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Abstract

The remarkable kinetic slowdown experienced by liquids as they are
cooled toward their glass transition is not accompanied by any ob-
vious structural change. Understanding the origin of this behavior
is a major scientific challenge. At present, this area of condensed
matter theory is characterized by an abundance of divergent view-
points that attempt to describe well-defined physical phenomena.
We review representative theoretical views on the unusual kinetics
of liquid supercooling, which fall into two broad competing catego-
ries: thermodynamic and kinetic. In the former, an apparent “ideal,”
thermodynamic, glass transition caused by rapid loss of entropy in
the supercooled liquid underlies kinetic slowdown; in the latter,
purely kinetic constraints are responsible for loss of ergodicity. The
possible existence of an ideal thermodynamic glass transition is
discussed and placed in its proper statistical mechanical context.
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1. INTRODUCTION

The enormous diversity of condensed matter systems that we experience in daily life typically
includes materials that have not attained a state of complete thermal equilibrium.Many of these
materials exhibit properties that change very slowly with the passage of time; some even appear
to be time independent, and so can be empirically classified as permanently occupying meta-
stable states. Specifically, these metastable substances include both natural and manufactured
glassy (vitreous) solids that have been generated from liquids cooled rapidly through, and well
below, their respective thermodynamic melting points, thus bypassing crystal nucleation.
Quantitative understanding of what the time-dependent formation processes create for the
resulting atomic or molecular-scale structure, and macroscopic observable properties, of the
low-temperature metastable state constitutes important scientific, technological, and industrial
objectives.Many basic questions in this area remain unanswered. In particular, the fundamental
issue of whether observed liquid-to-glass transitions are only a slowed-kinetics phenomenon or
are actually a thermal precursor of an obscured “ideal” phase transition remains a vigorously
debated topic.

The glass-forming properties to be considered here are relevant to chemically very diverse
substances. They range from elements to high-molecular-weight polymers and include impor-
tant examples of both inorganic and organic materials as pure substances and asmixtures. Some
colloidal suspensions qualify for inclusion because experimentally they also can exhibit glass
transitions. However, certain classes of amorphous materials are excluded from the review.
These exclusions cover amorphous solids produced by vapor-phase deposition, disrupting
a crystal phase with severe mechanical deformation, or intense radiation damage; materials
generated by such processes have not normally been considered in theoretical studies of glass
transition phenomena.

It is a testament to the creativity of the research community that an impressive variety of
nominally distinct visions for glass phenomena have been advanced. On account of length con-
straints, the objective here is to examine very briefly a representative sample of the competing
views. These bear specifically on the unusual kinetics encountered during liquid supercooling and
on the possible existence of “ideal” glass transitions.

Precisely defined models for many-body phenomena obviously play a vital role in condensed-
matter science. This is especially true in the glass transition context. Nevertheless, it is important to
keep in mind a relevant but sobering fact: It is simply that the power of mathematics permits the
construction of many-body models whose exact (approximation-free) properties can extend well
beyond realistic physical behavior. This situation needs specifically to be appreciated with respect
to the ideal glass transition debate. A related concern is that the mathematical character of
approximations applied to analysis of physically reasonable models can analogously generate
vivid but physically unrealistic predictions.

The published scientific literature devoted to experimental observations of glass formers and
their interpretations is enormous. This compact review of glass transition theoretical viewpoints is
constrained to be very selective in its focus, so it necessarily skips overmany details. Consequently,
interested readers may find it useful to consult some of the previously published review articles for
additional relevant information concerning both experimental observations and theoretical
approaches for glassy materials (1–9).

Section 2 provides some basic historical background for the glass transition subject. Section 3
presents a few basic statistical mechanical concepts useful for a comprehensive description of the
out-of-equilibrium states inhabited by glassy materials. Section 4 surveys some recent views of
kinetic slowdown processes that lead to observable glass transitions. Section 5 examines the
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viewpoint according towhich ideal glass transitionsmight exist in principle. Section 6 covers some
relevant aspects of energy landscape topography. Section 7, Conclusions, brings this review to
a close.

2. HISTORICAL BACKGROUND

As precise experimental calorimetry became available in the past century, it was then feasible and
inevitable for a wide variety of supercooled liquids and the glasses they form to be examined in
detail and with increasing accuracy. In particular, this permitted reproducible measurements of
isobaric (constant pressure) heat capacities CpðTÞ for many supercooled liquids down to their
empirical glass transition regions (T�Tg), at which their internal relaxation times begin suddenly
to exceed practical measurement times, typically occurring in the 102�103s range. A widely cited
review article by Kauzmann (10) identified basic questions concerning the relation between those
attainable supercooled states and the thermodynamically stable crystal phases whose nucleation
and growth out of the liquid were bypassed by sufficiently rapid cooling. In particular, Kauzmann
stressed that the distinctly higher heat capacity normally exhibited by the liquid compared to its
crystal, which persists and usually magnifies upon supercooling down to the experimental glass
transition temperatureTg, raises basic questions about the relative entropy of the twomacroscopic
states in the low-temperature limit.

Figure 1 schematically illustrates the situation addressed by Kauzmann. Figure 1a presents the
isobaric molar heat capacities of the crystal (Cp,c) and of the liquid (Cp,l) branches (including both
the stable and the metastable supercooled portions) as functions of the absolute temperature. This
figure includes an elementary extrapolation of the liquid portion below Tg. Figure 1b presents the
correspondingly implied entropy difference DSðTÞ ¼ SlðTÞ � ScðTÞ for T at and below the
equilibrium melting temperature Tm. This result is based on the measured equilibrium heat of
melting, and the entropy change upon further cooling at the prevailing pressure, which is rep-
resented by a temperature integration involving the Cp curves:

DS
�
T
� ¼ DS

�
Tm

�� ZTm

T

�
Cp,l

�
T0�� Cp,c

�
T0���dT0=T0�. 1:

The primary inference from this simple procedure is that the entropy difference between the
crystal phase and the supercooled liquid (if indeed it could be reproducibly equilibrated below
Tg) apparently would vanish linearly as a function of T � TK at a Kauzmann temperature
0 < TK < Tg. An analogous temperature integration indicates that the enthalpy of the ex-
trapolated liquid would remain significantly above that of the crystal at TK, implying that
structurally the two phases would remain distinct, a conclusion also supported by density
extrapolation. Kauzmann stressed the paradoxical implication of further extrapolation below
TK toward T ¼ 0, which would require that a configurationally disordered liquid medium
possess a lower entropy than its periodically ordered crystal phase. This state of affairs would
lead to a liquid with negative absolute entropy atT ¼ 0. This paradox, and eventual violation of
the third law of thermodynamics, would be eliminated if the disordered glass exhibited an
“ideal” higher-than-first-order phase transition at TK, below which it would remain sub-
stantially structurally unchanged, as does the crystal.

The situation illustrated in Figure 1 implicitly assumes that only a single thermodynamically
stable crystal phase for a substance of interest is present over the entire temperature range
0�T�Tm. There are of course cases in which two ormore crystal-crystal phase transitions occur
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in equilibrium at the relevant pressure. Well-known examples include order-disorder transitions,
such as those presented by ammonium chloride and its deuterated variant (11). In such cir-
cumstances, the required extension of Equation 1 involves the heat of transition for a first-order
polymorphic crystal phase change, or a proper accounting of a possible heat capacity divergence at
a higher-order phase change. One also needs to keep in mind that crystal phases can occasionally
retain frozen-in structural disorder, thus departing from thermodynamic equilibrium, a textbook
example of which is the hydrogen-bond disorder in hexagonal ice, with residual entropy ap-
proximated long ago by Pauling (12).

Kauzmann’s suggestion for removal of the paradox involved the temperature dependence of
crystal nucleation ratewithin the temperature-extended supercooled liquid (10).He indicated that
the free energy barrier for the nucleation would approach zero at a temperature above TK, thus
producing an uncontrollably high rate for that nucleation. Consequently, he concluded that the
supercooled liquid could notmaintain its individuality down toTK, and so nophysical significance
should be attached to the alternative possibility of an ideal glass phase transition occurring near
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Figure 1

Qualitative view of supercooled liquid versus stable crystal thermal properties. (a) Measurable and
extrapolated values of isobaric heat capacities for the equilibrium liquid (T�Tm), supercooled liquid
(T < Tm), and the equilibrium crystal (0�T�Tm). The dashed line indicates a simple extrapolation below the
experimental glass transition temperature Tg. (b) Implied entropy difference between the phases, including the
sub-Tg extrapolation to a Kauzmann temperature TK at which the entropy difference apparently vanishes.
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TK. However, more recent experimental studies of homogeneous crystal nucleation have shown
that its rate as a function of supercooling temperature decrement tends first to pass through
a maximum and then to plunge rapidly toward zero as T→0 (13). Consequently, sufficiently rapid
cooling through this temperature interval of maximum nucleation rate can in principle lead to
survival of an unnucleated supercooled liquid medium, thus circumventing the Kauzmann sug-
gestion. This seemingly restores the possibility of an entropy-vanishing scenario and its implication
for the existenceof an ideal glass transitionat or close toTK to avoid theKauzmannentropyparadox.
The heat capacity of an ideal glass below its transition temperature would contain only vibrational
contributions, similar to the crystal phase situation in the same temperature range.

The tentative identification of a thermodynamically meaningful Kauzmann temperature as
illustrated in Figure 1 is nominally based on static measurable thermal properties of glass-
forming substances. The possibility that such a singular point defined by vanishing of the static
propertyDSmight have broader implications received support from the temperature behavior of
measurable kinetic properties for the supercooled liquids involved. These kinetic properties
include shear viscosity h, mean shear-stress and thermal relaxation times tshear and tthermal, and
the self-diffusion constant D. In the supercooled liquid, the temperature variations of these
properties tend to deviate from simple Arrhenius form, often exhibiting remarkably rapid
variation as temperature declines toward the Tg range. As a result, measurements of these
properties historically have been fitted at least approximately to the generic Vogel-Tammann-
Fulcher (VTF) functional form:

h
�
T
�
, tshear

�
T
�
, tthermal

�
T
�
,D�1�T� � A exp

�
C

T � T0

�
. 2:

HereA has at most a weak temperature dependence, andC and T0 are positive constants. These
three parameters for a given substance can vary according to the temperature range of fitting
considered. The extent to which measurements adhere to, or deviate from, pure Arrhenius
(T0 ¼ 0) behavior has provided the basis for classifying glass formers on a “strong” versus
“fragile” scale (4, 13, 14); one possible measure of this “strength” property for the data range of
interest is simply the dimensionless quantity C=T0. The formal divergence of the empirical VTF
expression at T0 for glass formers has often been observed to lie very close to their Kauzmann
temperature TK, suggesting therefore that this might not be random coincidence, but additional
circumstantial evidence for the existence of an ideal glass transition at positive temperature
(Reference 15, figure 4). In other words, the basic DS ¼ 0 static criterion for an ideal glass
transition may indeed be automatically accompanied by singularities in kinetic properties.
Nevertheless, it should be noted in passing that analysis of more recent experimental studies has
questioned whether a VTF-type divergence is supportable (16).

The nominally distinct Kauzmann static thermodynamic analysis and the VTF-type repre-
sentation for kinetic properties were in effect bridged by the appearance of the Adam-Gibbs
relation (17). Its underlying concept is that relaxation and flow processes in the deeply
supercooled liquid regime proceed via local structural excitations that occur within essentially
independent cooperatively rearranging regions (CRRs) inside the supercooledmedium. This can
be viewed as a precursor of the dynamical heterogeneity concept (18). The number of CRRs was
presumed to be roughly proportional to the inverse of their average volume over the temperature
range 0 < T < Tm. Furthermore, the mean value of that size for these CRRs, as well as of their
excitation free energies, was argued to be inversely proportional to DSconf ðTÞ, the difference in
entropy between the liquid and crystal phases that is attributable to nonvibrational degrees of
freedom. Thus, it was concluded that the average value of a typical relaxation time would have
the following form:
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t � A exp

"
C

TDSconf
�
T
�
#
. 3:

It has also been argued that the vibrational contributions to the entropies of the two phases tend
to be close enough so their difference can be neglected (17), and thus it would be reasonably
accurate to replace DSconf ðTÞ by DSðTÞ in this Adam-Gibbs relation. Consequently, if the in-
ference that the latter entropy difference vanishes at a TK > 0 is correct, then indeed this would
be coupled to divergence of measurable relaxation rates, and of the macroscopic shear viscosity
h. That the configurational entropy difference might vanish linearly at a positive temperature
was supported by an approximate enumeration of linear polymer configurations by Gibbs &
DiMarzio (19).

It has long been recognized empirically that the structural relaxation rates for supercooled
liquids representing time-dependent responses to various mechanical, thermal, and electrical
perturbations can deviate significantly from simple exponential relaxation. In particular a fre-
quently invoked representation of time-dependent response involves a stretched-exponential
function, also known as the Kohlrausch-Williams-Watts (KWW) relaxation function (20, 21):

fuðtÞ ¼ exp
h
�ðt=tÞu

i
. 4:

Here u is a fractional exponent lying in the range 0 < u� 1, and t sets the overall timescale of the
relaxation being described. As temperature in a liquid declines from well above Tm, into the
supercooled regime, and toward its experimental Tg, fits to response data have typically shown
uðTÞ to decline fromapproximately unity to values approaching 1/2,while the corresponding tðTÞ
rises strongly (4). The reasons why the stretched-exponential form arises have historically been
a subject of debate. However it is worth noting that this form mathematically can result from
a superposition of simple exponential contributionswith different decay rates; this formally can be
revealed by expressing fuðtÞ as a Laplace transform:

fuðtÞ ¼
Z1
0

FuðsÞ expð�stÞds. 5:

Here FuðsÞ > 0, and this function can be expressed in closed form for at least some u values (22).
Nevertheless, the existence of this Laplace transform resolution does not prove that the basic
kinetic processes producing the system’s net relaxation response are merely simple exponential
relaxations.

The vanishing of the entropy difference DSðTÞ between liquid and crystal phases occasionally
occurs within the thermodynamic equilibrium regime. Such occurrences are intrinsic to the inverse
melting phenomenon, forwhich the slope of the continuous and differentiable equilibriummelting
curve pmðTÞ in the temperature-pressure plane changes sign (23). In this circumstance, adding heat
isobarically to the liquid at coexistence causes crystallization. The helium isotopes provide
examples at low temperature, and at much higher temperature poly(4-methylpentene-1) also
exhibits inverse melting (24). Although unrelated to the glass formation phenomenology, the
occurrence of equilibrium states with vanishing entropy difference between crystal and liquid
phases implies that this phenomenon by itself carries no implications for dynamics. A detailed
analysis of the vibrational contributions to crystal and liquid entropies for the above-mentioned
substanceswould be needed to verify unequivocally for them the corresponding logical decoupling
between DSconf and relaxation kinetics.
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3. STATISTICAL MECHANICAL CONTEXT

The remarkable growth of computing power over the past few decades has provided valuable
support to analytical theory of glass transition phenomena. This has led to the introduction and
numerical simulation of a broad range of many-body models. Proper interpretation of model
properties relating to glass transitions, whether generated analytically or via powerful numerical
simulation, requires adherence to the basic principles of statistical mechanics. A few key aspects of
those principles that are directly applicable to liquidmetastability and glass transition phenomena
are now presented. To keep the discussion relatively simple, electronic conductors (i.e., metallic
glasses) are excluded.

It is obvious that quantum mechanics is fundamentally involved in determining atomic and
molecular structures for glass-forming substances and in determining interparticle potential en-
ergies operating within those substances. But beyond that, quantum phenomena do not play an
essential role in determining the kinetic or structural aspects of glass formation.However this does
not exclude the important role of quantum mechanics in cryogenic properties of glasses, such as
two-level-system tunneling contributions to heat capacity (25, 26), in determining thermal con-
ductivity, as well as establishing intensities measured by spectroscopic probes for glassy media
[such as those revealing boson peaks (27)]. Nevertheless, for the present review classical statistical
mechanicswill suffice to describe supercooling andglass formation. Inprinciple, it can also serve to
evaluate the various theoretical approaches now available and to determine what additional
insights would be required to “complete” the subject.

Within this classical context, the observable state of a many-particle system at time t can be
described in terms of a normalized probability distribution function f ðR, P, tÞ:Z

dR
Z
dPf ðR, P, tÞ ¼ 1, 6:

whereR stands for the full collection of configurational coordinates (e.g., positions of all atom
nuclei), and P is the set of conjugate momenta. Specifically, f represents the phase-space dis-
tribution for an ensemble of systems with identical compositions and nominally identical
histories prior to observation time t. To describe thermodynamically metastable states such as
supercooled liquids, those histories may need to include removal of those individual ensemble
members that prior to time t have exhibited undesirable nucleation of the thermodynamically
more stable phase.

Time evolution of f ðR, P, tÞ reflects the system’s dynamics that is under the control of the
interactions present. These include both intramolecular and intermolecular interactions, as well
as occasional coupling to a heat bath to impose a cooling (or heating) schedule. It is assumed that
the electronic-insulator substances under consideration have a bounded (but possibly large)
molecular weight. For these glass formers, the intrasystem interactions can be represented by
a many-particle potential energy function FðRÞ. The isochoric (constant volume V) thermal
equilibrium situation at temperature T involves a canonical distribution function f whose
configurational part contains the Boltzmann factor exp½�FðRÞ=kBT�, where kB is Boltzmann’s
constant. For isobaric conditions (constant pressure p) that often apply to experimental
investigations, the corresponding configurational Boltzmann factor in f is exp½�CðR,VÞ=kBT�,
where

CðR,VÞ ¼ FðRÞ þ pV. 7:

The behavior of any many-particle system, whether under a cooling schedule or otherwise, is
profoundly influenced by the multidimensional topography of the F hypersurface (isochoric
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conditions), or alternatively the C hypersurface (isobaric conditions), on which the system dy-
namically evolves. This topography varies drastically depending on the chemical nature of the
system. It typically includes a complicated distribution of local and global minima (inherent
structures), as well as saddle points of varying orders (i.e., classified by their numbers of negative
curvatures). These extrema fall into equivalence classes defined by permutations of identical
particles and by the particles’ intramolecular symmetries, if any.

When interest focuses on the liquid-phase supercooling regime, the portion of configuration
space that describes substantial crystallinity is by convention excluded from consideration. A
theoretical device to enforce this protocol involves erecting an impenetrable barrier within the
multidimensional configuration space that separates the amorphous liquid-like configuration
subset from the nucleated and crystal-grown subset. Consequently, the glass-forming systems of
interest inhabit, and are confined to, only the former subset.Figure 2 presents a simplified cartoon-
like representation of such a barrier inclusion in the configuration space.

The interactions within most atomic and molecular systems (accounting for electrostatic
shielding of ions) are short ranged in real space. This underlies a basic conclusion that the
number of distinct types of F and C minima (inherent structures) in their respective multi-
dimensional spaces rises exponentially withN, the number of particles present, even when those
minima are classified by depth on a per-particle basis (28). Because the elementary transitions
between neighboring basins surroundingminima involve just local particle rearrangements in an
extended system (29, 30), only OðNÞ such transitions can be expected to occur in a typical
observation period. Consequently no single macroscopic system under observation will dy-
namically explore any but a miniscule fraction of the available basins within the full F or C
topography. Thus, the notion of a single system being at “equilibrium” only implies that its
classical dynamics has visited a tiny but accurately representative sample of the available basin
set that is relevant at the prevailing observational conditions. By contrast, individual liquid
systems supercooled below their respective glass transition temperatures will also sample only
miniscule fractions of the available basins; however, in that case the sampling is far from
representative for the prevailing temperature.

Po
te

nt
ia

l e
ne

rg
y

Coordinates

Amorphous patterns

Impenetrable
barrier

Crystal patterns

Figure 2

Simple graphical representation of an impenetrable barrier erected in multidimensional configuration space
to prevent nucleation and crystal growth in supercooled liquid samples. Although nominally representing
isochoric (constant volume) circumstances, a similar situation applies to isobaric (constant pressure)
circumstances where the coordinate set includes volume as a variable and potential energy is replaced by
potential enthalpy (Equation 7).
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Whether isochoric or isobaric conditions prevail, the time-dependent entropy for a classical
ensemble described by f ðR, P, tÞ can be assigned using the following functional:

SðtÞ�kB ¼ CðNÞ �
Z
dR

Z
dPf ðR, P, tÞln f ðR, P, tÞ. 8:

The leading term CðNÞ comprises absolute-entropy contributions that are independent of
interactions and arise from the classical limit of the underlying quantum statistical mechanics;
it cancels in expressions for entropy differences between phases. In the single-component
structureless-particle case residing in d ¼ 3 dimensions, this term becomes

C
�
N
� ¼ �ln

�
h3NN!

�
, 9:

where h is Planck’s constant. Equation 8 reduces to the conventional entropy definition for
classical ensembles under thermodynamic equilibrium conditions. Individual members of an
ensemble that has been cooled toward absolute zerowill end up localized permanently in a single
F orC basin surrounding an inherent structure, but that is not what the entropy measures; it is
instead a measure of the breadth of distribution across inequivalent inhabited basins for the
entire ensemble of systems.

4. KINETIC SLOWDOWN DESCRIPTIONS

A general question that must be confronted is what configurational rearrangements in three
dimensions are feasible in a supercooled liquid, given the extremely complicated FðRÞ or
CðR,VÞ multidimensional topographies for the full set of many-body interactions that are
present. In particular, as the temperature declines, why do those molecular motions exhibit such
vivid rate slowing compared to the timescale of experimental observation? It might be
esthetically pleasing to have a straightforward universal answer covering all glass formers (31).
However, in examining analytical and numerical-simulation modeling it is important to keep
open the possibility that the relevant descriptionmay depend qualitatively on what subfamily of
glass formers is under consideration, given the wide diversity of molecular structures and their
interactions.

Theoretical interpretations of the dramatic slowdown of structural relaxation in supercooled
liquids fall into two broad categories, depending on how they are initiated conceptually. One
focuses on time-dependent phenomena exclusively, and ascribes no causal or underlying role to
thermodynamics. In sharp contrast, the thermodynamic viewpoint sees kinetic slowdown as
a consequence of an underlying ideal glass transition.

The mode-coupling theory (MCT) offers a natural starting point for discussion of kinetic
slowdownmechanisms in glass-forming substances (32–36). This approach is based on the Mori-
Zwanzig formalism (37, 38) to describe the time dependence of density fluctuations at the atomic
or molecular level. Upon invoking a two-mode closure approximation for the memory kernel
involved, the MCT generates an explicit prediction for the intermediate scattering function in
a liquid, which for wavevector length k ¼ jkj is defined as follows:

Fðk, tÞ ¼ N�1Ærðk, 0Þrð � k, tÞæ,

rðk, tÞ ¼
XN
j¼1

exp
�
ik × rj

�
. 10:
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Here, the three-dimensional locations of theN particles forming the liquid are denoted by r1 ::: rN .
The closure approximation utilized requires only the temperature and density-dependent static
structure factor SðkÞ[ Fðk, 0Þ for the liquid as basic input.

Under the closure approximation, theMCT description of the Fðk, tÞ decay as time increases
is indicated qualitatively in Figure 3. At high temperature in the thermodynamically stable
liquid, the decay at very short times represents short-displacement inertial motion, whereas at
larger times it is close to a simple exponential decay as expected for untrapped Brownian-type
motion. But as temperature declines into the supercooled liquid regime, a two-stage behavior
emerges, the short-time portion of which represents limited displacements of particles permitted
locally by surrounding neighbor-particle arrangements. However the later-time stage shown,
appearing as a flat plateau of finite duration in the logarithmic-time plot of Figure 3, represents
mean imprisonment time for particles that results from caging by immediate neighbors. For
moderate supercooling, this plateau is terminated by eventual particle escape into surroundings.
In contrast, at and below a singular temperature Tc > 0 (not to be confused with the typo-
graphically similar critical temperature for fluids), the predicted plateau extends to infinite time
without decaying to zero. This MCT result implies that the system dynamics has become
nonergodic for T < Tc: Particles are no longer able to diffuse freely but remain localized near
their initial positions.

The plateau lifetime illustrated in Figure 3 for T > Tc is substantially the average structural
relaxation time for the supercooled liquid. When experimentally determined relaxation times in
the moderately supercooled regime are fitted to the MCT prediction, which is an algebraically
divergent function with the form ðT � TcÞ�g (8, 9), the result of that fitting implies Tc > Tg.
Clearly this is contradictory and indicates that MCT fails to correctly incorporate the dominant
physicalmechanism(s) for structural relaxation in deeply supercooled glass formers. In spite of this
obvious shortcoming,MCTappears to provide a reasonably acceptable descriptionwell aboveTg,
including the appearance of two-stage relaxation behavior of the intermediate scattering function

F(
k,
t)

/F
(k

,0
)

ln(t)
0

1

A B

C

Figure 3

Schematic indication of development of the two-stagedecayof the self-intermediate correlation functionFðk, tÞ
plotted versus logarithm of elapsed time predicted by the mode-coupling theory (MCT). The wavevector
magnitude k is intended to be close to its value producing the maximum of the structure factor SðkÞ[Fðk, 0Þ.
Curve A represents the behavior in the hot liquid above its melting temperature; curve B illustrates appearance
of a shoulder in a moderately supercooled liquid due to delayed escape from an instantaneous cage of
neighbors; curve C illustrates theMCT prediction of nonergodicity at a Tc > 0, which extends the shoulder to
infinite time.
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Fðk, tÞ, usually identified in conventional glass science as separation between b (short-time) and a

(long-time) relaxation processes (5).
Wolynes and coworkers’ random first-order transition theory (RFOT), or mosaic picture, is

a thermodynamics-based theory of supercooled liquids and the glass transition (15, 39–41).
Concepts incorporated in the original RFOT view of supercooled liquids are at least partly
outgrowths of mean-field results for spin systems with interactions among the spins that have
unlimited range and that incorporate quenched random disorder; these include the Sherrington-
Kirkpatrick model (42), the Potts model (43), and the p-spin model (44). The RFOT pictures the
glass as a collection of aperiodic mosaic structures. Under isochoric conditions, the free energy of
a generic mosaic structure can be approximated using the following functional (Reference 15,
equation 3):

Finh½rðrÞ�
kBT

¼
Z
drrðrÞ½ln rðrÞ � 1� þ 1

2

ZZ
drdr0½rðrÞ � r0�½rðr0Þ � r0�wðr, r0Þ, 11:

where Finh is a measure of the excess Helmholtz free energy due to density inhomogeneity
compared to the spatially uniform state with density r0, rðrÞ is the nonuniform density, and
wðr, r0Þ is a (dimensionless) interaction energy. The first term on the right-hand side captures the
free energy cost associated with particle localization, and the second term is the corresponding
energy contribution. Because particles execute mostly harmonic vibrations about their equi-
librium positions in the long-lived aperiodic structure, one can postulate a density profile in-
volving Gaussian displacements and a variational parameter a that quantifies the extent of
localization. Upon substituting that variational profile into Equation 11, one finds that the free
energy develops a metastable minimum with respect to a at sufficiently low temperatures or
sufficiently high densities r0. This corresponds to a first-order freezing transition. However, the
actual transition advocated involves freezing into a very large set of aperiodic structures. The
predicted result is a random first-order transition involving no enthalpy or volumediscontinuity.
As described (15), the aperiodic structures considered each appear to qualify as inherent
structures on theF orC landscape, but whether all or only a subset of those amorphous inherent
structures are involved has not been precisely specified.

Connection with dynamics is subsequently established by considering the rate at which long-
lived aperiodic structures can relax into liquid-like equilibrium configurations. The driving
force for such a relaxation, namely, the multiplicity of liquid-like structures into which a local
aperiodic solid can transform, is entropic. A penalty arises from the energy mismatch between the
relaxing entropic droplet and the surrounding rigid mosaic of aperiodic crystals. Although a rig-
orous argument has yet to be provided, this mismatch energy has been stated to vary as the square
root of the size of the entropic droplet (Reference 15, section 3.2). A number of predictions result
about the dynamics and thermodynamics of glass-forming materials, including the relation be-
tween fragility and heat capacity discontinuity at the experimental glass transition; the tempera-
ture dependence of the characteristic cooperatively relaxing region’s size, including the size of the
cooperatively relaxing region at the glass transition; and the relation between fragility and
stretched-exponential relaxation dynamics. Overall, the agreement with experiments is good (45,
46). Crucially, andwith the exception of allegedly very small corrections (40), theRFOTapproach
infers divergence of relaxation times and a vanishing of configurational entropy at a common
positive temperature T0 [TK (45, 47).

The increasing power and diversity of computer simulations for model glass formers in prin-
ciple allow examination of growing length scales as temperature declines. Such statistical
measures can be independent of, but qualitatively consistent with, the RFOT domain viewpoint.
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One such proposed measure involves the point-to-set construction (47, 48). This procedure
identifies a jðTÞ as the minimum length scale at which a frozen bounding wall of particles fails to
influence the interior of a surrounded particle-set configuration. Although a wide range of fixed
particle configurations is available in principle, the most relevant choices in the present context
amount to a frozen wall surrounding a convex, reasonably compact region. The results from
applying this point-to-set technique indeed numerically establish a growing such length scale upon
cooling but are not able to directly imply a divergence at some T� 0. In this context, a geometric
frustration viewpoint has been developed, claiming that the domains in amosaic structure have an
intrinsic limitation to their size in simultaneously attempting to satisfy both low internal in-
teraction energy as well as geometrically amorphous character (49), and if correct this eliminates
singular behavior of all properties at a positive temperature TK.

Computer simulations have been able to probe the T � Tm equilibrium and T < Tm mod-
erately supercooled liquid states for a wide range of classical many-particle systems. Although
currently available computing power is impressive, it is nevertheless restricted to examining
short timescales andmodest numbers of particles compared to those characterizing experiments
on real substances. In spite of such limitations, some of these computer investigations have been
successfully directed toward isolating and characterizing the elementary configurational
transitions that produce relaxation and mediate flow processes. In particular, string-like col-
lective motions have been identified in molecular dynamics simulations for some simple model
glass formers. These motions involve a local group of particles whose neighbors displace in the
same direction along the contour of an irregular path with an identifiable beginning and end.
Binary Lennard-Jones models are the early source of such observations (50–52). Another study
of this kind (53) has involved a single-component systemwhose particles interact via aDzugutov
pair potential (54); this is an interaction that predisposes particles to adopt local icosahedral
coordination geometry, thus at least partially frustrating formation of spatially periodic
crystalline order. The results obtained indicate that the average length of the string-like
rearrangements increases as temperature is reduced.

Langer (55–57) has constructed a theory of glass transition phenomena that attributes a pri-
mary role to those string-like collective excitations, yielding a prediction of super-Arrhenius
temperature behavior for relaxation and flow-process rates. This analysis views the string
excitations as relocating amorphous-packing analogs of vacancies and interstitials, thus providing
structural transitions between alternative packing configurations. To connect this concept to
measurable kinetic phenomena, the approach derives free energies for string transitions as
a function of their length and temperature, invoking a relevant interpretation of self-avoiding
walks for the cooperativemotions of the strings. This viewpoint has beenpresented as analogous to
droplet growth in supersaturated vapors. It involves an increase in mean string length with de-
creasing temperature, and as a result predicts a corresponding reduction in rate of reconfiguration
for the amorphous medium. The derived mean length diverges at a VTF temperature T0 > 0, and
the approach also identifies this as a positive temperature for vanishing of configurational entropy.
Langer speculates that the string-like excitations may tend to be concentrated at grain boundaries
between well-packed amorphous domains (57), with domain size diverging as temperature
declines toward T0.

A rather different viewpoint regarding kinetic slowdown has been proposed by Chandler and
coworkers, advancing the notion of thermodynamics of trajectory space (58–60). Its development
is based at least in part on the Fredrickson-Andersen facilitated kinetic Ising model (61), the Kob-
Andersen kinetically constrained lattice model (62), and the Jäckle-Eisinger east model (63). This
approach presents a locally coarse-grained description, including directional correlations between
successive displacement events, of feasible particle displacements consistent with nonoverlap
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constraints (64). The overall viewpoint stresses the importance of kinetics and does not invoke
a thermodynamic phase transition of the conventional kind; i.e., it does not identify a Kauzmann
temperature at which configurational entropy or a liquid versus crystal entropy difference sud-
denly vanishes. The resulting analysis does not quantitatively predict the drop in measured heat
capacity as the relaxation timescale of a supercooled liquid exceeds available measurement times
(65). However, the formalism generates a parabolic (in 1=T) form for the logarithm of shear
viscosities and mean relaxation times that offers superior fits to experimental measurements
compared to VTF and other frequently used functional forms (66). This view of supercooled
liquids identifies a nonequilibrium phase transition between ergodic and nonergodic phases in the
space of trajectories (i.e., space and time) that produces kinetic retardation as temperature declines,
thus providing an explanation for observable glass transitions. The configurational trajectories
involve a kind of local geometric catalysis operating in regions of local particle mobility that
become rarer as temperature declines. Although they are present and active in the low-temperature
medium, the postulated mobility regions at any instant are viewed as embedded in a kinetically
inert solid surrounding medium, described as space-time bubbles. That is, the basic many-particle
pattern falls into the category of dynamic heterogeneity (18).

An impressive body of experimental results (67, 68) and a significant number of computer
simulations (69–71) have been published supporting the dynamic heterogeneity concept for deeply
supercooled glass formers. Specifically, they have demonstrated that elementary configurational
rearrangements (suchas the string-likedisplacementsmentionedabove) inavarietyofmodel systems
donot appear at random locations independently ofwhat had just previously occurred. Instead, they
tend to be clustered collectively into mobility domains that on average become fewer in number but
grow in spatial extent and lifetime as temperature is lowered. Dynamic heterogeneity has been cited
as underlying the failure of the Stokes-Einstein relation (72–74) which, if obeyed, would require the
temperature variations of the self-diffusion constant D and the shear viscosity h for a single-
component glass former to be such that Dh=T is temperature independent.

The spatial isolation of regions exhibiting anomalous mobility and their persistence over time
are the intrinsic characteristics of dynamic heterogeneity. Consequently, it is natural to identify
and quantitatively apply functions that are sensitive to this property. Families of four-point space-
time correlation functions are well suited for this purpose, and are available to monitor dynamic
heterogeneity as temperature and/or density vary in supercooled liquids (9, 18, 75). The four
points of basic interest are the initial and final positions over time interval t for two particles whose
centers are initially separated by distance r. As an example, let fjðt, 0Þ be a measure of how far
particle j moves between time 0 and time t > 0. Then the following is a time-dependent mobility
field for an N-particle medium:

f ðr, t, 0Þ ¼
XN
j¼1

fjðt, 0Þd
�
r� rjð0Þ

�
. 12:

The relevant four-point correlation function then represents the dependence of mobilities of ini-
tially close-by pairs in the isotropic medium:

G4ðr, tÞ ¼ Æf ðr, t, 0Þf ð0, t, 0Þæ� Æf ðr, t, 0Þæ2. 13:

The spatial integral of this function defines a dynamic susceptibility:

x4ðtÞ ¼
Z
drG4ðr, tÞ. 14:
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These measures of dynamic heterogeneity have been evaluated for several model glass formers,
including theKob-Andersen80:20Lennard-Jones binarymixturemodel (51), a different Lennard-
Jones binarymixture at 50:50 composition (76), a polymermelt (77), andmolten silica (78).When
plotted versus ln t these x4ðtÞ results exhibit a maximum that grows in height and is located at
increasing time as temperature is lowered. This is just the behavior expected for dynamic het-
erogeneity involving domains of anomalous mobility that grow in average geometric size and
lifetime as the extent of supercooling increases.

Additional information about collective motions in the dynamic heterogeneity scenario is
available from the isoconfigurational ensemble approach (79, 80). This technique examines
statistics of the set of trajectories that can develop in time from a given initial configuration, due to
variation in initial Maxwell-Boltzmann velocity assignments. An important insight obtained via
this analysis is the emergence of a spatially heterogeneous distribution of propensities for particle
motion upon supercooling and the observation that the propensity distribution is encoded in the
particle configuration, albeit in an as-yet not fully understood way. A numerical simulation
applying the isoconfigurational ensemble approach to the Kob-Andersen binary Lennard-Jones
model concludes that mobile particles exhibiting the highest average directionality tend to be
located at interfaces between high and low mobility clusters (81).

Evidently strong repulsions operating between particles at small separations play an important
role in the appearance of dynamic heterogeneity at low temperature. This is emphasized by ex-
amining the contrasting behavior of models incorporating soft-core pair potentials. The ele-
mentary Gaussian core model (GCM) at high density provides a clear example. Careful numerical
study by molecular dynamics simulation (82) establishes that crystal nucleation becomes very
improbable in the high-density regime for this model, thus allowing deep supercooling and a glass
transition. But unlike many glass formers, the supercooled GCM fluid adheres well to the Stokes-
Einstein relation (82), thus avoiding the deviations from that relation, which conventionally are
interpreted as a signature of dynamic heterogeneity.

5. IDEAL GLASS TRANSITION ISSUES

The ideal glass transition historically has been identified with Kauzmann’s vanishing of the en-
tropy difference DSðTÞ ¼ SlðTÞ � ScðTÞ described earlier in Equation 1. To be precise, the
Kauzmann criterion for an ideal glass transition is the vanishing at a positive temperature TK of
DSðTÞ=N in the large system limit. Subsequent theory has employed variants of this criterion as
convenient for identifying ideal glass transitions. Most frequently encountered is positive-
temperature vanishing of the configurational entropy difference per particle in the infinite sys-
tem limit, as mentioned earlier in connection with the Adam-Gibbs relation (Equation 3). This is
justified by the fact that measured heat capacities of glasses below Tg, and of the corresponding
crystal phases, each containing only vibrational contributions, tend to be quantitatively very close
(e.g., see Reference 83 for o-terphenyl and Reference 84 for selenium). Consequently, very little
shift in a predicted ideal glass transitionwould be involved. In principle, the equilibrium crystal has
a small positive configurational entropy at any T > 0 due to extremely small concentrations of
point defects (vacancies, interstitials), so that disregarding this feature and thus assuming
N�1DSconf ¼ N�1Sconf ðliqÞ ¼ 0 would be an adequate criterion for existence of an ideal glass
transition at a positive temperature. These criterion distinctions are relatively minor issues,
generally, for the subject of ideal glass transitions.

In view of the linkage that has often been made from experimental measurements between
a possible Kauzmann temperature TK inferred from static (thermodynamic) properties, and
a rate-vanishing temperature T0 suggested by kinetic behaviors, a mathematical property
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applicable at least to hypothetical many-body interactions deserves mentioning. The basic issue
concerns the existence of unit-Jacobian transformations within the many-body configuration
space that leave the classical partition function unchanged, while fundamentally modifying
kinetic properties. This involves invariance properties at all temperatures of the classical ca-
nonical configuration integral

YfFg ¼
Z
dR exp½�FðRÞ=kBT�, 15:

subject to certain classes of interaction modifications. Suppose one has a continuous and differ-
entiable transformation

R→R0ðRÞ, 16:

which distorts the configuration space by a simple stirring process, so that every initial hyper-
volume element dR becomes an equal-content (but possibly shape-distorted) final element dR0 at
a displaced location. Then the modified interaction function

F0ðRÞ ¼ F½R0ðRÞ� 17:

yields exactly the same value for the canonical configuration integral at all temperatures:

Y
	
F0
[Y

	
F


, 18:

because exactly the same contributions to the integral in Equation 15 are summed after
the transformation as before. Hence, all thermodynamic properties (whether or not subject to the
noncrystallization constraint) are identical for the two interactions. However, onemust expect the
Newtonian equations of motion, and thus kinetic properties, will not exhibit invariance. Such
transformations preserve the numbers and potential energy values of all minima (inherent
structures) as well as of saddle points of all orders.

An evenmore transparent class of potential energy transformationswith the sameY invariance
property has been proposed (85). It considers continuous and differentiable interactionsFðRÞ that
can be broken into modules in R space, specifically those that span unit cells of a regular R space
lattice, where each of those modules has an assigned altitude, vanishing gradient at its edges, and
fixed curvatures at those edges. The collection of modular units can be assembled in theR space in
a wide variety of ways preserving overall continuity and differentiability, thus producing a great
diversity of potential energy topographies. In particular, this diversity includes variation in the
number of deep valleys or metabasins separated by kinetics-inhibiting barriers. However, the
corresponding canonical configuration integrals Y are invariant to the way in which those given
modular units are assembled to cover the R space. Once again the thermodynamic properties are
decoupled from kinetic properties.

These in-principle examples of decoupling between thermodynamics and kinetics may have
involved stepping well beyond the limits of realistic atomic or molecular interactions. However, it
is currently unresolved whether this overstepping is generally inevitable. In those published the-
ories of glass phenomena that claim strong coupling between thermodynamics and kinetics, no
explicit criterion has yet been advanced as to precisely what classes of interaction functions should
be allowed.

The spin-glass dynamical transitions at positive temperature exhibited by the Sherrington-
Kirkpatrick, Potts, and p-spin models subject to Langevin kinetics are not accompanied by any
thermodynamic distinguishing feature (Reference 9, section IV.B.1). This is not too surprising,
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given that the spin interactions involved (infinite ranged, quenched random interactions) are quite
unlike those for atomic or molecular glass formers. These dynamic transitions are associated with
the spin systems falling into deep portions of their discrete potential energy landscapes, with
barriers too high in the infinite system limit to allow kinetic escape, thus resulting in nonergodicity.
Thus, upon cooling, different members of an ensemble for one of these spin-glass models would
become trapped in different deepmetabasins, and the distribution among thosemetabasins would
amount to a nonvanishing configurational entropy at the dynamical transition temperature.
Nevertheless, the analytical theory for thesemodels shows that if a formalmechanismwere present
to create equilibration between these deepmetabasins as temperaturewere reduced further, indeed
a positive temperature would finally be attained at which entropy vanishes; i.e., they display ideal
glass transitions.

A notable feature of the RFOT approach has been to identify what modifications would be
necessary when transforming the model type from spin glass to conventional supercooled liquids
of glass formers. Themosaic texture proposal that has emerged presumes that the length scale jðTÞ
measuring the mean size of local domains diverges at a positive temperature, and the resulting
amorphous one-grain medium below that divergence is an ideal glass state. However, the current
RFOT analysis does not offer a clear demonstration that the mechanically stable inherent
structures that qualify for this presumed low-temperature state have subexponential enumeration
with respect to system size N, which is the requirement that configurational entropy per particle
vanish below the transition temperature in the large system limit.

Hard sphere and hard disk models have frequently been invoked for study of glass phenomena
(e.g., 86, 87). For these models the interaction potential FðRÞ has only values 0 or þ1, so
temperature plays a rather minor role. Compression is the basic process to bypass equilibrium
crystallization and place the system in an amorphous solid structure. If that compression is
sufficiently extreme, and the system then is retained at fixed volume or area conditions, a many-
sphere or many-disk system will become absolutely trapped configurationally by its particle
nonoverlap requirements, resulting in vanishing self-diffusion constants and an inability to exhibit
viscous flow. Although these limiting properties are reminiscent of ideal glass behavior, pre-
dictions for these hard-particle systems indicate that ideal glass behavior would actually be en-
countered at lower compressions, short of a strict geometric jamming state. One such prediction
was based on molecular dynamics computer simulation results for binary hard disk systems by
Speedy (88), where the disk diameter ratios were in the range 1.2 to 1.4. However, a subsequent
binary disk simulation study for the 1.4 diameter ratio case found no evidence for an ideal glass
transition (89).

The monodisperse hard sphere system has been analyzed theoretically by the replica method
(90, 91). This approach has predicted an ideal glass transition in a density region below that of the
random close packing density (coverage fraction � 0:64, substantially below the close-packed
crystal maximum � 0:74). However, this replica method has invoked the hypernetted chain
(HNC) approximation for amorphous states, and consequently is open to question. It deserves to
be mentioned in passing that the coverage fraction of amorphous jammed sphere packings is
demonstrably dependent on details of the compression protocol used to form them (92). Con-
sequently, if ideal glass transitions were present, their quantitative details presumably should be
protocol dependent. However, this feature thus far has not been explored.

The Kob-Andersen 80:20 Lennard-Jones binary mixture model (62, 93) has been the testing
ground both for analytical and for simulational investigations of the existence of an ideal glass
transition. Sciortino et al. (94) evaluated the density of states of inherent structure energies in
a series of simulations, and extrapolated the entropy results to low temperature, thereby con-
cluding that this model binarymixture would exhibit an ideal glass transition at aTK > 0:Coluzzi
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et al. (95, 96) applied a rather different method of analyzing and extrapolating computer sim-
ulationdata for thermodynamic properties, but also concluded that themodel produced apositive-
temperature ideal glass transition.

The string-like excitation view of low-temperature glasses developed by Langer predicts
a linear vanishing of configurational entropy at a positive temperature identified as a Kauzmann
temperature (56, 57). Although this is not strictly the definition of an ideal glass transition in-
volving the full entropy difference DSðTÞ→0, as mentioned earlier, it seems reasonable to assume
in this approximation that vibrational heat capacity contributions would lead to this latter cri-
terion being obeyed at only a slightly shifted temperature. Several intuitively reasonable
assumptions about the temperature-dependent statistics of the string-like excitations underlie this
view of glasses, but more detailed analysis would be desirable to complete the case for or against
a positive-temperature thermodynamic singularity.

6. LANDSCAPE CONSIDERATIONS

To provide some additional comments on thermodynamics and kinetics of glass formation, and
specifically on the possibility of ideal glass transitions, it will be useful to reviewbasic aspects of the
FðRÞmultidimensional landscape topographies. The first explicit emphasis on the importance of
those landscape features in controlling thedynamics of glass formers at low temperature appears to
have been due to Goldstein (97). Subsequently, a mathematical formalism emerged, based on
a steepest-descent mapping that connected any configuration point to a local or global minimum,
i.e., an inherent structure configuration (98, 99). Thus theR configuration space for anN-particle
system becomes uniquely divided (tiled) by steepest-descent basins, each one surrounding a single
inherent structure configuration.

That the number of distinct (nonpermutation equivalent) inherent structures and their basins
rises exponentially with system size N at constant density (28) leads to the possibility of repre-
senting the isochoric canonical partition function, and thus theHelmholtz free energyF, in terms of
a simple quadrature over f, the basin depth parameter on a per-particle basis. In the large system
limit that is of interest in the present context, this has the following form (b ¼ 1=kBT):

�bF=N ¼ max
f

�
sðfÞ � bf� bfvðf,bÞ

�
. 19:

Here,sðfÞwhen appearing in the exponential format exp½NsðfÞ� enumerates by depth inherent
structures/basins that are permutation inequivalent, and fvðf,bÞ is the mean intrabasin vi-
brational free energy per particle at a given temperature and basin depth. Both of these functions
depend on particle density, left implicit for simplicity. The maximum indicated here simply
identifies the set of basins dominantly occupied at the prevailing temperature and density.
Equation 19 is applicable to the system’s equilibrium thermodynamics when the enumeration
covers the full configuration space. However, it is equally applicable to the metastable-system
subspace of the configuration space after insertion of the crystal nucleation barrier as described
earlier (Section 3; Figure 2), requiring then that enumeration function s and vibrational free
energy function fv refer only to those inherent structures and basins in that subspace. Under this
latter convention, vanishing of configurational entropy for a glass former amounts to the f

maximum identified in Equation 19 declining to the lower limit flowof the sðfÞ enumeration
range at positive temperature, and that sðflowÞ ¼ 0. As indicated earlier, this vanishing con-
figurational entropy point would be very close to that at which DS ¼ 0. Although Equation 19
refers to isochoric (constant V) rather than isobaric (constant p) conditions, the existence or
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nonexistence of an ideal glass transition under the latter circumstance can be inferred from the
density-variation properties of the former condition.

The condition that locates the integrand maximum with respect to f that is required in
Equation 19 amounts to the following equality among derivatives:

dsðfÞ=df ¼ b½1þ ∂fvðf,bÞ=∂f�. 20:

Numerical evidence has been accumulated indicating that vibrational free energy as expressed in
the function fvðf,bÞ depends only in a weak nonsingular fashion on the basin depth parameter f
(91, 100). Consequently the rightmember of Equation 20 at low temperaturewill be dominated by
b itself. Condition 20 requiresmatching of slopes forsðfÞ andb½fþ fvðf,bÞ�when plotted versus
f, as indicated schematically in Figure 4.

An argument has been presented (101, 102) indicating that the depth distribution of inherent
structures is at least approximately Gaussian for a specific binary mixture intended to represent
nickel-phosphorus eutectic mixtures (103). If this simplification were valid, then the enumeration
function sðfÞ would be an inverted parabola between its lower (flow) and upper (fup) limits of
definition:

sðfÞ ¼ s0 � s1ðf1 � fÞ2 ðflow �f,f1 �fupÞ; 21:

here s0 and s1 are density-dependent positive parameters, and the parabola maximum at f ¼
f1 is the location of the solution to Equation 21 in the infinite-temperature (b ¼ 0) limit. [A
random energy model constructed by Derrida also exhibits a parabolic enumeration function
(104).] Because the slope of the parabolic function in Equation 21 remains positive at its lower
limit flow, this would be a sticking point for Equation 19 at some positive temperature and all

N–1 × Inherent structure potential, φ

σ (φ)

β1

β2

β3

β[φ + fv(φ,β)]

Figure 4

Slope matching conditions indicated by vertical lines at various temperatures T ¼ 1=kBb for determination of
the dominant basin depth f. Here b1 > b2 > b3, and sðfÞ is the temperature-independent enumeration
function for inherent structures/basins as a functionof their depthonaper-particle basis.Aqualitatively similar
view applies to the corresponding metabasin quantities after basin aggregation.
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lower positive temperatures. That is, the configurational entropy would remain constant over
this temperature interval. However it needs to be stressed that for this parabolic approximation,
it is not sufficient to argue in favor of an ideal glass transition as thus far construed, because
sðflowÞ might not vanish but be positive, and if so, configurational entropy would remain
positive down to T ¼ 0.

An alternative analysis has been proposed, pertaining presumably to all short-range interaction
glass formers, that concludessðfÞmust have a logarithmically diverging slope at the lower limit of
the f interval (105; 106, section IV):

lim
f→flow

dsðfÞ�df ¼ þ1. 22:

This qualitative but significant feature arises from enumeration of widely separated, thus essen-
tially independent, local particle rearrangements in the lowest-potential energy amorphous in-
herent structures, each with an energy cost. Numerical simulation has provided some support for
this approach (107). With respect to the slope matching criterion illustrated in Figure 4, Equation
22 if true would eliminate a positive-temperature singular point at which configurational entropy
vanishes, and thus would eliminate the possibility of an ideal glass transition. This method of
enumeration and energy assignment is analogous to, but a generalizationof, that required for point
defects such as vacancies and interstitials in anotherwise perfect crystalmedium. ForsðfÞ to retain
a finite positive slope at flow, the analysis implies that the low-lying structural excitations would
have to involve energy increments that increasewithout bound as the system size increaseswithout
bound.

An objection to conclusions produced by this last approach has been raised, based on the
viewpoint that the states one should be concerned with are not the individual inherent structures
and their basins, but rather contiguous combinations of basins forming metabasins (108). In
particular, this would include in the same metabasin the low-energy two-level excitations that
seem to be universally present in glasses near T ¼ 0. In fact, a precisely defined extension of the
topographic analysis leading to Equations 19 and 20 can easily be created in terms of a precise
identification of metabasins, given a topographic coarse-graining energy ɛ. This process is
carried out sequentially, starting with the deepest basin. First, identify all basins whose inherent
structures can be connected to that lowest one by paths on the landscape, passing over shared
saddle points, where those paths do not rise in potential energy anywhere along their length by
more than the selected ɛ. Here, it will be assumed that ɛ is of molecular order and not pro-
portional to system size. This connection process can include immediately neighboring basins
sharing a boundary hypersurface with the lowest one, as well as noncontiguous basins, provided
that the entire connecting path over one or more intervening basins does not anywhere exceed
the height-change limit ɛ. The allowed set of connections then defines the metabasin, which
includes that lowest basin serving as the starting point. Once that lowest metabasin has been
constructed, the same algorithm is again applied to form a next-deepest metabasin, but using
only the remainder set of basins not already aggregated. Repetition of this process eventually
exhausts the original basin set, creating a tiling of the configuration space with ɛ-level meta-
basins. Although in principle it is arbitrary, ɛ could be chosen to exceed themajority of excitation
energies for two-level degrees of freedom in the system of interest that would dominate its heat
capacity at very low temperature.

Having identified ɛ-level metabasins, one can introduce an enumeration function sðfÞfor
them, as well as a metabasin vibrational free energy function f vðf,bÞ, where once again the
identifying variable f refers to the depth on a per-particle basis of the bottom of the metabasin
(i.e., the lowest included inherent structure energy). Because this metabasin construction process
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does not eliminate any topographic information relevant to thermodynamics, the Helmholtz free
energy can now equally well be written as the following extension of Equation 19:

�bF=N ¼ max
f

�
sðfÞ � bf� bf vðf,bÞ

�
. 23:

Althoughtheenumeration functions declines as ɛ increases, that reduction is exactly compensated
by a change in the vibrational free energy function f v to leave the free energy expression invariant.
The maximum required in Equation 23 satisfies the corresponding extension of the earlier slope-
matching condition, Equation 20, and Figure 4 also serves to illustrate qualitatively satisfying that
kind of condition.

Within the metabasin enumeration scheme, low-energy excitations now require at least ɛ.
Again the crystal-phase point-defect analogy applies, and the same type of calculation as for ɛ ¼ 0
concludes that s has an infinite slope at the lower depth limit:

lim
f→flow

dsðfÞ�df ¼ þ1. 24:

Consequently, the same conclusion emerges that configurational entropy (now computed on
ametabasin occupancy standard) will not vanish at a positive temperature. But having stated that,
this result does not eliminate the ideal glass transition as an empirically useful concept to organize
measurements on deeply supercooled liquids, and in that respect it serves in a conceptual capacity
analogous to that of spinodal curves for fluids carried into metastable states within vapor-liquid
coexistence regions.

7. CONCLUSIONS

The development of theories of the glass transition is an active and often contentious area of
contemporary condensed matter research. An abundance of divergent viewpoints exist that at-
tempt to describe a well-defined set of physical phenomena. At present, such viewpoints fall into
two broad categories. According to one, thermodynamics, in the form of an ideal glass transition,
underlies and is responsible for the spectacular kinetic slowdown that characterizes deep super-
cooling and eventual vitrification. The alternative viewpoint is purely kinetic, and within it,
conventional thermodynamics plays no role.

Precisely defined models, in particular the spin-glass models, have been shown to possess
ideal glass transitions that occur at positive Kauzmann temperatures TK. However, the inter-
actions presented by these models differ fundamentally from those describing atomic and
molecular glass formers that are electronic insulators. Although several approximate theories of
the latter appear to describe qualitatively the mechanisms that underlie the powerful kinetic
slowdown producing experimental glass transitions, they have not yet produced airtight
arguments in favor of strict ideal glass transitions of the Kauzmann kind. Future research
efforts must determine if unusual interactions mediated by mobile conduction electrons in
metallic glasses, or by landscape complexity resulting from the high-molecular-weight limit for
polymers, could provide exceptions.

But the deeper question remains one of causality. Even in the absence of a strict ideal glass
transition, the fundamental issue remains whether the underlying cause of slowdown in structural
relaxation is thermodynamic or kinetic. It would be a major theoretical accomplishment to
identify logically airtight tests that could establish whether the glass transition in a given system or
model is caused by a dearth of entropy or by purely kinetic constraints. This would enable
a currently lacking unambiguous distinction between correlations, such as are observed between
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kinetics and thermodynamics in many glass-forming systems, and causal relations. At present, we
can only speculate whether the answer to this deep question turns out to be general or only system-
specific.
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