postulated to explain the
origin of biological homochirality, asymmetric autocatalysis coupled with mutual
inhibition is often cited as a plausible route to abiotic symmetry breaking. However, in a
system closed to mass flow, the constraint of microscopic reversibility ensures that this
far-from-equilibrium phenomenon can at best provide a temporary excursion from
racemic equilibrium. Comparatively little attention has been paid in the literature to the
manner in which such a closed system approaches equilibrium, examining the
mechanisms and time scales involved in its transit. We use an elementary lattice model
with molecular degrees of freedom, and satisfying microscopic reversibility, to
investigate the temporal evolution of stochastic symmetry breaking in a closed system.
Numerical investigation of the model’s behavior identified conditions under which the system’s evolution toward racemic
equilibrium becomes extremely slow, allowing for long-time persistence of a symmetry-broken state. Strong mutual inhibition
between enantiomers facilitates a “monomer purification” mechanism, in which molecules of the minor enantiomer are rapidly
sequestered and a nearly homochiral state persists for long times, even in the presence of significant reverse reaction rates. Simple
order of magnitude estimates show that with reasonable physical parameters a symmetry-broken state could persist over
geologically relevant time scales.

I. INTRODUCTION
The chemistry of life is overwhelmingly homochiral. For
example, the 19 naturally occurring chiral proteinogenic amino
acids are found overwhelmingly as L-enantiomers in living
organisms, while most naturally occurring sugars are found in
the D-form (such as the ribose sugars found in DNA). A recent
study1 has shown that, of the 187 941 074 recorded amino acid
sites in the proteome, a mere 837 (that is, 4.5 per 1 million
sites) are D-isomers. In light of such statistics it is clear that
homochirality is a signature of life as we know it, and natural
questions arise regarding its origins.
While there is no general consensus among researchers

regarding the origin of biological homochirality, it is not for lack
of hypotheses. A common thread shared by many proposed
scenarios is that the prebiotic world was presumably racemic.
Therefore, this viewpoint stresses the importance of chiral
symmetry breaking events giving rise to enantiomeric excess of
simple molecular building blocks, leading eventually to more
complex enantiopure molecules and, in due course, to
homochiral life. It is generally assumed that the path from
abiotic chiral symmetry breaking to homochiral life requires
three essential occurrences: the creation of an initial, likely
slight, imbalance in the enantiomeric excess of a chiral species;
the accompaniment of that imbalance with an amplification
mechanism capable of producing macroscopic symmetry
breaking; and the maintenance of the symmetry-broken state
over time scales necessary for chemistry and evolution to
eventually give rise to homochiral life as we know it.
Several mechanisms for the origin of biological homochirality

have been postulated, and many have been experimentally

observed in the laboratory. A broad classification of these
mechanisms stresses their stochastic or deterministic character.
Stochastic theories of symmetry breaking imply that the
currently observed preponderance of L-amino acid and/or D-
sugars occurred by chance, meaning that life might have just as
easily formed with, for instance, D-amino acids and L-sugars.
Among the several hypothesized stochastic mechanisms for the
origin of biological homochirality, a general distinction may be
made between physical and chemical mechanisms. One notable
physical mechanism for the amplification of an initially small
enantiomeric imbalance is thermodynamic phase equilibrium
enantioenrichment.2−5 This phenomenon pertains to fluid−
solid phase equilibrium between racemic and enantiopure
crystals, and an achiral solvent in which the solubility of the
enantiopure crystal is greater than that of the racemic crystal.
For systems exhibiting this phase behavior, a slight initial
enantiomeric imbalance may become greatly amplified in the
liquid phase at equilibrium. This property has been exploited
through the addition of additives that enhance the stability
(hence low solubility) of the racemic crystal,6,7 leading to
increased liquid-phase enantiomeric excess.
Physical mechanisms for solid-phase stochastic symmetry

breaking have also been studied. For example, significant solid-
phase symmetry breaking has been observed during the
crystallization of an achiral salt that forms chiral crystals.8−10

With sufficient stirring during the crystallization, the newly
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formed crystal population exhibits a high level of enantiomeric
excess, while in the absence of stirring a racemic mixture of
crystals is produced. This phenomenon has been demonstrated
for explicitly chiral molecules which form conglomerate
(enantiopure) crystals as well.11 Another interesting mechanism
which produces random solid-phase symmetry breaking in the
absence of an initially imposed chiral bias has been termed
“Viedma ripening”.12−17 This phenomenon pertains to a system
that has already reached solid−liquid equilibrium involving
conglomerate crystals. Upon continued abrasive grinding of this
slurry, a completely homochiral state is obtained in the crystal
population, even when the initial crystal distribution is nearly
racemic.
Perhaps the most widely cited chemical mechanism for

stochastic symmetry breaking involves chiral autocatalysis and
mutual inhibition. This mechanism was first articulated in 1953
when Frank18 proposed a set of differential equations
describing the amplification of an initial enantiomeric
imbalance. This amplification is caused by an irreversible
autocatalytic reaction mechanism coupled with mutual
inhibition between competing enantiomers.
Given their prominent role in biology, several theories and

experimental studies have also examined the formation of
homochiral polymers.19−22 Along these lines, many have
studied solid-solution adsorption/polymerization interactions.
For instance, oligomerization of racemic mononucleotides on
montmorillonite clay (formed by the weathering of volcanic
ash) exhibits a homochiral selectivity which preferentially
produces homogeneous D- and L-ogliomers.23−25 This mech-
anism may help to explain how homochiral polymeric
precursors to RNA could have formed in the prebiotic world.
In contrast to stochastic hypotheses, deterministic hypoth-

eses for the origin of biological homochirality assert that life as
we know it was predestined to be composed of L-amino acids
and D-sugars. A well-studied deterministic hypothesis involves
quantum mechanical parity violating forces.26−30 According to
this hypothesis, miniscule energy differences of quantum
mechanical origin exist between enantiomers and are
responsible for the inevitable preference toward L-amino acids
and D-sugars. While several theoretical studies of this
phenomenon exist, to date there has been no compelling
experimental evidence to support the deterministic viewpoint.31

One may note that there is sometimes significant overlap in
many of the aforementioned hypotheses of mechanisms for the
origin of biological homochirality. For example, certain models
of homochirality resulting from polymerization processes
invoke autocatalysis and mutual inhibition as postulated by
the Frank model,18 which describes chemical reactions in a
nonpolymerizing system.22,32,33 As another example, some have
examined mathematically deterministic systems in which parity
violating forces are coupled to a chemical amplification
mechanism such as that proposed in the Frank model.28,34

Among the most recent studies, it has been observed that
chemical and physical processes may be coupled, allowing an
enantioenriched pool of amino acids to cause the enantioen-
richment of a pool of sugars, or vice versa.35 Excellent reviews
on the aforementioned theories may be found in the
literature.31,36

Some 40 years after its formulation, the first experimental
realization of the Frank model was discovered by Soai et
al.37−40 As is the case with many laboratory experiments, the
Soai reaction is typically performed in systems closed to mass
flow. The principle of microscopic reversibility41 ensures that

the equilibrium state for such a reaction system contains a
racemic mixture of enantiomers.42,43 Thus, in a closed system,
the macroscopic amplification of any small enantiomeric
imbalance is not permanent and should eventually decay to
the racemic equilibrium state by way of the reverse reaction
mechanisms. The chiral symmetry breaking created by such a
kinetic mechanism is therefore considered a “far-from-
equilibrium” phenomenon.31 All chemical reactions being
reversible to some degree, a natural question therefore arises
as to how long an imbalance in enantiomeric excess can be
preserved, given small but nonzero reverse reaction rates.
It has been shown that variants of the original Frank model

that include reversible reactions in a well-mixed open system,
analogous to a continuous-stirred tank reactor (CSTR),44 may
be operated at nonequilibrium steady states that are symmetry-
broken when the product of reactant concentrations exceeds a
critical value.28,34,42 At this critical value the system bifurcates
away from the stable racemic steady state, and at larger values
of reactant concentration the resulting stable states are
increasingly symmetry broken. Hence, under certain conditions,
kinetics allows a well-mixed macroscopic flow system to persist
indefinitely in a far-from-equilibrium (nonracemic) steady state.
In the prebiotic world, one might envision scenarios
reminiscent of a CSTR (perhaps a rock crevice located near
the flow field of a thermal vent); however, it is also quite
reasonable to envision an alternative scenario without
continuous flow or steady state character, such as a pond.
Indeed, Darwin’s “warm little pond”45 might have behaved
much more like a closed system with only intermittent addition
or removal of material. Therefore, it is of considerable interest
to determine how such kinetic mechanisms fare in the absence
of continuous feeding of reactants and removal of products.
As mentioned above, thermally activated reactions performed

in a closed system obey microscopic reversibility, and as a result
the system inexorably achieves the racemic equilibrium state
after the requisite equilibration time. In spite of this, some
researchers have suggested that the inclusion of reverse
reactions can help the closed system achieve a stable
symmetry-broken state by allowing for the minor enantiomer
to become consumed or “recycled” and converted to the major
enantiomer.46,47 However, it was readily shown that either the
proposed mechanisms or the chosen reaction parameters in
these models were inconsistent with the principle of micro-
scopic reversibility.43,48 It has therefore been concluded that
thermally activated chiral reactions in a closed system can at
most achieve a quasi-steady nonequilibrium state which will
eventually become racemic.49,50

Soai-type reactions and any of their still undiscovered
biochemically relevant analogues may produce and maintain
appreciable symmetry breaking on laboratory time scales, but
for how long can this enantiomeric excess persist in a system
closed to mass flow? Equally important, how do such systems
behave as the chiral asymmetry decays to racemic? In a
prebiotic scenario, such considerations would be of relevance to
a far-from-equilibrium mechanism. Yet, to our knowledge, this
question has not received explicit attention in the literature.
Most of the modeling performed in the field of chiral

symmetry breaking implicitly assumes the validity of mass
action kinetics, which is generally only a valid approximation in
the limit of a well-mixed system. Hatch et al.51 recently
investigated an elementary lattice model containing micro-
scopic degrees of freedom and explicitly chiral entities. In this
model, prochiral reactant species are able to react irreversibly,
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forming chiral products that may then autocatalyze production
of their own enantiomer, or mutually inhibit the opposite
enantiomer. These authors were able to demonstrate the
occurrence of a symmetry breaking transition and to map the
region of parameter space where it occurs.
A limitation of the Hatch et al. model51 is that the

enantiomer-forming reactions are irreversible. In this work,
we extend the model of Hatch et al., thereby combining
microscopic degrees of freedom, explicitly chiral entities, and
microscopic reversibility. We explore the spontaneous gen-
eration, amplification, and preservation of chiral asymmetry for
arbitrarily long times, as mediated by the reverse rates of
reaction and other pertinent system variables. It is demon-
strated that strong mutual inhibition not only improves the
extent of symmetry breaking and the parameter space over
which symmetry breaking is realized, but it can also significantly
lengthen the time scales over which symmetry breaking
persistseven with appreciable reverse reaction rates.
Furthermore, it is shown that strong mutual inhibition can
provide a mechanism for the maintenance of a nearly
enantiopure population of chiral monomers over very long
times. Temperature effects are also explored.
This paper is structured as follows. In section II, we describe

the model and the numerical methods by which it is
investigated. Section III provides an overview of the model’s
parameter space. In section IV, the results are presented and
discussed. In section V, we provide order of magnitude
arguments to investigate the implications of the observed
results for the origin of biological homochirality. Finally, in
section VI concluding remarks are provided along with future
directions for research.

II. MODEL AND NUMERICAL METHODS
In our model the achiral reactant species (A and B2) diffuse on
a two-dimensional (2-D) square lattice by rotation or through
nearest-neighbor jumps. Multiple occupancy of a lattice site is
not allowed, and unoccupied lattice sites may be viewed as
either consisting of void space or being occupied by an implicit,
chemically inert solvent. Referring to Figure 1a, when A and B2
come into contact with each other in the correct mutual
orientation, they can attempt a reaction according to a
thermally excited acceptance probability exp(−βEf), where β
= 1/kBT, kB is Boltzmann’s constant, T is the absolute
temperature, and Ef is the energy of activation for the forward
reaction (Ef ≥ 0). If the reaction is accepted, A and B2 bind
together to form a chiral product, C, which is of handedness
“R” or “S” depending on its geometry. Note that C forms two
nonsuperimposable mirror images in two dimensions; hence
these are chiral objects. We use the R/S nomenclature for the
chirality of a molecule, as suggested by IUPAC.52 Figure 1b
illustrates the autocatalytic reaction: should an A and B2 fall by
random diffusion into the cleft of a C molecule, with A and B2
having the same chiral orientation as the existing C molecule,
then an autocatalytic reaction is possible. If selected, the
autocatalytic reaction occurs with probability exp(−βEf

cat),
where Ef

cat is the autocatalytic activation energy, subject to 0
≤ Ef

cat ≤ Ef. Lastly, Figure 1c illustrates heterochiral inhibition
between chiral molecules: if two C molecules of opposite
chirality diffuse into a configuration in which they fill each
other’s clefts, a mutually inhibiting physical association is
possible, yielding a heterochiral dimer complex. We choose to
label the heterochiral dimers “D”, in order to differentiate
between the populations of chiral molecules which are

uninhibited (monomers) vs inhibited (dimerized). If selected,
the dimerization occurs with probability 1.
As indicated in Figure 1, all of the aforementioned reactions

can occur in reverse according to their respective Boltzmann
factors which are not all independent, as will be explained
shortly. If selected, reverse noncatalytic and autocatalytic
reactions in Figure 1 may occur with probabilities exp(−βEr)
and exp(−βEr

cat), subject to 0 ≤ Er
cat ≤ Er. The dissociation of

the mutually inhibiting dimer may occur with probability
exp(−βε), where ε is the dimer binding energy, subject to 0 ≤ ε
< ∞. Further details on the model are provided in the
Appendix.
The simulations are implemented with a kinetic Monte Carlo

algorithm53,54 using simple rejection for diffusive transitions
and thermal excitation for reactive/associative transitions.
Simulations are performed on an n-by-n square lattice. Each
lattice site is of length and width l, and periodic boundary
conditions are employed. The coverage fraction due to
occupied sites on the lattice is denoted by the symbol φ.
The simulations begin with an equimolar mixture of A and B2

at the designated coverage fraction. As was done by Hatch et
al.,51 the particles are initially arranged in a symmetrical
configuration with no bias toward the production of one
enantiomer over the other. There is an initial “mixing” period of
10 000 Monte Carlo (MC) steps, during which the particles are
only allowed to randomly diffuse. After this mixing period,
reactions are also allowed to occur.
In each MC step a particle is randomly selected and the

simulation time is advanced by (1/N)τ, where N is the total
number of particles at that point in time, and τ is the unit of
simulation time, formally defined as the average time over
which each particle is visited once by an implicit heat bath.53,54

After the initial mixing period, diffusive or reactive moves are
attempted with equal probability on a randomly chosen
particle. If a diffusive move is selected, the particle is chosen
to either translate or rotate, with the directionality also chosen
randomly. If the required nearest-neighbor sites are unoccu-
pied, the translation/rotation is accepted. If the particle is
selected for reaction, the algorithm detects whether that particle

Figure 1. Possible chemical interactions in the model, with “↔”
denoting a diffusive move, “→” and “←” denoting chemical reactions,
and “” denoting a chemical bond. The chemical interactions are (a)
noncatalytic reaction, (b) autocatalytic reaction, and (c) mutual
inhibition mechanism, also referred to as “dimerization” or
“heteroinhibition”. The mutual inhibition step may be thought of as
a physical association; hence the dotted bond lines represent an
associative interaction of strength ε.
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is in the correct configuration to undergo any of its possible
reactions (i.e., an A particle can only react with a B2 in the
correct configuration to form a C via noncatalytic or
autocatalytic routes). If one or more reactions are possible at
that moment, one of them is chosen randomly and the reaction
probability (Boltzmann factor) is then compared with a
pseudorandom number ∈ [0, 1) as a test for acceptance.
The characteristic time scale for diffusion is determined on

the basis of the measured diffusivities of species A, B2, and C on
the lattice as a function of composition (see the Appendix for
more detail). The diffusion time for species i is calculated as

=t
nl
D

( )
i

i
d,

2

(1)

where n = system lateral size, l = width of a lattice site, and Di =
diffusivity of species i in units [l2/τ]. Without inhibition (ε = 0),
the diffusion time of reactant species B2 is used as a measure of
the characteristic diffusion time. However, in the presence of
strong inhibition (ε/Ef ≥ 1), the formation of product dimers
becomes a major contributor to the lengthening of the time
required to achieve equilibrium. Therefore, when ε/Ef ≥ 1 the
diffusion time of species C is used as a measure of the
characteristic diffusion time. Intermediate values of ε/Ef in the
range 0 < ε/Ef < 1 exhibit relatively weak inhibition. Such
values were also briefly explored, but are not presented in this
paper. The characteristic time for reaction (tr) was chosen as
the reaction half-life with respect to species A. When the
characteristic diffusion (reaction) time is greater than the
characteristic reaction (diffusion) time, we consider the system
to be in a diffusion (reaction) controlled regime.
At the beginning of a typical simulation, 100 trial runs are

performed to calculate the average reaction half-life. This
average value is compared to the corresponding relevant
characteristic diffusion time, and the larger of the two serves as
the “characteristic time” for the simulation. Without inhibition,
each simulation is run for 10 characteristic times, to ensure a
quasi-steady state has been achieved. When strong inhibition is
present, the simulations are lengthened to 20 characteristic
times in order to accommodate the significantly slower
dynamics, as will be explained later.
In this work, as done previously,51 we define a symmetry

breaking transition to occur when the sample skewness of the
probability distribution of the absolute value of enantiomeric
excess, Q(|ee|), becomes negative. The sample skewness is a
convenient parameter to quantify symmetry breaking because it
relates to the unimodal/bimodal character of the probability
distribution function of the absolute value of the enantiomeric
excess. The sample skewness is written as

=
−

−
g

n n

n
m

m

( 1)

2
s s

s

3

2
3/2

(2)

where g = sample skewness of Q(|ee|), ns = number of
independent simulations, m2 = second central moment of Q(|
ee|), m3 = third central moment of Q(|ee|), ee = (NR − NS)/
(NR + NS), and Ni is the number of chiral molecules of
enantiomer i. Note that the enantiomeric excess is defined here
as an overall enantiomeric excess, which accounts for all chiral
product molecules, including those that have formed a
heterochiral dimer complex, D.
For a given set of simulation parameters, ns = 10 000

independent simulations are performed to ensure adequate
sampling, and the Q(|ee|) curve is constructed from the final

enantiomeric excess of each of these runs. The sample skewness
is then calculated from this probability distribution, and if its
value is less than zero, the system is said to have achieved a
(quasi-steady) symmetry-broken state. Further details are
provided in the Appendix.

III. PARAMETER SPACE
Figure 2 is a schematic depiction of the energy barriers for the
reaction system involving the production of C. As one can see,

only three of the four energy barriers are independently
variable.
To represent the parameter space explored in this study, we

define three activation energy ratios: r = Ef/Er, p = Ef
cat/Er

cat, and
α = Ef

cat/Ef. Figure 3 shows the relationship between r and p

along loci of constant α, which is described mathematically by
eq 3. We restrict ourselves to Ef ≤ Er or, equivalently, r ∈ [0,1],
p ∈ [0,1], p ≤ r.

α
α

=
− +

p
r

r( 1) 1 (3)

Figure 2. Schematic of energy barriers to reaction for the formation
and decomposition of chiral product (C). The blue line represents the
noncatalytic pathway and the red line represents the autocatalytic
pathway (i.e., in the forward direction: A + B2 + C(i) → 2C(i), i = {R,
S}).

Figure 3. Parameter space represented on a triangular chart. Curves of
constant α = Ef

cat/Ef are shown spanning the range [0, 1] in increments
of 0.05.
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Also indicated on the diagram in Figure 3 are the directions
of decreasing r (=Ef/Er), corresponding to a decreasing reverse
reaction rate (Er≫Ef), and of increasing p (=Ef

cat/Er
cat). In the

latter case, as one traverses higher and higher values of α
(=Ef

cat/Ef) by increasing p at fixed r, the difference between the
energy barrier heights for the autocatalytic and noncatalytic
reactions lessens, and the overall reaction rate slows, indicated
by the “reaction control” arrow. As α approaches unity, the
energy barriers for the autocatalytic and noncatalytic reactions
become the same and the autocatalytic mechanism ceases to be
“catalytic” (we neglect molecularity considerations for the
moment, though they also play a role in the rates of reaction).
The remaining variables not shown on the triangular chart are
temperature, coverage fraction, and system size.

IV. RESULTS AND DISCUSSION
It has been firmly stated55 that linear autocatalysis alone cannot
cause chiral symmetry breaking. However, Hatch et al.51 did
indeed identify conditions leading to substantial enantiomeric
excess with linear autocatalysis in the absence of inhibition.
These authors observed that the conditions required for
symmetry breaking without inhibition in their elementary
lattice model involve significantly lower temperatures than in
the presence of inhibition, such that a “single mother
mechanism” might be effective in propagating the handedness
of the first chiral molecule formed. This mechanism is based on
the simple fact that, whenever there is a difference in activation
energies between two reactions (i.e., Ef

cat < Ef), the ratio of their
rate constants (kf

cat/kf ∼ exp[β (Ef − Ef
cat)]) becomes arbitrarily

large as the temperature decreases. It is easy to visualize the
implications of this fact through a simple thought experiment:
consider the 2-D lattice system initially populated with only

reactants. As the reactant molecules diffuse, the first reaction to
occur must necessarily be noncatalytic, and therefore the
handedness of the first C molecule (R or S) is completely
random. If the temperature of the lattice system is sufficiently
low, the rate of the autocatalytic reaction will be much faster
than that of the noncatalytic reaction, such that the first
“mother” C molecule will spread via diffusion and propagate its
own handedness through autocatalysis before the next random
nonautocatalytic reaction takes place. In the extreme case, the
first C molecule is able to propagate its own type so quickly
that all of the reactant is exhausted before the next
nonautocatalytic event, necessarily resulting in an enantiopure
system. On the other hand, as β→ 0 the difference in activation
energies is irrelevant and the random nonautocatalytic reactions
should statistically drive the system toward a racemic mixture of
C molecules.
By adding reaction reversibility in a system without mutual

inhibition, we observe that, for appreciable reverse reaction
rates, any initially formed enantiomeric excess quickly degrades
to racemic on the same time scale as the formation of the chiral
molecules themselves (Figure 4). However, as the reverse
reaction rate is lowered, a separation of time scales occurs,
wherein the initially formed enantiomeric excess achieves a
quasi-steady state, with the decay to equilibrium lasting
extremely long times. For progressively slower reverse reaction
rates, one can produce and maintain chiral asymmetry for
arbitrarily long times. While some of the simulations in Figure
4b result in little enantiomeric excess, others form an
enantiopure “final” mixture at quasi-steady state. As illustrated
by Hatch et al.,51 decreasing the temperature would increase
the probability of observing an enantiopure quasi-steady state.

Figure 4. Time trajectories of the number of chiral product molecules (NC) and the corresponding enantiomeric excess (ee) for two sets of 40
independent simulation runs having different reverse reaction rates. (a) r = Ef/Er = 1 (equi-energetic reactants and products). (b) r = Ef/Er = 0.5.
Both sets of simulations were performed without inhibition (ε/Ef = 0) and with all other independent parameters equal: βEf = 10, Ef

cat/Ef = 0, φ = 1/
3, and n = 36. These simulations were run for ∼10 characteristic diffusion times. Since there is no inhibition, NC = NR + NS.
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The trajectories depicted in Figure 4b demonstrate that slow
reverse reaction rates cause a separation of time scales between
the formation of C molecules and achieving racemic
equilibrium. Allowing such a simulation to achieve racemic
equilibrium would be computationally prohibitive due to the
slow reverse reaction rates. Therefore, we instead opt to give
the system a “thermal boost” in order to see whether it will
inexorably tend to racemic equilibrium. Figure 5 depicts 40

independent simulations run under conditions identical to
those depicted in Figure 4b; however, after the simulations have
run for 10 diffusion characteristic times, the temperature is
increased by a factor of 2 and the simulation continues to run
for another 10 characteristic diffusion times. The trajectories
clearly indicate that the imposition of a “thermal boost” rapidly
carries the system to the racemic equilibrium state. Moreover, if
the temperature is then restored to its original value (not
shown) the system remains racemic, thereby implying that the
slowly evolving system in Figure 4b will eventually become
racemic.
While our model illustrates a separation of time scales and

substantial symmetry breaking for systems without mutual

inhibition, it is apparent that inhibition between competing
enantiomers should greatly enhance the extent of symmetry
breaking, and also expand the range of parameter space over
which symmetry breaking may occur. For example, Hatch et al.
demonstrated that strong mutual inhibition (ε/Ef = 10) allowed
their model to break symmetry at significantly higher
temperatures and also exhibit system-size independence in
the reaction controlled regime.51 Of course, those results were
observed in a system with no reverse reactions.
Figure 6 illustrates how strong mutual inhibition affects

systems with appreciable reverse reaction rates. Both sets of
simulations in this Figure 6 were performed with r = 0.9, and
the resulting effect of high reverse reaction rates can be seen by
the large fluctuations in the enantiomeric excess. One should
note that the two graphs are plotted on different time scales,
with Figure 6b spanning one additional order of magnitude.
The simulations without inhibition rapidly approach equili-
brium, with all 40 runs achieving a racemic mixture by
approximately 105τ. However, the simulations with strong
inhibition show markedly different behavior. In this case, all 40
runs show strong early-time symmetry breaking, followed by a
comparatively slower approach to racemic equilibrium. At this
set of conditions the inclusion of strong inhibition lengthens
the racemization time by over an order of magnitude.
This drastic slowing of the system’s dynamics, and resulting

lengthening of the racemization time, is due to an “irreversible”
sink mechanism caused by the strong association between
heterochiral pairs of enantiomers. As soon as a molecule of the
minor enantiomer is formed, it rapidly associates with an
uninhibited (i.e., free) molecule of the major enantiomer,
forming a heterochiral dimer. The relatively fast rate of
dimerization effectively creates a prolonged nearly homochiral
regime for the uninhibited (monomeric) chiral molecules,
which we refer to as the “monomer purification” mechanism.
This behavior is depicted in Figure 7, wherein the adjusted
enantiomeric excess (eeadj) only accounts for the enantiomeric
excess within the population of uninhibited (monomeric) chiral
molecules. The adjusted enantiomeric excess is calculated as
eeadj = (NR,un − NS,un)/(NR,un + NS,un), where the subscript “un”
denotes “uninhibited”.
Referring to Figure 7, it can be seen that the number of

achiral reactant molecules and monomeric chiral product

Figure 5. Time trajectories of the enantiomeric excess (ee) for 40
independent simulation runs, with the addition of a “thermal boost”
midway through each simulation. βEf(initial) = 10; βEf(final) = 5. All
simulations were performed with r = 0.5, ε/Ef = 0, Ef

cat/Ef = 0, φ = 1/3,
and n = 36.

Figure 6. Time trajectories of the enantiomeric excess (ee) for two sets of 40 independent simulation runs having different dimer binding energies.
(a) ε/Ef = 0 (no inhibition), run for ∼10 characteristic diffusion times. (b) ε/Ef = 10 (strong inhibition), run for ∼60 characteristic diffusion times to
illustrate long-time behavior. Both sets of simulations were performed with all other parameters equal: βEf = 12, r = Ef/Er = 0.9, Ef

cat/Ef = 0, φ = 1/3,
and n = 36. When inhibition is present, the reported ee is the “overall” enantiomeric excess, which includes the chiral product molecules arrested in
heterochiral dimers.

The Journal of Physical Chemistry B Article

dx.doi.org/10.1021/jp3093644 | J. Phys. Chem. B 2013, 117, 602−614607



molecules decreases steadily over long times while the number
of dimers increases monotonically. Despite the fact that the
reverse reaction rate is appreciable (r = 0.88), near
homochirality of the chiral monomers is still preserved. Notice
that when the system achieves quasi-steady state any small
departures from enantiopurity in the chiral monomer
population quickly disappear, coinciding with an instantaneous
increase in the number of heterochiral dimers. In essence the
strong dimerization “purifies” the population of uninhibited
chiral molecules by quickly removing any newly formed
molecules of the minor enantiomer. As such, only the major
enantiomer is available to partake in autocatalysis, thereby
forming a quasi-steady nearly homochiral state. As a result, the
overall enantiomeric excess (ee) decays steadily while the
absolute value of the adjusted enantiomeric excess (|eeadj|)
remains ∼1. The enantiopurity created by this mechanism

persists until the number of chiral monomers becomes so small
that each newly formed C molecule takes a very long time to
find a C molecule of the opposite handedness and dimerize.
Figure 8 illustrates the “monomer purification” mechanism

with varying rates of autocatalysis, such that the reaction half-
life of A in Figure 8b is over an order of magnitude longer than
that in Figure 8a. The slower autocatalysis in Figure 8b allows
the formation of more monomers of the minor enantiomer at
early times. As a result, it takes slightly longer until near
homochirality is achieved. Despite the differences in the rate of
autocatalysis, each system’s quasi-steady behaviors are qual-
itatively similar to each other, indicating that this mechanism is
robust over a range of autocatalytic reaction rates.
The rates of reverse reaction depicted in Figures 7 and 8 are

quite significant, as evidenced by the large fluctuations in
particle number. As the rates of reverse reaction are lowered by
decreasing r, the persistence time of the nearly homochiral
monomer state increases drastically. In the limit where there are
no reverse reactions (r = 0) all monomers of the minor
enantiomer will eventually dimerize, leaving an enantiopure
pool of monomers for arbitrarily long times. If these chiral
monomers were then capable of polymerizing, or forming
homochiral aggregates, this prolonged homochiral regime
would be favorable for the creation of more complex
homochiral biotic building blocks.
The above mechanism can be qualitatively likened to the

thermodynamic mechanism for liquid phase enantioenrichment
in ternary (liquid−solid−solid) phase equilibria.2,4 In these
systems, even a slight chiral imbalance is amplified in the liquid
phase due to the formation of a sparingly soluble racemic
crystal. In simple terms, the minor enantiomer becomes
“arrested” within the racemic crystal, enriching the liquid
phase enantiomeric excess. In the present model, the
heterodimer is analogous to the racemic crystal. While the
thermodynamic phase partitioning in real systems requires the
input of an initial chiral imbalance, the present model is capable
of spontaneously generating the required imbalance with no
biasing, just as the Soai reaction is able to spontaneously break
symmetry without intentional bias.39 The key difference is that
in our model the near enantiopurity of uninhibited C molecules
is a “far from equilibrium” kinetic phenomenon, not a
consequence of thermodynamic equilibrium.
To see how temperature affects the extent of symmetry

breaking, we return to the triangular p vs r diagram. The
present model does not contradict the statement that, for a
closed system satisfying microscopic reversibility, the racemic
equilibrium state is inevitable at long times. However, the
model allows investigation of how long it takes to achieve a
nearly racemic state. We define symmetry breaking by the
condition Q < 0 [see eq 2] and adopt the criterion that a state
of broken symmetry lasting more than 10 (20) characteristic
times is considered significant in the absence (presence) of
inhibition. The main purpose of defining characteristic times is
pragmatism, and maintaining a symmetry-broken state for 10−
20 characteristic times is significant from an order of magnitude
perspective in that it represents maintaining symmetry breaking
for at least 1 order of magnitude longer than the characteristic
time of the system.
When the reverse reaction rate is too high (increasing r), the

system cannot maintain a symmetry-broken state. As r is
decreased along a curve of constant Ef

cat/Ef [α in eq 3], there
may exist a symmetry breaking transition point at which the
system can maintain symmetry breaking for 10 (20) character-

Figure 7. Illustration of the “monomer purification” mechanism. (a)
Time trajectories of the overall enantiomeric excess (ee) for 40
independent simulations. (b) Corresponding time trajectories of the
absolute value of the adjusted (monomer-only) enantiomeric excess (|
eeadj|) for the 40 independent simulations. (c) A typical trajectory for a
single run, including the numbers of all molecules. Red line = |
eeadj|·100, green line = NA = NB, blue line = NC, and black line = ND.
All simulations performed with βEf = 12, r = Ef/Er = 0.88, ε/Ef = 10,
Ef
cat/Ef = 0.35, φ = 1/3, and n = 36. Note, NB denotes the number of

B2 molecules, and furthermore, NA = NB is satisfied at all times since all
simulations begin with an equimolar mixture of reactants.
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istic times in the absence (presence) of inhibition. As one
continues to decrease r at constant Ef

cat/Ef, decreasing the
reverse reaction rate further, the persistence time of symmetry
breaking continues to increase precipitously, reaching infinity in
the limit r = p = 0. Figure 9 illustrates the regions of parameter
space over which symmetry breaking can be created and
maintained from a minimum of 10 or 20 characteristic times at
the symmetry breaking transition line to a maximum of infinite
time at r = p = 0.
Figure 9 clearly shows that upon lowering the temperature

(increasing βEf) the reverse reaction takes progressively longer
to bring the system to equilibrium, thereby expanding the
region over which symmetry breaking persists. Moreover,
inhibition expands the symmetry-broken region over the case of
no inhibition. When the system is at high enough temperature
(βEf = 8), simulations without mutual inhibition cannot
produce symmetry breaking in the limit of a completely
irreversible reaction, which is in agreement with the findings of
Hatch et al.51

As one increases p at constant r, slowing the effective rate of
autocatalysis, there comes a point at which autocatalysis
becomes so slow that it is irrelevant. When autocatalysis is
no longer a viable means of providing competition between
enantiomers, the system can no longer break symmetry. Hence,
the shaded regions in Figure 9 are limited by some upper value
of α, above which symmetry breaking does not persist, even in
the limit of a completely irreversible reaction (r = p = 0).
System size effects were also explored for three cases: 18 ×

18, 36 × 36, and 60 × 60 lattices. All system sizes showed the
same qualitative behavior. For larger system sizes, reverse
reaction rates must be lower in order to preserve symmetry
breaking for the requisite amount of time. However, when

inhibition is present, the symmetry breaking transition lines
start to converge as Ef

cat/Ef is increased to >0.30, indicating the
transition to a reaction controlled regime.

Figure 8. Illustrations of the monomer purification mechanism with differing rates of autocatalysis. (top) Time trajectories of the absolute value of
the adjusted enantiomeric excess (|eeadj|) for 40 independent simulations. (bottom) A typical trajectory for a single run from the above 40
simulations. Red line = |eeadj|·100, green line = NA = NB, blue line = NC, and black line = ND. (a) Ef

cat/Ef = 0, and reaction half-life for A = 6700τ . (b)
Ef
cat/Ef = 0.35, and reaction half-life for A = 75000τ. For both sets of simulations βEf = 12, r = Ef/Er = 0.9, ε/Ef = 10, φ = 1/3, and n = 36. The

characteristic diffusion time for C at these conditions is 39000τ.

Figure 9. Regions of symmetry breaking as a function of temperature
(β = 1/kBT). The blue squares represent the symmetry breaking
transition points for simulations with no inhibition (ε/Ef = 0), while
the red circles are the symmetry breaking transition points for strong
inhibition (ε/Ef = 10). These points are defined such that, when r is
decreased along a curve of constant Ef

cat/Ef [α in eq 3], persistent
symmetry breaking lasting more than 10 (20) characteristic times in
the absence (presence) of inhibition is first encountered. The
overlapping regions shaded in blue (ε/Ef = 0) and red (ε/Ef = 10)
represent the parameter space over which symmetry breaking is
expected to form and persist for more than 10 or 20 characteristic
times, respectively. All simulations were performed with φ = 1/3 and n
= 36.
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V. IMPLICATIONS FOR THE ORIGIN OF BIOLOGICAL
HOMOCHIRALITY

In this section, we explore some possible implications of the
phenomenology illustrated in Figures 4−8 for the origin of
biological homochirality. In order to facilitate this discussion,
reaction rate constants are calculated based on transition state
theory (TST).56 For a liquid-phase reaction, one may derive the
TST equation for a general reaction rate constant, k:

∏ ∏ρ γ= Δ *

−Δ *

υ υ υ∑ − °k
k T

h
x S k

H k T

( ) exp[ / ]

exp[ / ]

i
i

i
i

B
B

B

i i i i

(4)

where h = Planck’s constant, ρ = total molar density of reaction
solution, γi = activity coefficient of reaction species i, utilizing
infinite dilution normalization, υi = stoichiometric coefficient of
reaction species i, xi° = reference state mole fraction of reaction
species i, ΔS* = entropy of activation, and ΔH* = enthalpy of
activation. Equation 4 is amenable to several simplifying
assumptions. First, for order of magnitude calculations one
may assume that the enthalpy of activation is equal to the
reaction activation energy (ΔH* = Ea). Since the activity
coefficients are normalized with the infinite dilution con-
vention, one may assume that if the reactants are sufficiently
dilute γi ≈ 1 for all species i. Furthermore, since one may
arbitrarily choose the reference state mole fractions, xi°, we
define them such that their product in eq 4 is ∼O(1). With
these assumptions, the above equation reduces to

ρ= Δ * −υ∑k
k T

h
S k E k Texp[ / ] exp[ / ]B

B a B
i i

(5)

If one assumes that the reaction occurs in a dilute aqueous
solution, as we do in subsequent calculations, then ρ is
approximately equal to the molar density of water at the system
temperature. Values of ΔS* have been tabulated for certain
reactions, and theoretical prediction techniques have also been
developed through statistical mechanics.56,57 After choosing an
appropriate value of ΔS*, k is readily calculated for any value of
Ea at a given temperature.
Consider for illustrative purposes the case of strong mutual

inhibition between enantiomers, which facilitates the monomer
purification mechanism. When the reverse reaction rates are
extremely slow (r → 0), the reaction goes to completion, and
the strong inhibition causes nearly all of the minor enantiomers
to form heterodimers, leaving a homochiral pool of monomeric
C molecules. Under these conditions, racemization will take an
exceedingly long time. However, this is trivially expected
whenever the reverse reaction rates are low in such a system.
Therefore, it is much more informative to observe the case of
monomer purification coupled with appreciable reverse
reaction rates.
Consider the regime in which there is strong mutual

inhibition and also appreciable reverse reaction rates, such
that the C molecules continually decompose back to A and B2.
This scenario is depicted in both Figures 7 and 8. It can be seen
that a long evolution toward chiral symmetry characterizes the
system’s behavior. We wish to quantify the duration of such a
long transient during which the system evolves toward
equilibrium following the autocatalytically propagated early
symmetry breaking event. As explained in section IV, during the
system’s slow evolution toward chiral symmetry, the adjusted
enantiomeric excess of free chiral molecules rarely deviates

from unity, indicating a homochiral population of unassociated
(monomeric) C molecules. Intermittently, a C molecule of the
“wrong” (minority) chirality is formed, and the adjusted
enantiomeric excess briefly deviates from unity. Since the
number of heterochiral dimers does not decrease during these
excursions from homochirality, the C molecule of the “wrong”
chirality was necessarily formed via the nonautocatalytic
reaction A + B2 → C. However, this C molecule is surrounded
by C molecules of opposite handedness, and therefore it
quickly becomes arrested in a heterochiral dimer, thereby
restoring homochirality in the monomer population and
inching the system toward racemic equilibrium. Therefore, in
this regime it is the nonautocatalytic formation of C molecules
of the minor handedness which limits the rate of racemization.
We focus on this reaction in the ensuing calculations.
It was confirmed by the method of initial rates44 that this

reaction is second order, as implied by its molecularity (see the
Appendix). The characteristic time for a second order reaction
is given by

=
Α

t
k

1
[ ]R

0 (6)

where [A]0 is the initial concentration of reactant A and tR is
the reaction half-life, that is, the time it takes for [A] to decrease
to [A]/2. For the forward noncatalytic reaction k = kf, and since
this reaction governs the time scale of racemization, trac, we
write

=
Α

t
k

1
[ ]rac

f 0
QS

(7)

where [A]0
QS denotes the concentration of A at the onset of the

“quasi-steady state”.
Using typical values for ΔS* and Ef for bimolecular

reactions,56−58 ΔS* = −125J/mol·K and Ef = 75 kJ/mol;
along with T = 300 K and [A]0

QS = 10−5 M (a reasonable
concentration for a biological metabolite), eqs 5 and 7 together
yield trac ∼ 106 years. This mechanism therefore clearly
illustrates a plausible route by which a nearly enantiopure
population of chiral monomers can be maintained for long
times, even with high reverse reaction rates. This value of the
activation energy combined with T ∼ 300 K yields βEf = 30, a
parameter range that we did not explore because of the
extremely low acceptance probabilities associated with such
Boltzmann factors [O(10−13)]. Such low acceptance proba-
bilities would have made the problem computationally
intractable with our explicit kinetic Monte Carlo.
In order to compare the diffusion time in a macroscopic

system to the reaction time estimated above, we consider a
macroscopic aqueous pool with a characteristic length of ∼1 m.
Assuming that the chiral molecule of interest, equivalent to our
C molecule, has a diffusivity comparable to that of an amino
acid (i.e., serine), we take the diffusivity to be ∼10−5 cm2/s.
The characteristic diffusion time is defined in a fashion similar
to that of eq 1:

=t
L
D6D

2

(8)

where L = characteristic length scale and D = diffusivity of the
component of interest. The resulting diffusion time is ∼5 years.
Of course, this value is an upper limit and also a drastic
overestimate, in that it assumes that the pool of interest remains
perfectly static, with diffusion acting as the only transport

The Journal of Physical Chemistry B Article

dx.doi.org/10.1021/jp3093644 | J. Phys. Chem. B 2013, 117, 602−614610



mechanism. Environmental factors such as wind and thermal
convection would reduce this number to a much smaller value,
likely orders of magnitude smaller. Comparing tD to a
racemization time which could be in excess of 1 million
years, it is clear that, for reasonable values of the relevant
physical parameters, the time scale of racemization is many
orders of magnitude larger than the time scale for diffusion, and
the macroscopic pool would then behave as a single domain.
In closing this section, we make an observation on the

relationship between the coverage fraction employed in this
study (φ = 1/3) and the reactant concentration in an actual
solution. Consider the 36 × 36 system at 1/3 coverage, which
contains initially 144 A molecules, 144 B2 molecules, and no C
molecules. Assuming that the chiral molecule of interest is an
amino acid such as serine, comparison to a C molecule
indicates that the lattice constant, l, is approximately 3 Å. If we
consider the two-dimensional system to represent a slice of
thickness l in a three-dimensional solution, then the 36 × 36 ×
1 system has a volume of 35 × 103 Å3. The effective initial
concentration of A molecules is then ∼7 M, which is between 5
and 6 orders of magnitude larger than the value assumed for the
concentration in the racemization time calculation. Thus our
simulations are performed under highly concentrated con-
ditions. This is only due to numerical considerations since, if
one were to run simulations at very high dilutions, the
simulation times would become enormous, making the problem
computationally infeasible.

VI. CONCLUSION
The elementary model studied herein is capable of breaking
chiral symmetry with explicitly chiral entities, molecular degrees
of freedom, and no initial geometric bias for symmetry
breaking. With the inclusion of reverse reaction rates, the
model satisfies microscopic reversibility and evolves inexorably
toward the racemic equilibrium state over long enough times.
Numerical investigation of the model’s behavior has enabled us
to identify conditions under which the system’s evolution
toward racemic equilibrium following an initial symmetry
breaking event becomes extremely slow, and chiral imbalance
can be maintained over very long times. Strong mutual
inhibition between enantiomers, as well as low temperatures,
leads to this type of behavior. Conversely, when the activation
rates of the forward autocatalytic and noncatalytic reactions
become sufficiently similar, symmetry breaking cannot occur.
Strong mutual inhibition leads to the monomer purification
mechanism, which allows long-time persistence of a nearly
homochiral state even in the presence of significant reverse
reaction rates. Hence, strong mutual inhibition not only
enhances the initial symmetry breaking event, but can also
greatly lengthen the persistence time of symmetry breaking in
such systems. Order of magnitude estimates based on realistic
reaction rate constants indicate that a nearly enantiopure
population of chiral monomers can be preserved for geo-
logically relevant times in a system closed to mass flow, even
with significant reverse reaction rates. This suggests a plausible
scenario for the spontaneous emergence of homochirality in a
system of macroscopic dimensions. Our study thus adds to the
rich variety of plausible scenarios for the emergence and
maintenance of homochirality in a presumably racemic
prebiotic world.
For all cases examined with nonvanishing reverse reaction

rates, the final equilibrium state involves a distribution of
enantiomeric excess which fluctuates narrowly around zero, i.e.,

a symmetric unimodal distribution. However, that is not the
only conceivable scenario. A broader family of models could
include additional intermolecular interactions of intermediate
range which are attractive for homochiral pairs of chiral product
molecules and repulsive for heterochiral pairs. If these
additional interactions were sufficiently strong compared to
kBT, and the concentration of product molecules sufficiently
high, liquid immiscibility could result. The final equilibrium
state for an ensemble of such systems could then involve a
bimodal distribution of enantiomeric excess. At any given
moment of observation one would encounter a dominantly
chiral overall state. Eventually a sufficiently powerful and
properly directed thermal fluctuation could switch the system
to the other half of the bimodal distribution, but the mean
persistence time between such switches would depend on the
free energy of a transition state which can be very large
compared to kBT. An informative analogy may be a finite-size
Ising ferromagnet in contact with a heat bath below the Ising
critical temperature; its thermal equilibrium state would involve
equally probable “up” and “down” magnetizations with long
persistence times.
Our study suggests several directions for future inquiry. We

have so far considered thermodynamic4 and kinetic51 models
for the amplification of chiral imbalance. It would be interesting
to combine both models, bridging far-from-equilibrium kinetics
with equilibrium thermodynamics. Important effects, such as
convection, have not been considered so far by us. Extending
our studies and calculations to three dimensions and
developing models that can shed light on chiral symmetry
breaking in crystallizing systems subject to the input of
mechanical energy12,14 also appear to be fruitful directions for
future work.

■ APPENDIX

Species Description
Reactant A. Species A can diffuse in any of four directions

on the 2-D lattice and can react with species B2 via noncatalytic
and autocatalytic routes to form product C.

Reactant B2. Species B2 can diffuse in any of four directions,
can perform a 90° rotation (whereby one of the subunits
remains stationary), and can react with species A via
noncatalytic and autocatalytic routes to form product C.

Product C (Chiral Monomer). Species C exists in either of
two chiral forms (herein denoted “R” and “S”). This species can
diffuse in any of four directions, can perform a 90° rotation
(whereby the vertex subunit remains stationary), can
decompose to A and B2 via noncatalytic and autocatalytic
routes, and can associate with a C molecule of the opposite
chirality.

Associated Complex D (Chiral Heterodimer). Species D can
diffuse in any of four directions and can dissociate to C(R) and
C(S).
Characteristic Times
The diffusivities of species A, B2, and C are calculated by using
the Einstein expression:

δ=D
r
dt

( )
2i

2

(A.1)

where Di = diffusivity of species i in units of [l2/τ] (τ is the
inherent unit of time associated with the kinetic MC
algorithm), ⟨(δr)2⟩ = mean square displacement of species i
in the time interval of length t, d = dimensionality of the system
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(2 for this model), and t = time. Since during a simulation
reactions cause the mixture composition to change with time,
we investigated the effect of composition on diffusion
coefficients. To measure the effective diffusion of particles
during a reactive simulation while maintaining a constant
mixture composition, we use “mock reactions” while measuring
Di. When mock reactions are used, any (randomly) selected
particle is randomly chosen to either diffuse or react, as it would
be in a typical simulation; however, if the particle is selected to
react, nothing occurs and the time is advanced by (1/N)τ. In
this way, the mixture composition remains constant while
recording diffusivities. Without using mock reactions, every
time a particle is selected it automatically attempts a diffusive
move, causing the particles to diffuse approximately twice as
fast as in a simulation with reactions. As shown in Figure 10,

the diffusivities are not strong functions of mixture composition
for a coverage fraction of 1/3. Therefore, for the purpose of
estimating a characteristic diffusion time, the composition
dependence of Di is neglected.
The characteristic diffusion time of species i, defined here as

the approximate time it takes for a molecule of said species to
diffuse the length of the system, is calculated by a modified
version of eq A.1:

=t
nl
D

( )
i

i
d,

2

(A.2)

where n = nx = ny (system size) and l = width of a lattice site.
For estimation purposes, we use the diffusivities for an
equimolar ternary mixture. For a 36 × 36 lattice, the resulting
characteristic diffusion times are then td,A = 18000τ, td,B2

=
27000τ, and td,C = 39000τ. In a simulation without inhibition,
species B2 is taken to define the characteristic diffusion time. In
the presence of inhibition, time scales are significantly longer
and the diffusion of C plays a role in dimer formation;
therefore, the characteristic diffusion time of C is used instead.
The reaction half-life is utilized as a characteristic reaction

time scale. It is approximated for each set of reaction conditions
by running 100 independent trials, during which the number of
A molecules is tracked. When the moving-average number of A
molecules drops below half its initial value, the half-life is
recorded (the moving average is computed by using 99
preceding points and the current point, each separated by 1τ).

The results of the 100 independent trials are averaged to obtain
an average reaction half-life. The reaction half-life may vary
greatly under different conditions. Indeed, under some
conditions reaction equilibrium may preclude the consumption
of more than half the initial reactants, or under certain
circumstances the reaction takes so long to achieve equilibrium
that the time evolution of the number of reactant molecules
becomes prohibitively slow. If 10 out of 100 trial runs exhibit a
failure to achieve half the initial value of A, the simulation
reverts to using the 3/4-life, though this is quite a rare
occurrence in the parameter ranges explored in this study. One
should note that this definition of reaction time is not intended
to be a precise quantification, but rather an indicator for the
relative rates of reaction and diffusion.

Simulation Trials
The reaction half-life is compared to the characteristic diffusion
time of choice (either B2 or C, depending on the presence or
absence of inhibition), and whichever time scale is larger is
chosen as the characteristic time scale for that particular set of
reaction conditions. The trial runs are then carried out for 10 or
20 characteristic times, depending on the presence or absence
of inhibition, respectively. This is done to ensure that the
particle numbers have achieved a quasi-steady state and that the
system has had adequate diffusion time by the end of the
simulation.
At the conclusion of a trial run (after the requisite time has

elapsed), the average particle numbers and average overall
enantiomer fraction, f, are calculated on the basis of the last 1/3
of the data for that particular run (note f = NR/(NR + NS),
which does not distinguish between inhibited and uninhibited
C molecules). The first 2/3 of the trajectory is omitted in an
effort to exclude any early-time transient behavior in the
particle numbers. This procedure is repeated 10 000 times per
each set of reaction conditions, and a probability distribution
function, Q( f), is recorded by binning the final values of f for all
runs and normalizing by the total number of runs.
As mentioned in section II, the sample skewness is a

convenient quantity in terms of defining the symmetry breaking
transition since it is well-defined mathematically and relates to
the unimodal/bimodal character of the probability distribution
function of the absolute value of the overall enantiomeric
excess, Q(|ee|), which is linearly related to the Q( f) via |ee| = |2f
− 1|.

Method of Initial Rates
The method of initial rates44 was used in order to determine
reaction order for all the reactions in our model. For instance,
in the noncatalytic reaction A + B2 → C(i), where i = R or S,
the molecularity implies that the reaction is second order. In
order to rigorously demonstrate the overall reaction order, we
first postulate the general rate law:

= − = η ξr
C
t

k C C
d
d

A
f A B2 (A.3)

where r = reaction rate [molecules/n2τ], kf = reaction rate
constant [(molecules/n2)1−(η+ξ)/τ], CA = concentration of A
molecules [molecules/n2], CB2

= concentration of B2 molecules
[molecules/n2], η = reaction order with respect to species A,
and ξ = reaction order with respect to species B2.
Equation A.3 may be rewritten for the instant the reaction

starts, denoting the initial rate as r0 and the concentrations of A
and B2 as CA,0 and CB2,0, respectively:

Figure 10. Diffusivity as a function of composition (φ = 1/3) for a
mixture with equimolar amounts of A and B2 and “mock reaction”
employed.

The Journal of Physical Chemistry B Article

dx.doi.org/10.1021/jp3093644 | J. Phys. Chem. B 2013, 117, 602−614612



= η ξr k C C0 f A,0 B ,02 (A.4)

Taking two different sets of initial concentrations, I and II, one
may divide eq A.4 by itself to obtain

=
η ξ

η ξ
r
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C C

C C
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A,0 II B ,0 II

2

2 (A.5)

Therefore, in order to determine η and ξ, one simply performs
a series of three sets of simulations with varying initial
concentrations of A and B2, as shown in Table 1.

During each of these particular simulations only the
noncatalytic reaction was allowed to occur, with all other
reactions turned off. Each simulation was repeated 1000 times,
and the time trajectory of the concentration of A, CA vs t, was
averaged over all runs to obtain a smooth curve. The values of
r0 were obtained by plotting the averaged CA vs t and taking the
limiting slope of dCA/dt at early time (r0 = −[ dCA/dt]0 =
−limt→0{dCA/dt}).
Applying eq A.5 to trials 1 and 2 (note [CB2,0]I = [CB2,0]II),

one obtains

=
η⎛

⎝
⎜⎜

⎞
⎠
⎟⎟r

r

C

C
[ ]
[ ]

[ ]

[ ]
0 1

0 2

A,0 1

A,0 2 (A.6)

Substituting the appropriate numbers and solving, η = 0.94 ≈ 1.
Similarly, with trials 1 and 3 one obtains ξ = 1.00... ≈ 1.
Therefore, the overall reaction order is η + ξ = 2, and the
noncatalytic reaction is second order as implied by its
molecularity. Equivalent simulation schemes were performed
for the autocatalytic reaction, whereby it was confirmed that
reaction is indeed third order.
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