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Communication: Designed diamond ground state via optimized isotropic
monotonic pair potentials
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We apply inverse statistical-mechanical methods to find a simple family of optimized isotropic,
monotonic pair potentials (that may be experimentally realizable) whose classical ground state is the
diamond crystal for the widest possible pressure range, subject to certain constraints (e.g., desirable
phonon spectra). We also ascertain the ground-state phase diagram for a specific optimized potential
to show that other crystal structures arise for pressures outside the diamond stability range. Cooling
disordered configurations interacting with our optimized potential to absolute zero frequently leads
to the desired diamond crystal ground state, revealing that the capture basin for the global energy
minimum is large and broad relative to the local energy minima basins. © 2013 American Institute
of Physics. [http://dx.doi.org/10.1063/1.4790634]

Advances in the field of self-assembly, devising building
blocks (e.g., nanoparticles and polymer chains) with specific
interactions to form larger functioning materials, are proceed-
ing rapidly and hold great promise to produce unique colloidal
and polymer systems.1–4 In the past several years, inverse
statistical-mechanical methods have been formulated that
yield optimized interactions that robustly and spontaneously
lead to targeted many-particle configurations with desirable
or novel bulk properties.5 This inverse approach provides
a powerful and systematic means of directing self assem-
bly with exquisite control. Recent studies have used inverse
methods to find optimized isotropic (non-directional) interac-
tions, subject to certain constraints, that yield novel targeted
ground states, such as low-coordinated crystal structures.5

This includes the three-fold coordinated honeycomb (or
graphene) structure in two dimensions6 and the tetrahedrally-
coordinated diamond crystal in three dimensions,7 initial
studies of which involved isotropic pair potentials with multi-
ple wells.

Are multiple wells required to achieve low-coordinated
crystal ground states with isotropic pair interactions? We have
recently shown that inverse statistical-mechanical techniques
allow one to produce unequivocally both the square lattice and
honeycomb crystal in two dimensions via monotonic convex
pair potentials.8, 9 Here, we use inverse techniques to obtain
a simple family of optimized isotropic, monotonic pair po-
tentials (that may be experimentally realizable by colloids5)
whose ground states for a wide range of pressures is the di-
amond crystal. This possibility is counterintuitive since the
diamond crystal is commonly thought to require directional
(covalent) interactions.

Using the forward approach,10 it was established over
a decade ago that the diamond crystal can be stabilized for

a)Electronic mail: torquato@princeton.edu.

a range of densities by an isotropic, monotonic pair poten-
tial devised to model star polymers.11 These authors used
free-energy calculations to find the phase diagram and vali-
date their conclusions. Moreover, the potential possessed sta-
ble phonon spectra over the predicted ground-state parameter
regime.12 A forward approach was used in another study13 to
examine only lattice energy sums at zero temperature for a
relatively small set of Bravais and non-Bravais lattices for an
isotropic, monotonic pair potential. It was found that the di-
amond crystal was stable for a certain pressure range. These
authors recognized the limitations of this restricted investi-
gation, which excluded both phonon spectra calculations and
annealings to zero temperature from liquid-like initial con-
ditions in order to validate that the diamond was indeed the
ground state.

Here we use a simpler functional form for a monotonic
radial (isotropic) pair potential function v(r) that obeys cer-
tain important conditions on its second derivative with re-
spect to the radial pair distance r established in Refs. 8 and 9.
Specifically, we propose a potential function of the form

v(r) = ε

(
1 + a1

r

σ
+ a2

( r

σ

)2
)

e−(r/σ )2
, (1)

where ε and σ , respectively, define the energy and length
units, and a1 and a2 are dimensionless parameters. Equation
(1) is chosen for its simplicity and because it allows for the
desirable features of the second derivative described below.
The potential function (1) is strictly convex for all r beyond a
small cutoff distance for a large range of parameters. In this
study, we restrict ourselves to such potentials that are convex
for r > 0.1σ .14

We introduce here an iterative two-step inverse proce-
dure to determine the optimized parameters of the poten-
tial function (1) under certain constraints that yields the di-
amond ground state for a range of pressures. Let p* = pσ 3/ε
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FIG. 1. (a) Optimized monotonic pair potential v(r) from Eq. (1) using the
parameters from (2): the D1 potential. (b) Second derivative d2v/dr2 of the
versus the radial distance r.

and ρ* = σ 3ρ be a dimensionless pressure and dimension-
less density, respectively. The first step of the optimization
procedure involves choosing an initial set of “competitor”
configurations. Then we find the parameters a1 and a2 that
maximize the ratio pmax/pmin (maximum to minimum pres-
sure) for which the diamond has a lower enthalpy than any
competitor configuration. This use of the pressure range as an
optimization variable is new to our knowledge. The second
step involves a rapid cooling procedure within a simulation
box under periodic conditions in the isobaric ensemble, im-
plying that the box is deforming and changing volume. We
start this step by choosing initial lattice vectors that define
the box within which are N particles initially Poisson dis-
tributed in space interacting via the potential (1) with param-
eters from the first step. Cooling is achieved using a quasi-
Newton method, which has similar basins of attraction as
obtained from steepest-descent methods or Metropolis
schemes at zero temperature. The basis number N for the peri-
odic cell is varied from 1 to 16 (i.e., we sample over variable-
basis crystals) over the entire pressure range defined by pmin

and pmax. If we find a lower enthalpy configuration than that
for the diamond crystal, we add that configuration to the com-
petitor list and the two-step procedure is iterated. If we find no
other states with lower enthalpy, we terminate the procedure.
Knowledge of the final set of competitors allows us to choose
a potential (without a full-blown optimization) that has other
useful qualities at the cost of only a small decrease in the pres-
sure range over which diamond is the ground state, e.g., for
the system to be relatively stiff mechanically as measured by
the phonon spectrum.

After optimization under the aforementioned constraints
(e.g., relative stiffness and convexity for r > 0.1σ ), we obtain
the following optimized parameters for the potential (1):15

a1 = −1.42324, a2 = 0.713012. (2)

Henceforth, we will refer to the potential function (1) with
parameters defined by (2) as the diamond-1 or D1 potential;16

see Fig. 1(a). The diamond crystal is the ground state of the
D1 potential from p* = 0.0554 to p* = 0.1010. At these
pressures, the corresponding densities and nearest-neighbor
(NN) distances are, respectively, ρ* = 0.235 and ρ* = 0.303,
and rNN = 1.403σ and rNN = 1.290σ . The second derivative
d2v/dr2 is designed to meet two simultaneous objectives: (a)
to stabilize the low-coordinated target structure, and (b) to
discriminate against all competitors. Specifically, using the
generalized coordination function formalism,9 we determined
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FIG. 2. Phonon spectrum in reduced units of the D1 potential for the dia-
mond at dimensionless pressure p* = 0.078 and density ρ* = 0.271. Only
a representative subset of wave vectors that lie on paths connecting high-
symmetry points (�, K, W , X, and L) of the Brillouin zone7 is shown. The
D1 potential is chosen such that the lowest phonon frequency relative to the
highest one at the X point is maximized.

that to obtain low-coordinated ground states with monotonic
convex potentials, |d2v/dr2| must be large both below and
close to the NN distance. It also must be small up to the NN
distance of the close-packed crystals and large up to the next
NN distance of the targeted low-coordinated ground state, af-
ter which it goes to zero.

We also tried to find a monotonic potential of the form (1)
that has the closely related tetrahedrally-coordinated wurtzite
crystal as its ground state, but concluded that such a poten-
tial does not exist. Wurtzite and diamond crystals have the
same first and second coordination shells, and so the only way
potential functions of the form (1) can distinguish between
the two is from its longer-range behavior. However, such po-
tentials decrease very rapidly at these larger distances due to
the dominant Gaussian factor. Thus, wurtzite for potential (1)
has higher energy than that of diamond, since its third nearest
neighbors are slightly closer.

The mechanical stability of the diamond crystal for the
D1 potential is confirmed by phonon calculations, as done in
Ref. 7, over the entire Brillouin zone.17 Figure 2 shows the
phonon spectrum (reflecting strengths of the restoring forces
for deformations for given wave vectors) at a pressure in the
middle of its stability range. The optimized D1 potential is se-
lected among those potentials that yield nearly optimal pres-
sure range for the diamond ground state such that the lowest
phonon frequency relative to the highest one at the X point is
maximized. But it is also optimal for other wave vectors that
we studied.

The stable phases for the D1 potential at various pres-
sures outside those for the diamond stability range are shown
in Fig. 3. The phases are determined by repeatedly cooling
disordered configurations at constant pressure using the afore-
mentioned variable-box energy minimization techniques and
retaining the lowest-enthalpy configurations. We find that the
diamond is stable for 0.0554 ≤ p* ≤ 0.1010. Four neigh-
boring phases are particularly interesting. At low pressures,
0.0272 < p* < 0.0530, a hexagonal crystal phase, where
the distance between hexagonal planes is shorter than the
distance between particles in the same plane, is stable. This
crystal has an effective coordination number of two. Between
this phase and the diamond phase (0.0530 < p* < 0.0554),
a low-coordinated rhombohedral graphite phase is stable.
It is composed of stacked honeycomb layers where each

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

128.112.66.66 On: Mon, 12 Jan 2015 06:32:41



061101-3 Marcotte, Stillinger, and Torquato J. Chem. Phys. 138, 061101 (2013)

FIG. 3. Ground states of the D1 potential for a range of pressures ob-
tained from steepest descent for a basis up to N = 16. The crystal phases
indicated from zero pressure to higher pressures are the 12-coordinated
face-centered cubic (gray), the 8-coordinated body-centered cubic (cyan),
a 2-coordinated hexagonal (orange), a 3-coordinated buckled rhombohe-
dral graphite (blue), the 4-coordinated diamond (red), a 5/6-coordinated de-
formed diamond (green), a 6-coordinated buckled hexagonal (violet), and a
8-coordinated flattened-hexagonal closed-packed (yellow). “Bonds” are indi-
cated between nearest-neighbor particles for visualization purposes.

successive layer is shifted in the same direction relative to the
layer immediately below it (unlike standard graphite where
the shift direction alternates between layers). The distance be-
tween the planes is about 1.5 times larger than the NN dis-
tance within a layer, which is much less than that for ac-
tual graphite. At high pressures in the range 0.1155 < p*
< 0.1315, the opposite happens, since the stable phase is a
buckled simple hexagonal crystalline, where the NN distance
within a hexagonal plane is shorter than that between planes,
resulting in a coordination number of six. Unlike the low-
pressure hexagonal phase, this phase shows buckling: parti-
cles in the same layers are not perfectly aligned, but the dis-
tance between nearest neighbors stays constant. The transition
between the high-pressure buckled hexagonal phase and the
diamond phase (0.1010 < p* < 0.1155) consists of a highly
deformed diamond crystal, for which particles have variable
coordination numbers of either 5 or 6. The highest-pressure
phase reported is a flattened hexagonal closed-packed crys-
tal in which the NN distances within a layer are larger than
that between layers. This is not the stable phase for all
p* > 0.1315; other phases arise at higher pressures.

We employed the same rapid cooling method used to
obtain the phase diagram to quantify how easy it is for the
system to reach the ground state. Table I compares the fre-
quency with which the diamond is obtained using the D1 and

TABLE I. Frequency with which the ground-state diamond crystal is ob-
tained from a steepest descent starting from a random configurations of N
particles. For each N, the frequency is calculated using 10 000 trials, which
results in standard deviations smaller than 0.5%. The D1 potential trials
are carried out at p* = 0.078, while the star-polymer potential trials used
p/( 5

18 kBTf 3/2) = 3.332 (for which the ground state has a “packing frac-
tion” η = 1.2) and an arm number f = 64 (see Ref. 11 for the definition of
these parameters).

N D1 potential (%) Star-polymer potential (%)

2 96.89 91.41
4 89.71 77.38
8 62.13 54.28

16 46.32 26.55
32 24.57 8.93
64 5.27 0.30

the star-polymer11 potentials for various numbers of particles,
demonstrating an advantage of the D1 potential. The high fre-
quency with which the D1 potential results in the diamond is
evidence that its energy landscape is smooth and possesses a
broad global minimum; see Fig. 4(c). The fact that this fre-
quency decreases as N increases is a consequence of the rel-
ative crudeness of our rapid cooling method, which is inef-
fective at resolving large-scale defects. However, it is all the
more remarkable that this method is capable of reaching the
ground state with reasonable frequency despite using large
bases, as opposed to, for example, a carefully-tuned simu-
lated annealing procedure. Nevertheless, we have verified us-
ing simulated annealing on a 256-particle system that the dia-
mond crystal emerges as the ground state for the D1 potential.

Our work provides yet another example of the “inverse”
statistical mechanical method to identify an appropriate inter-
action potential whose non-degenerate classical ground state
is a pre-selected crystal structure. In general, it is not guar-
anteed that such a targeted requirement has a solution. But in
the present case of the fourfold-coordinated diamond crystal,
previous studies have indeed indicated that this can be accom-
plished with pairwise additive isotropic potentials.7, 11, 13 The
existence of these examples establish that an infinite family
of such interactions will produce the diamond structure as its
ground state, each member within some pressure (i.e., den-
sity) range.

However, merely stabilizing a given target structure is
typically only part of the technical objective. There may be
other properties that one wishes simultaneously to satisfy or
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FIG. 4. Schematics of three different types of energy landscapes as a function of the configurational coordinate. Boundaries of the basin of attraction associated
with the global minima are indicated by dashed vertical lines. (a) Relatively rough energy landscape. (b) Energy landscape with a deep and narrow global
minimum. (c) Energy landscape with a broad and smooth global minimum.
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optimize. Here, these have included maximizing the pres-
sure range of ground-state stability for the diamond crystal,
constraining the potential to monotonicity and convexity,
maximizing the ratio of the highest and lowest phonon
frequencies, and optimizing capture probability in the de-
sired crystal basin from random initial configurations. The
choice of such constraints and/or optimizations is not
unique, but is driven by overall scientific objectives. Distinct
choices obviously will identify distinct optimizing potential
functions.

The success at constructing diamond potentials naturally
raises the question of whether the structure of that other
macroscopic crystalline form of elemental carbon, graphite,
might analogously be the classical ground state of an isotropic
pair potential. This might seem easy, given the existence of
potentials that generate the two-dimensional analog, the hon-
eycomb crystal.6, 8, 9 However, the layered structure of this
three-dimensional graphite allotrope, the stable form of el-
emental carbon at ambient conditions, with rather large in-
terlayer separation and interlayer relative shift, realistically
appears to present a formidable challenge. Ideally, it is desir-
able to find a potential whose ground state includes both the
graphite structure (at low pressure) and the diamond structure
(at elevated pressure), thus emulating reality. This ambitious
joint requirement might require at least a combination of two-
body and three-body interactions, suggesting a direction for
future research.

At present there is no known constraint on the complexity
(basis of the unit cell) of a single-species target crystal struc-
ture that might be stabilized by an isotropic pair potential. But
as the unit cell of a target crystal structure increases in size
and geometric detail, it is reasonable to suppose that stabiliz-
ing isotropic pair potentials, if they exist, will necessarily also
have to increase in range and complexity. Establishing such a
connection constitutes another direction in which future stud-
ies should be focused.
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