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or of segment number, 

(M)=Mo(N). (BS) 

Using (M), the dimensionless functions of the intrinsic 
rigidity are written as 

[G"J (M)/ RT= [G'J (M)/ RT 

= (VJ/2) (w.)1/2 

for the Rouse theory and as 

[G"J{M)/ RT=VJ[G'J(M)/ RT 

(B6) 

intrinsic viscosity are related to those of the intrinsic 
rigidity by Eq. (18). In this case the generalized 
angular frequency must be represented by Eq. (15) 
in terms of [1/]. It is equivalent to the use of the vis­
cosity average for M contained in [1/J, so that Mv is 
to be used for the remainder of M in Tp. Thus 

[1/'J/[1/J=[1//IJ/[1/J= (VJ/2) (w.)v-1/2 (B9) 

for the Rouse theory and 

[1/'J/[1/J = VJ[1/"J/[1/J= [25/3/3 (0.586) 2/31r1/3J (w. )v-1/3 

(BlO) 
= [26/3/3(0.586)2/31r1/3J(W.)2/3 (B7) for the Zimm theory. Here 

for the Zimm theory. Here 

(B8) 

where (Tp) is the relaxation time given by substitution 
of (N) for N in 7 p' The dimensionless functions of the 
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(Bll) 

As a conclusion, we have to use viscosity average for 
M in the relaxation time and the generalized angular 
frequency, and accordingly for (M) in the dimension­
less functions of the rigidity. 
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The statistical thermodynamics of symmetrical "primitive-model" electrolytes is formulated in such 
a way that all ions are uniquely paired. The behavior of the resulting fluid of "polar molecules" may con­
veniently be described by a wavelength-dependent dielectric constant .(k). A rigorous formula of the 
Kirkwood type for .(k) is derived. Since ion-atmosphere mean charge densities may be obtained from 
.(k), this dielectric function is utilized in construction of an electrolyte free-energy expression [Eq. (50)], 
as well as to establish an exact second-moment condition on the ion atmospheres [Eq. (73)]. From the 
latter it is demonstrated that for rigid spherical ions of diameter a, the ion atmospheres necessarily each 
have nonuniform charge sign when Ka>6112 (K-1=Debye length). 

I. INTRODUCTION 

Shortly after the classic Debye-Hiickell theory of 
dilute electrolytes appeared, B jerrum2 suggested the 
intuitively appealing notion of ion pairing as a means 
of extending its applicability to higher concentration. 
The present paper, and the following one, represent 
implementation of the Bjerrum idea in an extreme 
form, since all ions are forced to pair by convention. 
Although the theoretical style and physical emphasis of 
this work differ from Bjerrum's, we feel that the 
approach serves to clarify the fundamental basis of 

* Present address: Department of Chemistry, Washington 
University, St. Louis, Mo. 

1 P. Debye and E. Hiickel, Physik. Z. 24, 185, 305 (1923). 
2 N. Bjerrum, Kg!. Danske Videnskab. Selskab, Mat. Fys. 

Medd. 7, 1 (1926). A more accessible reference for the Bjerrum 
analysis is R. H. Fowler and E. A. Guggenheim, Statistical 
Thermodynamics (Cambridge University Press, Cambridge, 
England, 1960), p. 409. 

his work, as well as that of several other notable 
contributions to ion-pair theory.3-5 

In the interests of expository simplicity, the material 
reported here is restricted in scope to the so-called 
"primitive-model" electrolyte; that is, the ions are all 
regarded as rigid spheres of identical size in a linear 
structureless dielectric solvent, and they bear charges 
±Ze. For this highly idealized electrolyte, there are 
two fundamental physical parameters characterizing 
the system. The first is a dimensionless density giving 
the extent of geometric packing of the rigid ion cores 
of diameter a: 

( 1) 

Here it is presumed that N anions and N cations 
comprise the ionic solution in volume V. Sl can in 

3 R. M. Fuoss, Trans. Faraday Soc. 30, 967 (1934). 
4 H. Reiss, J. Chem. Phys. 25, 400, 408 (1956). 
6 J. C. Poirier and J. H. DeLap, J. Chem. Phys. 35, 213 (1961). 
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principle vary between 0 and the upper limit 21/2 
imposed by close packing of the spheres. The electro­
static interaction in the system may be measured in 
terms of a second parameter, the potential energy of 
two like ions in contact, divided by the thermal energy 
kBT: 

(2) 

where Eo is the solvent dielectric constant. The possi­
bility that !2 might have any nonnegative real value 
must be considered. 

The basic goal consists in finding the Helmholtz free 
energy per ion divided by kBT for the primitive model, 
F(!h !2)/2NkBT. If this quantity is written with the 
noninteracting (ideal-ion-solution) portion separated, 

F(!l, !2)/2NkBT= (F;deal/2NkBT)+Fl (!1, !2), (3) 

then Fl (!l, !2) embodies all interaction effects. 
In order to establish a suitable context in which to 

view the present work, Fig. 1 provides a schematic 
phase diagram for the primitive model in the !l, !2 
plane. Although the system should exhibit at least two 
crystalline phases, we shall be solely concerned with 
that portion of the diagram in which a single fluid phase 
obtains. 

Along the !l axis (!2= 0), the system consists es­
sentially of uncharged rigid spheres, the statistical 
properties of which are sufficiently well known for 
present purposes.6 In particular we note the virial 
series for F1(!1, 0) in integral powers of !l: 

FI(!h 0) = (2'11/3)!1+ (511'2/36)r12+0.87874!13+ •••. (4) 

In the reverse situation with finite !2>O but !1=0, 

(5) 

since this case is equivalent to infinite dilution. The 
famous Debye-Hiickellimiting law specifies the lowest 
!2-order contribution to Fl at any value of !l, and in the 
present notation has the following form: 

FI(!I, !2),...."F1(!1, 0) - (211'1/2/3)!11/2!23/2. (6) 

It is the task of concentrated-electrolyte theory to 
extend this development to higher !2 order. 

The process of formally pairing all ions serves two 
purposes. First the difficulty of the long-range nature 
of Coulomb forces is mitigated somewhat in that the 
resulting "dipolar molecules" have obviously zero net 
charge, and may be described by the well-understood 
techniques of the statistical mechanics of dielectrics. 
Second, it is likely that the complicated solvation and 
specific saturable chemical interactions operative in 
real electrolytes act mainly between the two members 
of ion pairs (on account of their closeness) rather than 
between ions unpaired with each other, so that any 
theory including these effects finds the ion-pair ap­
proach as its natural starting point. 

The basic statistical-mechanical treatment of the 

SH. L. Frisch, Advan. Chern. Phys. 6, 229 (1964). 
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FIG. 1. Phase diagram for the primitive-model electrolyte. The 
Debye-Hiickel regime corresponds to the immediate vicinity of 
the fl axis. For sufficiently large electrostatic coupling f2, a phase 
separation should occur into a fused-salt-like concentrated fluid 
and its coexistent dilute vapor, analogous to the situation with 
real fused salts. Although the body-centered cubic crystal mini­
mizes the electrostatic Madelung energy, and thus should be 
stable at low temperature (large f2), it would be destroyed by 
sufficient compression (fl->21/2). 

complete ion-pairing process is contained in the next 
section (II). This is followed in Sec. III by introduc­
tion of the electrolyte dielectric function E(k), for which 
several properties are deduced, including a formula of 
the Kirkwood type and a free-energy expression in 
terms of E(k). In Sec. IV it is shown that the con­
nection between E(k) and the ion-atmosphere charge 
distribution leads to a second spatial moment con­
dition on the latter. This moment condition is finally 
shown to imply that ion atmospheres for the primitive 
model necessarily possess concentric regions of both 
charge signs when Ka exceeds 61/2"""2.4495 (K-l is the 
Debye length). 

The following paper explores a direct approach to 
calculation of E(k). 

II. ION-PAIRING PROCESS 

A. Configuration-Space Splitup 

We begin with the canonical partition function for 
the N anions (numbered 1 to N) and N cations (num­
bered N+l to 2N) in volume V, 

QN.N= U,_A.r)-3N(N!)-2 Iv drl··· Iv drw 

Xexp[ -,8VN,N(rl·· ·rw)], 

(7) 
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FIG. 2. Typical configuration of ions in the primitive electrolyte 
model. The unique pairing of all ions specified in the text is indi­
cated by the straight lines. 

where Land A+ are the anion and cation thermal de 
Broglie wavelengths, respectively. For the primitive 
electrolyte model the potential energy consists of a sum 
of particle-pair terms each of which displays rigid 
sphere (Va) and electrostatic parts, 

Va (r;j) ± (Ze)2jfor;i> 

Va(rii) =+ 00 (r;i5,a) 

=0 (rii>a). (8) 

A typical electrolyte ion configuration is diagrammed 
schematically in Fig. 2 for the primitive model. It is 
easy to see that aside from special configurations of 
zero weight, a unique pairing of ions of opposite sign 
may be executed: (a) out of the entire set of distances 
between unlike ion pairs, select the smallest and pair 
off the corresponding anion and cation; (b) after having 
removed this first ion pair from further consideration, 
select next the remaining smallest anion-cation 
distance that exists involving the remaining 2N - 2 
ions only, and designate the choice as the second ion 
pair; (c) continue this process of smallest-distance 
selection within ion remainder sets until all ions have 
been paired. The net result (as indicated in Fig. 2) is 
that each ion serves as a partner for one and only one 
ion of opposite charge type. 

Obviously the set of ion positions rl··· rw alone 
determines which anions pair with which cations. Let 
ffiN denote that portion of the full 6N-dimensional 
configuration space for the electrolyte for which anion 
1 is paired with cation N + 1, •.. , anion j with cation 
N+j, ••• , anion N with cation 2N. On account of the 
basic equivalence of all ions of the same charge, QN,N 

in Eq. (7) may be written as an integral only over 
ffiN, if a factor N! is introduced to account for the 

fact that this number of possible pairings each con­
tribute equally to QN,N: 

QN,N= (LA+)-3N(N!)-1 f drl··· f dr2N 
ffiN 

Xexp[ -i3VN,N(rC··r2N)]. (9) 

The integral restriction in Eq. (9) to region ffiN 
may be given a very simple interpretation. In order 
that the given pairing obtain, one must prevent ions of 
opposite charge contained in different pairs from 
approaching one another more closely than the shorter 
of the distances internal to the two pairs involved. If 
such a close approach were allowed, say, between anion 
i and cation j, then the pairing procedure surely would 
have linked i to j, in contradiction to the postulated 
pairing. Figure 3 illustrates the configurational restric­
tion for two selected ion pairs. 

In the following it is especially convenient to con­
sider this set of restrictions generating ffiN to have 
arisen from a potential energy function operative be­
tween pairs of the "dipolar molecules" (ion pairs). 
Let the six-component vector Xi describe the con­
figurational state of ion pair i,1 where Xi is the direct 
sum RiG;) Si of the pair's center position Ri and anion­
to-cation relative displacement Si. Then define U(Xi, x;) 
to be 0 for all X;, Xi compatible with the postulated ion 
pairing, and + 00 otherwise, exactly as shown in Fig. 3. 
By introducing u's into Eq. (9) Boltzmann-factor 
integrand for all pairs of ion pairs, the integrations 
may once again be extended over the entire vessel V: 

N N 

Xexp{ -i3[ L (!>I(Xi) + L (/J2(x;, Xi)]), (10) 
i~1 ;<i~l 

where 
<PI (Xi) = Va (ri,N+;) -[(Ze)2jfori,N+i]; (11) 

<P2(Xi, Xi) = U(Xi' Xi) +Va(rii) +Va(rN+i.i) +Va(r;,N+i) 

+Va(rN+i,N+i) + [(Ze) 2jfO] (rirl-rN+i,rl 

-r;,N+r1+rN+;,N+r1). (12) 

The partition-function expression (10) represents 
the result of an important transformation. We have thus 
been able to show that from the standpoint of equilib­
rium properties the primitive electrolyte is equivalent 
to a system of dipolar molecules with internal po­
tentials <PI interacting through pairwise additive (but 
noncentral) potentials <P2(Xi, Xi)' Although the original 
hard-sphere and Coulombic interactions comprise part 
of the potential <P2 acting between two ion pairs, the 
"steric-hindrance" portion U plays an important role 
in the subsequent theory. 

7 We shall use the same index for an ion pair as originally given 
its anionic member: pair i consists of anion i and cation N+i. 
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B. Ion-Pair Probability Functions 

The traditional approach to the statistical thenno­
dynamics of electrolytes examines the molecular dis­
tribution functions for sets of ions.8 In view of our 
restatement of the problem in terms of dipolar mole­
cules, we shall now investigate an analogous set of 
distribution functions for these composite entities. 

As is often the case, the theory is most conveniently 
developed in a grand ensemble context. We therefore 
utilize the QN,N in Eq. (10) to construct a grand 
partition function for our assembly of dipolar mole­
cules, 

exp( -(3U) = 1+ f: QN,N[exp(,B,Il±)]N 
N=l 

N N 
Xexp{ -,B[ :E cf>t (x,:) + :E q,2(X,:, Xi)]}, (13) 

i=l i<.i-l 

where !l± is the dipolar-molecule chemical potential 
(i.e., the chemical potential of the electrolyte), and 
where we set 

(14) 

Although unlike the usual binary-system grand 
partition function Eq. (13) pennits only equal numbers 
of anions and cations in the system, the macroscopic 
electroneutrality condition renders this restriction 
irrelevant in the so-called "thermodynamic limit"; 
in particular the grand potential Q may be identified 
as usual in this limit 

~-pv, (15) 

where p is the osmotic pressure.9 

Dipolar-molecule distribution functions are now 
defined by the statement that for n= 1, 2, •.• , 

p(n)(xt, "', Xn)dXI" ·dxn (16) 

represents the probability that dipolar molecules (ion 
pairs) simultaneously occupy center-position and 
orientation-length space elements dXl'" dxn, irrespec­
tive of the state of the remainder of the system. By 
invoking the standard probabilistic interpretation of 
the terms in Eq. (13), the pIn) are found to belo 

p(n) (Xl" .X,,) =exp(,BQ) f: yN f dXn+l'" f dXN 
N=n (N-n)! 

N N 

Xexp{ -,B[:E (Pt(Xi) + :E q,2(X,:, Xi)]}' (17) 
;=1 ':<1=1 

8 J. G. Kirkwood and J. C. Poirier, J. Phys. Chern. 58, 591 
(1954). 

9 W. G. McMillan and J. E. Mayer, J. Chern. Phys. 13, 276 
(1945) . 

10 T. L. Hill, Statistical Mechanics (McGraw-Hill Book Co. 
New York, 1956), Sec. 37. 

~j 
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(a) ALLOWED CONFIGURATION, U(Zi ,zjl'O 

~-----

+ 

(bl UNALLOWED CONFIGURATION, U(Zi '~j)' +<0 

FIG. 3. Configurational restrictions for a given ion pairing 
(vector connections Sj and Sj). In case ( a) the oppositely charged 
ends of the different pairs are farther apart than the minimum of 
Sj and Sj, so the configuration is p'ermissible and "steric hindrance" 
potential u vanishes. In case (b) the condition is violated, the 
dotted line should have been drawn in the pairing process, so u is 
taken to be + ro. 

In the special case n= 1, the quantity p(1) will depend 
only on the ion-pair scalar separation s in the isotropic 
homogeneous electrolyte bulk, and its variation with s 
will give the distribution of ion-pair sizes. The more 
complicated ion-pair doublet probability p(2) likewise 
will display certain invariances stemming from isotropy, 
and could be used in connection with q,1 and q,2 to write 
out quadratures for the mean energy, the osmotic 
pressure in virial fonn, and the isothennal osmotic 
compressibility for the electrolyte. 

It is important to recognize that the set of functions 
pIn) carry greater structural infonnation about the 
microscopic state of the electrolyte than do the more 
orthodox ion-distribution functions. As an illustration 
we remark that no finite set of the ordinary ionic­
distribution functions suffice to give any p(n), but 
from p(l), "', pIn) all of the ordinary ionic-distribution 
functions of orders 1 to n may be obtained.1l 

C. Cluster Expansions 

Although Ursell-Mayer cluster expansions12 have 
been mainstays in the theory of fluids of interacting 
particles, they encounter special convergence dif­
ficulties in the case of long-range Coulomb interactions 
between ions.13 ,14 The transformation to ion pairs as the 

11 A concrete example for n = 2 appears in the following paper 
[R. Lovett and F. H. Stillinger, Jr., J. Chern. Phys. 48, 3869 
(1968)], Appendix A. 

12 J. E. Mayer and M. G. Mayer, Statistical Mechanics (John 
Wiley & Sons, Inc., New York, 1940), Chap. 13. 

13 J. E. Mayer, J. Chern. Phys. 18, 1426 (1950). 
14 H. L. Friedman, Ionic Solution Theory (Interscience Pub­

lishers, Inc., New York, 1962). 
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fundamental uncharged particles in the system very 
likely improves the convergence properties of the 
cluster expansions. But even if it is still necessary to 
perform partial graph summations to ensure finiteness, 
the formal cluster expansions still have heuristic value 
in revealing qualitative properties of the electrolyte. 
For this reason we now turn attention briefly to these 
cluster expansions. 

Owing to the internal degrees of freedom of the 
ion pairs, as well as the noncentral forces between them, 
the cluster theory usually exhibited requires some 
notational generalization for present purposes. Thus 
the Mayer f function 

f(Xi, Xi) = exp[ -(3(P2(x;, Xi) J-l, (18) 

now clearly depends on the sizes and relative orienta­
tions of the two pairs, as well as their distance apart. 

With this modification, and the observation that 
the ion-pair internal potential tPl has formally the 
character of an external potential acting on the dipolar 
molecules, we may immediately draw upon the results 
of the cluster theory of inhomogeneous fluids.l6.l6 

The Helmholtz free energy accordingly adopts the 
following form: 

(3F[p(l)J= f dXlP(I) (XI) 

x ({3tPl(Xl) +In[(LA+)3p(l) (Xl) J-11- ! [(n+ 1) 1]-1 
n=l 

x f dXI'" f dXn+IS(n) (Xl' "Xn+l) 

XP(i)(XI)'''P(1)(Xn+I), (19) 

and may be regarded as a functional of p(I). Here, 
Sin) is the irreducible (at least doubly connected) 
cluster sum of j-function products for n+ 1 ion pairs.12 

It is useful to think of ion pairs with different sizes 
Si= I Si I as being different chemical species. As a 
result of thermal motion in the electrolyte, pairs will of 
course change size, as well as change partners. The 
result is a dynamical equilibrium that is established 
between different sized species with concentrations 
corresponding to free-energy minimization. This, in the 
terminology of chemical equilibrium, is the basis of the 
known variational property of {3F[rl)J in Eq. (19)16; 
the correct ion-pair singlet size distribution r lJ is the 
function for which (3F[p(I)J achieves its absolute 
minimum subject to the constraint 

(20) 

The explicit variational calculation is easy to carry 
out by the standard approach. One finds that the 

16 F. H. Stillinger, Jr., and F. P. Buff, J. Chern. Phys. 37, 1 
(1962). 

16 T. Morita and K. Hiroike, Progr. Theoret. Phys. (Kyoto) 
25,:537 (1961). 

condition on p(1) that produces the absolute free­
energy minimum is 

that is, p(1) is required to satisfy a nonlinear integral 
equation. The electrolyte activity parameter y arises of 
course as a Lagrange multiplier for constraint (20). 

The cluster sum appearing in the right-hand member 
of Eq. (21) is known to have a simple interpretation,l7 
It is the reversible isothermal work We(XI) that must 
be performed on the medium in order to open up an 
empty cavity sufficiently large to contain, without 
geometrically unallowed overlaps, the ion pair at 
position Xl: 

In the case of large cluster size Sl, the steric-hindrance 
potential u clearly can restrict quite severely the 
motion freedom for ion pairs neighboring the one of 
interest at Xl. Consequently We should be large and 
positive, and from Eq. (22) the corresponding large­
ion-pair probability should be small. In the following 
paper we shall investigate in quantitative detail the 
implications for p(l) of this sterically produced cavity 
free energy We. 

The ion-pair doublet probability has exactly the 
same generic representation as any other molecular­
pair distribution function.18 It equals a product of 
p(l)'s for each of the pairs times a correlation factor 
that reduces to unity when the two pairs are micro­
scopically distant from each other: 

p(2) (Xl> X2) = p(l) (Xl) p(l) (X2) exp[ _(3W(2) (Xl, X2) J. (23) 

The quantity W(2) is the usual potential of mean force 
operative between the two pairs,18 and in the present 
circumstance depends obviously on the entire set of 
relative distances and angles. The cluster expansion 
for the mean force potential, 

_(3W(2) (Xl, X2) = -(3tP2(Xl> X2) + ! (n!)-I 
n-I 

x f dxs··· f dXn+2S2(n) (XI, x21 Xs" 'Xn+2) 

Xp(l) (Xs)··· p(l) (Xn+2) , (24) 

17 F. H. Stillinger, Jr., J. Chern. Phys. 38, 1486 (1963); see 
especially Eq. (27). Although this reference is devoted to the gen­
eral statistical-mechanical theory of physical clusters of all sizes, 
its results apply in particular to two-particle ion pairs. 

18 Reference 10, Chap. 6. 
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involves in S2(1O) all products of f functions whose graphs 
are at least singly connected among the n field points 
(none of which are permitted to be articulation points), 
and are additionally doubly rooted at Xl and X2.l9 

The density of ion pairs at X2 in the proximity 
of a fixed ion pair at Xl is of course given by the ratio 

p(2) (Xl, X2)/p(1)(Xl)=P(l)(X2) exp[ _(3W(2) (Xl, X2)]. (25) 

Starting from this conditional probability, we may 
calculate, say, the density of cations, p+, in the vicinity 
of the fixed ion pair. Figure 4 shows a convenient choice 
of coordinates for this purpose: t measures displacement 
of the cationic end of pair 2 from the center of pair 1, 
with 0 the angle between t and 81' The ion density 
p+(t) may be obtained merely by integrating quantity 
(25) with respect to 82, 

where dependence on the new variables has been ex­
plicitly indicated. 

In the W(2) cluster expansion shown in Eq. (24), 
we have the option of separating the contribution of 
U(Xl' X2), the direct steric-hindrance potential for pairs 
1 and 2, from the remainder of cI>2(Xl, X2) as well as the 
entire cluster sum. In other words we write 

with w the requisite remainder. Now the Boltzmann 
factor exp[ -(3U(Xl, X2)J is either 0 or 1 depending on 
the relative disposition of the two pairs. By taking 
account of the definition of u, Eq. (26) may be re­
arranged into the following form: 

p+(t) = f d82P(1) (S2) 

X (exp[ -(3W(Sl, S2, t) J)xX(Sl, S2, t, 0) 

XUo[d-min(sl, S2)J; (28) 

Uo(X) =0 (x~O) 

=1 (x>O); 

d= [(sI/2)2+t2+Slt C05OJ1I2. 

(29) 

(30) 

x stands for that fraction of the total solid angle through 
which pair 2 may be rotated (at fixed S2) without its 
negative end getting closer to the positive end of pair 
1 than the minimum of distances Sl and S2, min (Sl' S2). 
The quantity (exp( -(3w)x then is the average value 
over this fractional solid angle of the indicated Boltz­
mann factor. 

Each of the integrand factors p(l), (exp( -(3w) )x, 
and X in Eq. (28) are continuous functions S2, t, and O. 

U J. M. J. van Leeuwen, J. Groeneveld, and J. de Boer, Physica 
25, 792 (1959). 
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FIG. 4. Coordinate system used in evaluating local ion densities 
in the neighborhood of a fixed ion pair (the pair with separation 
Sl) . 

However the unit step-function factor produces two 
distinct forms for Expression (28) depending on 
whether d is less, or greater than Sl: 

p+(t) = f ds2p(1) (S2) (exp( -(3w) )xx (d<Sl) 
(82<d) 

= f d82P(1) (S2) (exp( -(3w) )xx (d>Sl)' (31) 
(82<00) 

This sudden change from integrating only over sizes 
s2<d for pair 2, to all sizes as d increases beyond Sh 
implies a discontinuity in p+( t). From Fig. 4 it is easy 
to see that p+( t) is discontinuous across the entire 
spherical surface of radius Sl centered at the anion of 
pair 1. 

The local ion density p+( t) must possess cylindrical 
symmetry about the axis of ion pair 1. Furthermore the 
manifest charge symmetry of the primitive electrolyte 
model implies that the local anion density p_ may be 
obtained immediately from p+ by an inversion oper-
ation, 

p_(t) = p+( - t), (32) 

so that p_ must be discontinuous at the sl-sphere 
surface centered about the cation of pair 1. The local 
average electrostatic charge density around the fixed 
ion pair 1 is provided by the linear combination 

Ze[p+(t)-p_(t)J, (33) 

and since both Sl spheres are its discontinuity surfaces, 
it generates three lens-shaped regions about the fixed 
ion pair, as shown in Fig. 5. 

This type of elaborate statistical structure in the 
ionic medium surrounding any ion pair apparently has 
not been heretofore uncovered in ion-pair theory. We 
have seen it arise here however as a natural outgrowth 
of the use of steric-hindrance potentials to represent 
configurational constraints. It must however be kept in 
mind that these discontinuities result from the mathe­
matical complexity of the ion-pair descriptive approach, 
and do not imply striking new observable phenomena 
in electrolytes. 
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FIG. 5. Discontinuity surfaces for local charge density in the 
vicinity of a fixed ion pair. 

III. DIELECTRIC FORMALISM 

A. Phenomenalogical Basis 

By using a language for electrolytes slanted toward 
the view of ion pairs as polar molecules, it becomes 
natural to inquire into dielectric behavior. It is now our 
task to analyze the linear response of the electrolyte to 
an applied sinusoidal electrostatic potential. 

The requisite applied potential generally cannot 
be generated by a charge distribution external to the 
system. Instead, an applied potential 

if;ap(r) = (if;o/eo) sin(k·r), (34) 

in pure solvent with dielectric constant eo, can anse 
only from an applied charge distribution 

Paper) = (if;ok2/4n) sin(k· r) (35) 

throughout the same region.20 Since we wish also to 
examine the response of electrolyte to if;.p, the charge 
Pap must be idealized to permit ions to move freely 
through it, except insofar as they interact with if;ap 
itself. 

Because the electrolyte is a conducting medium, it 
will tend to rearrange under the influence of if;ap in 
such a way as to shield this applied potential. In the 
presence of electrolyte, then, the resulting mean 
sinusoidal potentiall/i(r) for given (small) if;o will not 
have the amplitude given in Eq. (34), but instead may 
be described phenomenologically by means of an 
electrolyte dielectric function e (k) : 

l/i(r) = [if;o/e(k)] sin(k· r). (36) 

Exactly as Poisson's equation relates if;ap and Pap for 
pure solvent, l/i corresponds to a total charge 

pt(r) = (eok2/47r)l/i(r) 

= [if;oeok2/41Te(k)] sin(k·r). (37) 

20 We suppose from now on that periodic boundary conditions 
apply to the system, and that k is selected from the appropriate 
reciprocal lattice. 

This total charge comprises both the applied charge 
Pap, as well as the charge pin that is induced in the re­
arranging electrolyte. Therefore 

Piner) = Pt(r) - Paper) 

= (if;ok2/41T) {[eo/e(k)]-l} sin(k·r). (38) 

The electrolyte can do a perfect job of shielding 
if it is given enough room in which to perfonn the task. 
Therefore, at any concentration N/V>O, 

lime(k)=+ 00. (39) 
k-+O 

On the other hand, with fixed k>O, reduction of con­
centration to zero must result in pure solvent behavior, 
so 

lim e(k) =eo 
(N/V)-+O 

(k>O). (40) 

In addition, the fact that there is but a fixed number 
of ionic charges at fixed electrolyte concentration 
available to shield the many hills and valleys of if;ap 
for large k implies that 

lime(k) = eo. ( 41) 
k-+co 

Finally we append the thermodynamic stability 
criterion,2l 

eo/e(k) ::=:; 1. (42) 

B, Relation to Ion Atmospheres 

There are two available routes in calculation of e(k) 
in the fundamental statistical mechanical theory. One 
employs the direct and conventional description in 
terms of ions, the other employs our polar fluid repre­
sentation. Both approaches need to be followed through 
independently, since the forms of the results are dif­
ferent, and at the same time useful. 

In pursuit of the first of these, we convert grand 
partition function (13) into single-ion coordinate 
language, involving the initially introduced anion 
positions rl" 'rN and cation position rN+l' , ,r2N: 

exp( -lID) = 1+:t ~ 2 f drl'" f dr2N 
N=l (N.) 

Xexp[ -/WN,N(rl" ·r2N)]. (43) 

The two independent ionic-doublet correlation func­
tions in the system, normalized to unity at large 
separation, may be denoted by g++(2)(r) and g+ _(2)(r). 

21 L. D. Landau and~E. M. Lifshitz, Electrodynamics of Con­
tinuous Media (Pergamon Press, Inc., New York, 1960), pp. 
63-64. 
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In accord with Eq. (43), we have 

(%Yg+ _(2) (rl.N) =exp(!3Q) ! [(N~1) 1]2 

(%Yg+ +(2) (rN+1,N+2) =exp(!3Q) ~ NI(:-2) I 

X J drl'" J drN J drN+3'" J drw 

Xexp[ -!3VN,N(rl" ·r2N)], 

to within terms of negligible order, where N is the mean 
occupation number of the open system. 

When the sinusoidal potential ifiap is turned on, it 
IS necessary to introduce an extra potential energy, 

N 2N 
Ze[ - L: ifiap (ri) + L: ifiap (rl)], (45) 

;=1 i-N+l 

into the Boltzmann-factor integrands of Egs. (43) and 
(44). At the same time it is a straightforward matter 
to compute the charge density induced in the electrolyte 
(in linear approximation). By using definitions (44), 
and comparing with phenomenological Eg. (38), one 
obtains an expression for E (k) in terms of the ionic­
doublet correlation functions, 

EO ,,2 ( 4'rr-N 100 

- =1- - 1+ - rsin(kr) 
E(k) k2 Vk 0 

X[g++(2)(r)-g+_(2)(r)]dr) , (46) 

where ,,2= 87r(Ze)2N/EOVkBT. 
This last expression contains a Fourier transform of 

the correlation function difference, and as such may 
immediately be inverted to give the ion-atmosphere 
charge density surrounding a cation, 

N Ze 100 

Ze - [g+ +(2)(r) -g+ _(2) (r)J= - - k sin (kr) 
V 27r2r 0 

and of course the same result with a sign change applies 
to the ion atmosphere around an anion. It is especially 
interesting to notice that the ion atmosphere which 
surely represents a nonlinear response of the surround­
ing electrolyte to the presence of a fixed ion, can be 
exactly expressed in terms of the strictly linear dielec­
tric response function. By way of contrast we note that 
the induced charge cloud surrounding a small point 

test charge of magnitude 8q has the form 

2~r loo k sin (kr) C~;) -1 )dk, (48) 

which follows directly from the definition of E(k). 
The interaction free energy Fl(rI> r2) defined in 

Eq. (3) may be thought of as consisting of two parts, 

Fl(rI, r2) = Fl (rl, 0) + pel) (rl, r2)' (49) 

The first is just the reduced free energy of the dis­
charged ion cores at the packing density of ultimate 
interest, and the second is !3 times the amount of 
electrical work that must be done per ion in simul­
taneously charging all ions to their final values, ±Ze. 
Let the intermediate ion charge values be represented 
by ±Ze~, with O:::;~:::; 1, and let E(k, 0 stand for the 
corresponding dielectric response function. Equation 
(47) may then be taken as the basis for computation 
of the electrical work by the standard Debyel pro­
cedure. One finally obtains 

2(Ze)2!31
l 100 100 

F(el)(rl,r2)=- -- d~ dr dkksin(kr) 
7r 0 0 0 

By way of illustration, we remark that Eq. (46) 
for partially coupled point ions in the Debye-HUckel 
approximation may be used to compute a "Debye­
HUckel dielectric function": 

EO/E(k, ~)"'1- [,,2e/ (k2+ K2e)]. (51) 

Use of this approximation in the free-energy expression 
(50) generates elementary integrals whose evaluation 
leads ultimately to the limiting law, Eq. (6). 

C. Generalized Kirkwood Formula 

Some years ago, Kirkwood22 derived a formally 
exact expression for the static dielectric constant of a 
polar fluid. We outline now derivation of the same 
type of result for the wavelength-dependent dielectric 
function E (k ) . 

The action of ifiap on an ion pair in configuration 
x;= R;@Si amounts to a potential function 

U(x;) = (Zeif;O/EO) {sin[k· (Ri+!Si) J 

-sin[k· (Ri-!Si)JI 

= (2Zeif;O/EO) cos(k·Ri) sin(!k·si). (52) 

By symmetry we know that the grand partition function 
(13) has no variation linear in the strength of the 
external potentials U acting on the dipolar molecules. 
However the ion-pair singlet probability pel) (x) does 
have such a linear variation. Denote by p(n,O) (x) the 
value of the distribution functions in the absence of U. 

22 J. G. Kirkwood, J. Chern. Phys. 7, 911 (1939). 
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From Eq. (17) we find the linear variation to be 

p(l) (XI) = p(1 ,0) (XI) -,8( U (XI) r l ,0) (XI) 

+ f dx2U (X2) p(2,0) (XI, X2) ) . 

;= p(I,O) (XI) + p(I,I) (XI)' (53) 

Since the unperturbed ptl,O) (XI) refers to the isotropic 
fluid, it is spherically symmetric with respect to 
directions of SI and independent of RJ, so it cannot 
contribute to pin (r). This induced ionic charge there­
fore arises solely from p(I,1) (Xl) == p(l.l) (Rl, SI); by 
counting both anionic and cationic ends of these 
"perturbed" dipolar molecules we may write 

Pin(r)=Ze f ds l [ptl.1) (r-!sJ, SI)-rl.1)(r+!sJ, Sl)]. 

(54) 

This may be transformed first by use of the explicit 
p(l,I) expression in Eq. (53), and then Eq. (52) for U. 
After some rather tedious and uniformative manipu­
lation, one obtains 

Piner) = -4(Ze) 2,8 1/10 sin(k.r) 
to 

Also, p(l,O) (SI) rl,O) (S2) may be subtracted from the 
r 2,0) factor without changing the value of the integral. 
Consequently, 

~ -1=- 161r(Ze)2,8 
t(k) tok2 

X[p(2,0)(SJ, R12, S2)-p(I,0)(SI)P(J.D)(S2)] J. (59) 

One of the results of the following paper is that the 
ion-pair singlet distribution function p(I,O) (SI) goes to 
zero sufficiently rapidly with increasing Sl that 

100 

dS1SI2p(I,0) (SI) < 00, 

o 
(60) 

i.e., the integral converges. This being the case, it is then 
justified to replace sin(ksl)/ksl in Eq. (59) by the first 
two terms of its power series expansion, when k is 
small. Therefore, upon introducing the ion-pair dipole 
moment, 

VI=ZeSI, (61) 

the long-wavelength limit in (59) becomes23 

to 41r,8N 41r,8. f f 
Xsin(!k·s2) cos(k·RI2)P(2,0)(St, Ru , S2»), (55) teO) -1=- 3toV <WVI)- -;-l~~ dSI dR12 

R12= R2- RI. By comparing this last formula for pin f 
with the phenomenological equation (38), the second X ds2 ( e'VI) (e'V2) cos(k· R12) 
microscopic t (k) expression is deduced, 

to 161r(Ze) 2,8 f ( . X [p(2,0) (SI, Ru, S2) _p(I,O) (SI)p(I,O) (S2)]; (62) 
-- -1 = - dSI sm2 (! k· SI) p(I,O) (SI) where 
t(k) tok2 e= k/k, 

XP(2,0) (SI' R12, S2»). (56) 

The standard Kirkwood dielectric formula refers to 
the infinite wavelength limit. We shall explicitly con­
sider this limit in general formula (56) because mathe­
matical details of passage to k=O are nontrivial, and 
because the result provides important structural 
insights into our equivalent dipolar fluid. 

First we rewrite Eq. (56) in a slightly modified form. 
The integrand factor 

sin2(tk·sl)=![1-cos(k·s1)] (57) 

will be replaced by its spherical average over directions 
of SI, which is 

(58) 

(Vl'Vl)= ; f dSIVI'Vlptl,O) (SI)' 

It is not immediately possible to utilize the leading 
series terms for cos(k'RI2) in the remaining integral, 
for we wish implicitly to carry out the computation in 
an infinitely large system, so that regardless of how 
small k might get (but still > 0), there will be large 
regions for which the truncated series is inadequate. 

It has already been noted that ion pairs interfere 
with one another's free rotation largely on account of 
the hindrance potential U(Xl' X2). Following Kirk­
wood's argument,22 we therefore expect that the 
immediate neighborhood of a fixed ion pair with dipole 
moment VI will itself possess an average moment 
parallel to VI, which we shall denote by V+. Let w, 

23 Of course for the electrolyte we have .(0) = 00. However we 
shall proceed for the moment without making this specific identi­
fication so as to preserve the parallel with Kirkwood's work. 
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as shown in Fig. 6, be a spherical region centered 
about lIl, whose radius is very much larger than the 
mean ion-pair size, yet still of less than macroscopic 
extent.24 We presume that lI+ is entirely contained 
within w. 

The Rl2 integration is now split into two parts. 
The first, over the finite region w, allows cos(k·R12) 
to be replaced by unity, so the integral over both R12 
and 82 gives precisely lI+, a function of lIl' Equation 
(62) then becomes the following: 

EO 47r13N 47rlJ. J 
--1=---(lIl'j,it)--hm d8l 
E(O) 3eoV eo k-O 

x fv-., dR12 f d82(e'lIl) (e'lI2) cos(k·R12) 

X [P(2,O) (81, R12, 82) - p(1,O) (Sl) p(I,O) (S2)], 

where we have set 

(63) 

(64) 

Due to the fact that w is large on the ion-pair size 
scale, the deviation of p(2,O) (81, R12, 82) from the product 
of singlet functions when Rl2 is in V -w arise from 
long-range electrostatic effects. The material in V-w 
is sufficiently far from the center of w that it will be 
polarized as a macroscopic dielectric medium under the 
influence of III as a point source. With 81 and R12 fixed, 
the integral 

J d82l12[P(2,O) (81, R12, ~)-p(l,O)(Sl)P'1,O)(S2)] (65) 

will equal P, the polarization vector outside w, and this 
quantity is related to the mean electric field E(iil) by 

47rP= [e(O) -Eo]E. (66) 

The point dipole form for E is 

E= {3E(O) /[2E(O) +EO]} {- V{Pl·R12/e(O)R123]}, (67) 

where the first factor, as Kirkwood has remarked,22 is 
necessary to transform from PI to the so-called "ex­
ternal moment." 

If Relations (65)-(67) are utilized in Eq. (63), the 
passage to k~ may be accomplished in relatively 
straightforward manner, using the properties of 
spherical harmonics. We omit details. The result has 
the following simple form: 

eo 47r13N ( _) { 2e(O) [ eo ] } 
e(O) -1= 3eoV lIl'lIl 2e(O)+Eo l-e(O) -1 . 

(68) 

The solution for e(O) /EO may be readily obtained, 

E(O) /Eo= i{ 3C+ 1 +[(3C+ 1)2+8]1I2}, 

(69) 

" In accord with Footnote 23, w will be regarded as fixed in size, 
while the system size passes to infinity. 

FIG. 6. Spherical cavity w, surrounding a fixed ion-pair dipole 
!II, used in derivation of the general Kirkwood-type dielectric 
formula. The immediate surroundings of !II, contained entirely 
within w, display an average moment !I+ parallel to !II. Polariza­
tion field P is due to the total moment t.tl+t.t+. 

This is in fact Kirkwood's formula for the infinite­
wavelength static dielectric constant, though our 
derivation has differed from his in several important 
ways. 

The only way that the electrolyte e(O) can be 
infinite, as we know it must, is for the quantity C in 
Eq. (69) to be infinite, and this in turn implies that 
(lIl'PI) also must be infinite. The microscopic struc­
tural implication is that the average moment lI+ 
created by steric hindrances between the fixed finite 
moment III and its surroundings must be likewise infinite 
as a result of outward propagation of orientational 
correlation. It is therefore appropriate to consider the 
electrolyte, in the dipolar fluid convention, to exist at 
a ferroelectric Curie point, for which long-range 
orientational correlations and infinite dielectric re­
sponse at k=O are characteristic. It is thus very clear 
that the steric hindrance potentials U(Xi, Xi) acting 
between ion pairs exert a very profound influence. 

IV. ION-ATMOSPHERE MOMENT CONDITIONS 

In this final section we return to consideration of 
Eq. (46), with particular attention to the manner in 
which the k=O limit is attained. The left member of 
this equation, EO/ e(k), we expect should pass smoothly 
to zero as k~, indicative of the electrical conduc­
tivity of the medium. That the right-hand member 
should do the same is not at all obvious. 
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It is required that 

K2 { 41fN 1m 

lim - 1+ - r sin (kr) 
k~O k2 Vk 0 

X[g+ +(2) (r) - g+ _(2) (r) Jdr} = 1. (70) 

Expand the sine function: 

The O(k4) terms of course do not contribute to the 
requisite limit, but we see that the term in braces in 
Eq. (71) that is independent of k must vanish, and the 
one proportional to k2 must equal precisely k2j K2; 

The first of these integral conditions is the well-known 
local electroneutrality condition; it states merely that 
the total amount of average charge in the ion atmos­
phere of a given ion exactly counterbalances that 
ion's own charge. The second condition (73) however 
is new, and precisely specifies the second radial moment 
of the primitive-model ion-atmosphere densities. 

An electroneutrality condition (72) is the conse­
quence of a nonintegrable large-r "tail" for interionic 
potentials. Such a condition would obtain even if the 
Coulomb potential between ions were to fall off as 
rapidly as ,-3. The existence of a second moment con­
dition (73) however appears to arise because the 
Coulomb interactions fall to zero much less rapidly 
than r-3• 

The second-moment condition leads to an interesting 
and important conclusion concerning primitive-model 

ion atmospheres at high concentration. Note first that 
the rigid-sphere ion cores in the model permit Eq. 
(73) to be re-expressed thus, 

6 41fN 1'" - ~ = V a r4[g++(2)(r)-g+_(2)(r)Jdr. (74) 

The Debye-Huckel theoryl (appropriate at low con­
centration t1 or low charge t2) and its nonlinear ex­
tensions25 agree that the ion atmospheres have the same 
charge sign at all radial distances; that is 

(a~r<oo). (75) 

Without specifically invoking these theories, we now ask 
under what conditions inequality (75) is consistent 
with Eq. (74). 

Over the integration range a~r< 00, 

(76) 

Therefore if inequality (75) IS satisfied, moment 
condition (74) implies 

6 41fN 1'" - ~ ~ V a a2r2[g++(2)(r)-g+_{2)(r)Jdr. (77) 

The remaining integral may be eliminated by electro­
neutrality condition (72), so 

-(6jK2)~-a2, 

(78) 

The important consequence is that if Ka= (41ft1t2) 1/2 
exceeds 61/2, inequality (75) cannot be correct. For the 
primitive model, ion atmospheres then must exhibit 
at least one change in charge sign as r increases. This 
conclusion lends considerable credence to the detailed 
statistical-mechanical electrolyte theories that have 
predicted oscillatory ion-atmosphere charge densi­
ties8 •25 at high concentration. Indeed, the value 61/ 2 

probably represents a considerable overestimate of the 
Ka value for which the model actually would first 
possess ion-atmosphere charge alteration; more likely 
Ka~1.0-1.5 is the relevant lower-limit range. 

26 H. Milller, Physik. Z. 28, 324 (1927). 
26 J. G. Kirkwood, Chern. Rev. 19,275 (1936). 
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