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In this work, we extend recent inverse statistical-mechanical methods developed for many-particle systems to
the case of spin systems. For simplicity, we focus in this initial study on the two-state Ising model with radial
spin-spin interactions of finite range (i.e., extending beyond nearest-neighbor sites) on the square lattice under
periodic boundary conditions. Our interest herein is to find the optimal set of shortest-range pair interactions
within this family of Hamiltonians, whose corresponding ground state is a targeted spin configuration such
that the difference in energies between the energetically closest competitor and the target is maximized. For
an exhaustive list of competitors, this optimization problem is solved exactly using linear programming. The
possible outcomes for a given target configuration can be organized into the following three solution classes:
unique (nondegenerate) ground state (class I), degenerate ground states (class II), and solutions not contained in
the previous two classes (class III). We have chosen to study a general family of striped-phase spin configurations
comprised of alternating parallel bands of up and down spins of varying thicknesses and a general family of
rectangular block checkerboard spin configurations with variable block size, which is a generalization of the
classic antiferromagnetic Ising model. Our findings demonstrate that the structurally anisotropic striped phases,
in which the thicknesses of up- and down-spin bands are equal, are unique ground states for isotropic short-ranged
interactions. By contrast, virtually all of the block checkerboard targets are either degenerate or fall within class III
solutions. The degenerate class II spin configurations are identified up to a certain block size. We also consider
other target spin configurations with different degrees of global symmetries and order. Our investigation reveals
that the solution class to which a target belongs depends sensitively on the nature of the target radial spin-spin
correlation function. In the future, it will be interesting to explore whether such inverse statistical-mechanical
techniques could be employed to design materials with desired spin properties.
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I. INTRODUCTION

In statistical mechanics, the Isingmodel1 is used to describe
the fundamental physics underlying the phenomenon of ferro-
magnetism in materials. In its simplest form, the Ising model
consists of a two-state spin system, in which the individual
spins (representing magnetic dipole moments) are arranged
on a lattice and either aligned or antialigned (σ = ±1)
with respect to an arbitrary external reference direction. In
the absence of an external magnetic field, the individual spins
interact via a nearest-neighbor potential described by the
following Hamiltonian:

H (J ) = −J
∑
〈ij〉

σiσj , (1)

in which 〈ij 〉 denotes a restriction of the summation to include
only the unique pairs of spins i and j that are nearest neighbors,
and J is the spin-spin coupling constant or interaction strength
parameter.
More generalized Ising spin models are made possible by

specifying the manifold of allowed spin states, the spatial
arrangement of the spin array, and the set of interactions
present in the system. For instance, the set of allowed spin
states can be extended from the discrete two-state (up-/down-)
spin system comprising the simplest Ising model to a contin-
uous vector representation, in which the individual spins can
point in essentially any direction, as found in the q-state Potts,
Heisenberg, and classicalXY models.2–6 Second, the variables

specifying the geometrical and topological arrangement of
the spin system include the choice of the global system
dimensionality [one dimensional (1D), two dimensional (2D),
three dimensional (3D), . . .], the underlying lattice (linear,
triangular, cubic, etc.), and the boundary conditions employed
(periodic, antiperiodic, etc.); a judicious specification of these
variables facilitates the study of several additional fundamental
physical phenomena, such as order-disorder phase transitions,
symmetry breaking, and spontaneous magnetization. To com-
plete the description of a generalized Ising spin model, the
set of interactions present in the system must be specified
in terms of the functional form of the potential (radial,
two-body, three-body, . . .), the spatial extent of the interactions
(nearest neighbor, next-nearest neighbor,7,8 etc.), the range and
magnitude of the spin coupling constants, and the presence of
any external magnetic fields.
Allowing for specification of the aforementioned variables

defines the following class of Hamiltonians, with the flexibility
to describe any generalized Ising spin system:

H ({J },{h}) = −
∑
i<j

J2(Ri ,Rj )f2(Ri ,Rj ,σ i ,σ j )

−
∑

i<j<k

J3(Ri ,Rj ,Rk)

× f3(Ri ,Rj ,Rk,σ i ,σ j ,σ k)

− · · · −
∑

i

h(Ri)σ i , (2)
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in which f2,f3, . . . represent the functional form of the
two-body, three-body, . . . spin interaction potentials in terms
of the coordinates {R} and allowed states {σ } of the spins
comprising the system, J2,J3, . . . denote the corresponding
spin interaction strength parameters, and h are the spin-field
coupling constants governing the interactions of individual
spin sites with an external magnetic field.
Over the past century, a tremendous amount of work

has been dedicated to solving the standard, or “forward,”
problem of statistical mechanics for the Ising model and
generalizations thereof.1,6,9–14 Given a Hamiltonian such as
those found in Eqs. (1) and (2), one computes the structural and
bulk properties (e.g., expectation values, correlation functions,
thermodynamic functions, etc.) corresponding to the spin
system of interest.
By contrast, little to no attention has been focused to date

on “inverse” problems within the context of the Ising spin
models, in which the problem proceeds in reverse, i.e., given
a targeted spin configuration to be a desired state of matter
(e.g., a ground or excited state, or a system endowed with
novel bulk properties), one seeks to procure the Hamiltonian
(or class of Hamiltonians) describing the optimal underlying
set of interactions that will lead to the prescribed target
system. In fact, several promising techniques for solving the
inverse problem have recently emerged in the literature and
were initially applied to classically interacting many-particle
systems to produce unusual ground states15–18 aswell as unique
bulk properties at positive temperatures.19,20 To the best of our
knowledge, this paper describes the first application of inverse
methods developed by us to spin systems.
To address the inverse spin problem, the variables described

above must first be specified to fully delineate the generalized
Ising spin system of interest (and the corresponding class of
Hamiltonians). In this work, we consider a generalization
of the simple two-state Ising model presented above that
extends the interaction potential beyond nearest-neighbor spin
sites, allowing for radial pair interactions between spins of
varying separations. As an initial application, we examined
spin systems arranged on a square lattice, subject to standard
periodic boundary conditions along both the x and y axes (i.e.,
square �→ 2D torus), in the absence of an external magnetic
field. Further generalizations of the spin interaction potential
and the underlying lattice will be reserved for future work.
The class of Hamiltonians describing the generalized Ising

spin model considered herein is therefore parametrized by a
set of distance-dependent spin-spin coupling strengths, i.e.,

H ({J }) = −
∑
i<j

J (Rij )σiσj , (3)

in which Rij = |Ri − Rj | is the radial distance between spins
i and j .21

For a given periodic system with a unit cell containing N

spins, it is convenient to define the S2 vector, a quantity that
is closely related to the spin-spin correlation function,22 with
components (labeled by R) given by

S2(R) ≡ 1

N

∑
i<j

σiσj δR,Rij
, (4)

in which δR,Rij
is the Kronecker delta. The magnitude of

S2(R) assumes a maximum absolute value Smax2 (R), when all
of the spins separated by a distance R are either aligned or
antialigned, reflecting the coordination degeneracy associated
with the given radial interspin separation [see Eq. (8) below].
This formalism allows for direct computation of the energy

per spin ε for a given spin configuration via

ε ≡ E

N
= −

∑
R

J (R)S2(R) = −J · S2, (5)

i.e., the scalar product of S2 with J, the vector containing the
distance-dependent spin-spin coupling strengths. Hence, for a
given vector J, a trivial lower (upper) bound on the energy per
spin is attained by

εbound = −
∑
R

J (R)Smax2 (R), (6)

when both J (R) and Smax2 (R) have the same (opposite) sign
for all radial interspin separations included in the above
summation. Since the J (R) are the parameters specifying the
class of Hamiltonians in Eq. (3), the solution of the inverse
spin problem is attained by finding the optimal set of J (R)
corresponding to a target spin configuration, i.e., the spin-spin
interaction potential that yields the target as a possible unique
(nondegenerate) ground state.
In the search for the optimal spin-spin interaction potential

corresponding to a desired target spin configuration, several
possible outcomes emerge and can be organized into the
following three solution classes:

Class I: Solutions in which a spin-spin interaction potential
was found that generates the target spin configuration as
a unique (nondegenerate) ground state up to translations,
rotations, reflections, and spin inversion operations.

Class II: Solutions in which a spin-spin interaction potential
was found that generates the target spin configuration as a
nonunique ground state, with degenerate spin configurations
having the same S2 as the target (S2-type degeneracies).

Remark: S2-type degeneracies remain isoenergetic for any
choice of the spin-spin interaction potential [cf. Eq. (5)].

Class III: Solutions that are not contained in either class I
or II as defined above.

Remark: It should be emphasized that a target spin
configuration corresponding to a class III solution does not
necessarily mean that this spin configuration can not be
the ground state corresponding to any radial pairwise
interaction potential. For instance, this solution class
designation could correspond to finding an interaction
potential which generates the target spin configuration as
a nonunique ground state that is energetically degenerate
with spin configurations that do not have the same
S2 correlation function (non-S2-type degeneracies).23

In this initial exploration of the inverse problem in discrete
spin systems, we chose to systematically examine two funda-
mental families of spin systems as target spin configurations.
The first set of target spin systems considered herein is
the sequence of striped-phase spin configurations, which are
comprised of alternating stripes (or bands) of aligned spins
of varying thickness; throughout this work, the striped-phase
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FIG. 1. (Color online) Graphical depiction of the SP[m,n]
striped-phase spin configuration. The blue and white boxes represent
the two-state spin projection values (up/down) discretized on the
square lattice.

spin configurations will be denoted as SP[m,n], in which m

and n refer to the thickness (in the number of spins) of the
alternating stripes as illustrated in Fig. 1.
Striped phases are common patterns that form sponta-

neously in nature and are found in a variety of materi-
als, including (ultra)thin magnetic films,24–27 physisorbed,28

Langmuir,29 and lipid30 monolayers, liquid crystals,31 and
polymer films,32 to name a few. Tailoring the electronic and
magnetic properties of materials that contain striped phases
has many direct technological applications, in particular to
the fields of nanolithography and nanoelectricity, i.e., the
development of novel materials for information storage,
quantum dots, high-temperature superconductivity,33–35 as
well as functional oxide heterostructures for use in solid
oxide fuel cells.36 Therefore, an a priori understanding of
the underlying interactions necessary to generate and stabilize
striped phases in materials, which can be attained utilizing
the inverse statistical-mechanical techniques described herein,
would prove invaluable in the design of striped molecular
architectures. To date, all of the interaction potentials that have
been shown to stabilize striped-phase spin configurations in the
literature require long-range (dipolarlike) interactions;37–40 in
this work, we have uncovered the fact that radial pairwise spin-
spin interaction potentials with a finite range will also yield
striped-phase spin configurations as unique ground states, a
finding that provides further insight into the stability and
formation of striped-phase materials. Such spin systems can
be viewed as the lattice analogs of the “striped-phase” ground
states achieved in many-particle systems with short-ranged,
radial pair potentials.15,41

The second set of target spin systems considered herein
is the sequence of rectangular block checkerboard spin
configurations, which are generalizations of the classic
antiferromagnetic Ising spin configuration (i.e., the simple
checkerboard); throughout this work, the block checkerboard
spin configurations will be denoted as CB[m,n], in which m

and n refer to the height and width (in the number of spins) of
the blocks as illustrated in Fig. 2. The block checkerboard spin
configurations, or more appropriately, the lattice-gas analogs
thereof, provide us with model systems to study materials with
varying pore sizes, which are prevalent in biochemistry and

FIG. 2. (Color online) Graphical depiction of the CB[m,n] block
checkerboard spin configuration. The blue and white boxes represent
the two-state spin projection values (up/down) discretized on the
square lattice.

biophysics (ion channels, transport proteins, cell membranes)
as well as the energy sciences (metal organic frameworks).
The remainder of the paper is organized as follows. In

Sec. II, we describe the inverse statistical-mechanical methods
utilized in this work to obtain numerical solutions for the
inverse spin problem. In Sec. III, we present the results of our
systematic study of the striped-phase and block checkerboard
spin configurations, as well as some other illustrative exam-
ples. Section IVcontains an in-depth discussion of themapping
between spin configurational space and the S2 spin-spin
correlation function for the nearest-neighbor and next-nearest-
neighbor spin-spin interaction potentials. The paper is then
completed in Sec. V, which provides some brief conclusions
as well as the future outlook of the inverse spin problem.

II. METHODS

In this section, we describe the competitor-based zero-
temperature optimization scheme15,16,42 that has been utilized
in this work to obtain numerical solutions to the inverse
problem for the aforementioned spin systems. Given a target
spin configuration T , the goal of this optimization scheme is
to furnish the shortest-range spin-spin interaction potential
that favors the target spin configuration by energetically
disfavoring all possible competitors, thereby yielding the
target as a possible unique (nondegenerate) ground state (class
I solution). This spin-spin interaction potential corresponds
to the set of J (R) that maximizes �εk = εCk − εT , the
difference in energy per spin between the energetically closest
competitor Ck and the target, over the entire set of available
competitors.
Obtaining this potential is achieved via global optimization

of z, the corresponding objective function:

z ≡ max
J

[
min
Ck

[�εk]
]

= max
J

[
min
Ck

[
−

∑
R

J (R)
[
S

Ck

2 (R)− ST
2 (R)

]]]
, (7)

subject to the constraints that�εk � 0 ∀ k and the set of J (R)
are bounded within the interval [−1,+1] for every allowed
radial distance R. On an infinite square lattice, these radial
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interspin separations are provided by the corresponding theta
series43

θ (q) = 1+ 4q + 4q2 + 4q4 + 8q5 + 4q8 + · · · (8)

from which the exponents and coefficients yield the allowed
values of R2 (R = 0,1,

√
2,2,

√
5,2

√
2, . . .) and associated

coordination degeneracies (1,4,4,4,8,4, . . .), respectively.
The construction of spin-spin interaction potentials accord-

ing to the competitor-based zero-temperature optimization
scheme described above relies on a feedback loop between
(i) the global optimization of the objective function z in
Eq. (7) and (ii) the generation of an adaptively modified set
of competitor spin configurations {Ck}. Since z is a linear
objective function [i.e., the energy per spin differences are
linear in the J (R) variables] subject to linear constraints,
the highly efficient linear programming (LP) optimization
technique44 was employed to maximize z exactly (i.e., to
machine precision) and generate the spin-spin interaction
potentials. To construct the constantly evolving set of pos-
sible competitors, the simulated annealing (SA) optimiza-
tion scheme45 in conjunction with classical single spin-flip
(Metropolis) Monte Carlo (MC) simulations were utilized to
locate energetically relevant competitor spin configurations.
To initiate the algorithm utilized to carry out this

competitor-based optimization scheme, a target spin configu-
ration, a set of initial competitors (at least one), and amaximum
radial distance Rmax must be specified. In a sequential loop
over the allowed radial interspin separations R′ � Rmax given
by Eq. (8), the algorithm proceeds as follows:
Step 1. For the given radial distanceR′, the LP optimization

scheme generates a potential {J (R)} with a maximum radial
extent of R′ such that εT < εCk ∀ k, if such a potential exists.
Step 2. Using SA-MC simulations, this potential is then

employed to find a new competitor (or set of competitors)
Ck+1 such that εCk+1 � εT , if such a competitor exists.
Steps 1 and 2 are then iterated until either of the following

conditionals are met:
(i) For a given set of competitors, the LP procedure is

unable to generate a potential that energetically favors the
target [i.e., consider a longer-ranged interaction potential;
move to next allowed radial interspin separation]. GO TO
Step 1
(ii) For a given potential, the SA-MC procedure is unable to

locate a new competitor that is lower (or degenerate) in energy
compared to the target [i.e., a tentative optimal shortest-range
interaction potential was located; begin potential verification
protocol described below]. EXIT
Unless otherwise specified, the optimized spin-spin in-

teraction potentials obtained by the competitor-based zero-
temperature optimization scheme described above were gen-
erated and carefully verified using SA-MC simulations on all
lattices with side lengths 1 � p � q � 40 (i.e., including the
series of 2D rectangular primary cells). For each interaction
potential, the SA-MC verification runs were repeated until the
corresponding target spin configuration (and any of its possible
S2-type degeneracies) were successfully obtained 100 times
(without finding any alternative spin configurations that were
lower than or equal to in energy per spin relative to the target
spin configuration).

III. RESULTS

A. SP[n,n] striped-phase spin configurations

The sequence of striped-phase (SP[n,n]) spin configura-
tions, which are comprised of alternating stripes (or bands)
of aligned spins of equal thickness (see Fig. 1), was the first
set of spin configurations considered in this work as targets
for the inverse spin problem. In particular, we systematically
studied the effect of uniformly increasing the thickness of
these alternating stripes in the series of SP[n,n] spin con-
figurations for n = 1,2, . . . ,10. Using the competitor-based
zero-temperature optimization scheme described in Sec. II,
it was determined that all of the SP[n,n] spin configurations
considered herein are unique ground-state spin configurations
(class I solutions). Furthermore, the fact that this sequence
of striped-phase spin configurations was deemed unique
ground states (class I solutions) ensures that no other spin
configurations characterized by the sameS2 exist (i.e., there are
no S2-type degeneracies for the SP[n,n] spin configurations).
The set of optimized radial spin-spin interaction potentials
{J (R)} as well as the corresponding {S2(R)} values for a subset
of the SP[n,n] spin configurations are provided in Table I.
The shortest radial interaction potentials necessary to

generate the SP[n,n] spin configurations are of length n (i.e.,
the width of a stripe) in the interspin separation, with the
exception of SP[1,1], the simplest striped-phase spin config-
uration, which requires an interaction potential extending to
next-nearest neighbors (R = √

2). Since S2 = (0,−2) for the
SP[1,1] spin configuration (see Table I), there is no nearest-
neighbor component of the interaction potential that can
energetically favor this spin configuration over the spectrum
of competitors; as such, the interaction potential in this case
extends further to include antiferromagnetic next-nearest-
neighbor interactions at full interaction strength, i.e., with
J (

√
2) = −1. In doing so, this interaction potential maximizes

the energetic stabilization provided by next-nearest-neighbor
interactions in the SP[1,1] spin configuration, which has
an extremal S2(

√
2) = −2 = −Smax2 (

√
2) value; this alone is

enough to maximize the energetic gap between the target
SP[1,1] spin configuration and all other competitors, thereby
producing the SP[1,1] spin configuration as a unique ground
state (class I solution). However, the possession of an extremal
value of S2(R) for a given interspin separation is not a
prerequisite for a spin configuration to be a unique ground
state. With the exception of the SP[1,1] spin configuration
just discussed, none of the SP[n,n] spin configurations for
n = 2,3, . . . ,10 have S2 vectors with extremal values for
R � n (see Table I), yet all of these spin configurations are
unique ground states.
Another interesting point to note here is that the optimized

radial interaction potentials generated in this work for the
SP[n,n] spin configurations offer an alternative to the compet-
ing short-range ferromagnetic and long-range antiferromag-
netic (dipolarlike) interactions that are also known to generate
striped-phase spin configurations as unique ground states.37–40

Evidently, radial two-body interaction potentials extending
only to length n will also suffice in generating the SP[n,n]
striped-phase spin configurations as unique ground states.
As such, these finite-range interactions (i.e., having compact
support) are discrete by construction and fundamentally differ
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TABLE I. Optimized radial spin-spin interaction potentials J (R), corresponding S2(R) values, and energies per spin (ε) for the series of
SP[n,n] striped-phase spin configurations with n = 1,2, . . . ,7. For reference, Smax2 (R), the maximum allowed values of S2(R) for the given
interspin separations, are provided in the column furthest to the right.

SP[1,1] SP[2,2] SP[3,3] SP[4,4] SP[5,5] SP[6,6] SP[7,7]

R2 J (R) S2(R) J (R) S2(R) J (R) S2(R) J (R) S2(R) J (R) S2(R) J (R) S2(R) J (R) S2(R) Smax2 (R)

1 0.000 0 1.000 1 1.000 4/3 1.000 3/2 1.000 8/5 1.000 5/3 1.000 12/7 2
2 −1.000 −2 −0.500 0 1.000 2/3 1.000 1 1.000 6/5 1.000 4/3 1.000 10/7 2
4 −0.250 0 1.000 2/3 1.000 1 1.000 6/5 1.000 4/3 1.000 10/7 2
5 −0.333 0 0.000 1 1.000 8/5 1.000 2 1.000 16/7 4
8 −0.667 −2/3 1.000 0 1.000 2/5 1.000 2/3 1.000 6/7 2
9 −0.333 0 1.000 1/2 1.000 4/5 1.000 1 1.000 8/7 2
10 0.000 0 0.750 4/5 1.000 4/3 1.000 12/7 4
13 −1.000 −1 −1.000 0 −1.000 2/3 0.000 8/7 4
16 −1.000 0 1.000 2/5 1.000 2/3 1.000 6/7 2
17 0.500 0 0.994 2/3 1.000 8/7 4
18 1.000 −2/5 1.000 0 1.000 2/7 2
20 −1.000 −4/5 −1.000 0 0.833 4/7 4
25 −1.000 −8/5 1.000 −1/3 1.000 4/7 6
26 −1.000 0 1.000 4/7 4
29 −1.000 −2/3 −1.000 0 4
32 0.299 −2/3 1.000 −2/7 2
34 −1.000 −4/3 −1.000 −4/7 4
36 −0.833 0 1.000 2/7 2
37 −1.000 0 4
40 −1.000 −4/7 4
41 −1.000 −8/7 4
45 −1.000 −8/7 4
49 −1.000 0 2

ε −2.000 −1.000 −3.111 −5.000 −9.800 −11.463 −17.905

from the aforementioned infinite-range interactions (i.e., hav-
ing infinite support) originating from continuous dipolarlike
(inverse power) functions. In the future, it would also be
interesting to investigate the solution classes and optimized
interaction potentials corresponding to 3D slabs (i.e., the
analogs of the 2D striped phases considered herein), which
have already been studied in the context of such competing
short- and long-range interactions.40

B. CB[n,n] block checkerboard spin configurations

The sequence of block checkerboard (CB[n,n]) spin config-
urations, which are comprised of alternating blocks of aligned
spins of equal height and width (see Fig. 2), were the second
set of spin configurations considered in this work as targets for
the inverse spin problem. Again, we systematically studied the
effect of uniformly increasing the height and width of these
alternating blocks in the series of CB[n,n] spin configurations
for n = 1,2, . . . ,10. Unlike the SP[n,n] spin configurations,
which were found to be unique ground-state spin configura-
tions (class I solutions), we found that all of the CB[n,n] spin
configurations considered herein, with the exception of the
classic CB[1,1] simple checkerboard, are nonunique ground-
state spin configurations (class II solutions). This is most likely
due to the fact that the CB[n,n] spin configurations have more
radial isotropy than the SP[n,n] spin configurations; hence,
the chances of finding other spin configurations with the same
S2 correlation function as the CB[n,n] spin configurations
are greatly increased. The set of optimized radial spin-spin

interaction potentials {J (R)} determined using the competitor-
based zero-temperature optimization scheme described above,
as well as the corresponding {S2(R)} values, are provided
in Table II for a subset of the CB[n,n] spin configurations.
Similar to the SP[n,n] spin configurations, the shortest radial
interaction potentials necessary to generate the CB[n,n] spin
configurations are also of length n (i.e., the height and width
of a block) in the interspin separation.
As class II solutions, the CB[n,n] spin configurations

for n � 2 are nonunique ground states with degenerate spin
configurations having the same S2 for all interspin separations
(i.e., S2-type degeneracies). As such, these S2-type degen-
eracies remain isoenergetic for any choice of the spin-spin
interaction potential [cf. Eq. (5)]. Graphical depictions of
these S2-type degeneracies are provided in Figs. 3 and 4 for
the CB[2,2] and CB[4,4] spin configurations, respectively.
The S2-type degeneracies for the CB[n,n] spin configurations
with n � 2 are diagonal spin configurations which result
from elementary transformations on the base CB[n,n] block
checkerboard spin configurations (see Appendix B for further
details about the S2-type degeneracies of the CB[n,n] block
checkerboard spin configurations). Furthermore, the number
of S2-type degeneracies for the CB[n,n] spin configurations
g(n) was found as

g(n) = 1+
⌊

n
2

⌋(⌊
n
2

⌋ + 1)
2

, (9)

134104-5



ROBERT A. DISTASIO, JR. et al. PHYSICAL REVIEW B 88, 134104 (2013)

TABLE II. Optimized radial spin-spin interaction potentials J (R), corresponding S2(R) values, and energies per spin (ε) for the series of
CB[n,n] block checkerboard spin configurations with n = 1,2, . . . ,6. For reference, Smax2 (R), the maximum allowed values of S2(R) for the
given interspin separations, are provided in the column furthest to the right.

CB[1,1] CB[2,2] CB[3,3] CB[4,4] CB[5,5] CB[6,6]

R2 J (R) S2(R) J (R) S2(R) J (R) S2(R) J (R) S2(R) J (R) S2(R) J (R) S2(R) Smax2 (R)

1 −1.000 −2 0.000 0 1.000 2/3 1.000 1 1.000 6/5 1.000 4/3 2
2 0.000 0 0.222 2/9 −0.750 1/2 −1.000 18/25 1.000 8/9 2
4 −1.000 −2 −1.000 −2/3 1.000 0 1.000 2/5 1.000 2/3 2
5 0.889 −4/9 −0.375 0 0.000 12/25 −0.585 8/9 4
8 0.222 2/9 1.000 0 −0.059 2/25 0.712 2/9 2
9 −1.000 −2 −1.000 −1 −1.000 −2/5 −0.040 0 2
10 0.125 −1 −0.618 −12/25 −1.000 0 4
13 −0.125 0 1.000 −4/25 0.462 0 4
16 −1.000 −2 −1.000 −6/5 −1.000 −2/3 2
17 −0.088 −36/25 0.294 −8/9 4
18 −0.118 2/25 −0.612 0 2
20 −0.324 −12/25 0.446 −4/9 4
25 −1.000 −38/25 −1.000 −4/3 6
26 0.712 −16/9 4
29 0.272 −8/9 4
32 0.681 2/9 2
34 −0.322 0 4
36 −1.000 −2 2

ε −2.000 −2.000 −3.037 −3.500 −4.405 −4.711

in which 
 . . . � denotes the integer floor function [see Fig. 5
for a plot of g(n) versus n for the series of CB[n,n] spin
configurations]. From Eq. (9), it is clear that asymptotically
the number of S2-type degeneracies for the CB[n,n] spin
configurations increases quadratically with n.
Each S2-type degeneracy corresponding to a given CB[n,n]

spin configuration has a different entropy or corresponding
number of microstates (i.e., the number of spin configurations
that are strictly degenerate after application of the complete
set of unique symmetry transformations). For example, the
number of microstates for each of the four S2-type de-
generacies of the CB[4,4] spin configuration depicted in
Fig. 4 were computed as (clockwise from upper left-hand
corner): 32, 128, 128, and 32. We note in passing that the
odds of successfully obtaining these degenerate structures
using SA-MC simulations may not precisely match the above

FIG. 3. (Color online) Class II S2-type degenerate structures for
the CB[2,2] block checkerboard spin configuration. The CB[2,2]
block checkerboard spin configuration has two S2-type degeneracies:
CB00[2,2] (left panel) and CB11[2,2] (right panel).

number of microstates, as the outcomes of these simulations
strongly depend on the choice of the annealing schedule (i.e.,
finite-temperature effects) and the system size (on which one

FIG. 4. (Color online) Class II S2-type degenerate structures for
the CB[4,4] block checkerboard spin configuration. The CB[4,4]
block checkerboard spin configuration has four S2-type degeneracies:
CB00[4,4] (upper left panel), CB21[4,4] (upper right panel), CB11[4,4]
(lower left panel), and CB22[4,4] (lower right panel).
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FIG. 5. Plot of the number of S2-type degeneracies g(n) as a
function of system size n for the series of class II CB[n,n] block
checkerboard spin configurations [cf. Eq. (9) and Appendix B].

is performing the SA-MC simulations). For more details, see
the phase behavior (thermodynamics) comments in Sec. V.

C. SP[m,n] striped-phase and CB[m,n] block checkerboard
spin configurations

Solution of the full inverse statistical-mechanical prob-
lem for more complex target spin configurations requires
a significant amount of computational resources due to the
large number and wide variety of possible competitor spin
configurations that must be considered during optimization
of the corresponding spin-spin interaction potential. However,
the solution class corresponding to a particular target spin
configuration can be determined by restricting the simulated
annealing step, the rate-limiting process in the competitor-
based zero-temperature optimization scheme described above,
to a small subset of lattice sizes (determined by the periodicity
of the target spin configuration) in the search for possible
competitor spin configurations (see Appendix A for a detailed
explanation). Figure 6 showcases the results of such an
investigation for the sequence of striped-phase (SP[m,n]) and
block checkerboard (CB[m,n]) spin configurations in which
1 � m � 5 and m � n � 15.

In our study of the SP[n,n] and CB[n,n] spin configurations
presented in Secs. III A and III B, respectively, we found that
CB[1,1] and all of the SP[n,n] spin configurations were class I
solutions, while the CB[n,n] spin configurations (for n � 2)
were class II solutions. Extending this study to include the
SP[m,n] and CB[m,n] spin configurations, we found that the
SP[m,n] and CB[m,n] spin configurations both admit class III
solutions that follow the same pattern: a spin configuration is a
class III solution if and only if n/m ∈ Z � 3. For all other n/m

ratios, the SP[m,n] and CB[m,n] spin configurations have the
same class structure as theirm = n analogs. Interestingly, this
classification pattern depends solely on the geometrical ratio
between n and m, has no dependence on the (periodic) length
scale of the spin configurations, and is shared between these
two seemingly distinct sets of spin configurations.
These findings suggest the possibility of a continuum limit,

in which certain geometrical patterns, such as those exhibited
in the SP and CB spin configurations, can be stabilized using
long-range interactions. Since both the SP[m,n] and CB[m,n]
spin configurations consist of alternating regions of uniformly
oriented spins, this classification pattern may be indicative
of the limitations of a radial pairwise interaction potential
in stabilizing certain spin configurations with two inherently
distinct length scales. However, the intriguing observation that
radial pairwise interactions can not stabilize certain length
scales (i.e., the aforementioned integer ratios) might simply
be a consequence of the relatively small number of parameters
(one for each allowed radial interspin separation) that define
the interaction potentials considered in this work; the degree of
flexibility afforded by these parameters simply does not allow
the optimization procedure to take advantage of the slight
differences between which radial interspin separations should
have ferromagnetic interactions and which ones should have
antiferromagnetic interactions.

D. Other target spin configurations

In addition to the series of striped-phase and block
checkerboard spin configurations discussed above, we also
considered several other target spin configurations during this
initial study of the inverse spin problem. A select subset
of these target spin configurations will be presented in this
section, which includes (a) the set of diamond wallpaper

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
n

1

2

3

4

5

m

Class I
Class II
Class III

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
n

1

2

3

4

5

m

Class I
Class III

FIG. 6. (Color online) Solution classes for the (a) SP[m,n] striped-phase and (b) CB[m,n] block checkerboard spin configurations, for
which 1 � m � 5 andm � n � 15. The results for spin configurations with n < mwere omitted from the figure due to the fact that the SP[m,n]
(CB[m,n]) spin configurations are identical to the SP[n,m] (CB[n,m]) spin configurations up to translational symmetry operations.
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FIG. 7. (Color online) Graphical depiction of the set of diamond wallpaper spin configurations (D[I]− D[III]) considered in this work.
From left to right, the resolution of the central diamond pattern is increased via discretization into blocks containing 8 (D[I]), 18 (D[II]), and
24 (D[III]) spins.

spin configurations, (b) a simple discretized asymmetric facial
pattern, and (c) the simplest spin configuration corresponding
to a class III solution.
The set of diamond wallpaper spin configurations

D[I]− D[III] represent systematic changes in the resolution
of a given discretized spin pattern and is depicted in Fig. 7.
ConsideringD[I] as the “base” spin configuration, in which the
diamond pattern is discretized by a block of 8 spins in a 5× 5
periodic unit cell (i.e., the rows containing 2-4-2 white spins
in Fig. 7), the D[II] and D[III] spin configurations result from
an increase in the resolution or discretization of this diamond
pattern in 7× 7 (18 spins: 2-4-6-4-2) and 10× 10 (24 spins:
4-4-8-8-4-4) periodic unit cells, respectively. Each of these
diamond wallpaper spin configurations were determined to
be class I solutions (i.e., unique ground states) and serve to
illustrate that the solution class corresponding to a given spin
configuration seems to be invariant to a change in the resolution
(i.e., an increase or decrease in the discretization or pixelation)
of a spin pattern.
As a model for complex pattern recognition, we also con-

sidered a simple discretization of an asymmetric facial pattern
(see Fig. 8). Unlike the striped-phase, block checkerboard,

FIG. 8. (Color online) Graphical depiction of a discretized asym-
metric facial spin pattern considered in this work. With no global
symmetry or long-range order, this spin configuration is an example
of a class III solution.

and diamond wallpaper spin configurations, this facial pattern
has no global symmetry (i.e., no translations, rotations, or
reflections leave this spin configuration invariant) and it was
found that this spin configuration is an example of a class
III solution. Although we have amassed some evidence (via
the consideration of the facial pattern spin configuration as
well as several others) that there seems to be a prevalence of
class III solutions among spin configurations with a lack of
global symmetry and long-range order, the intrinsic symmetry
(or lack thereof) of a spin configuration alone is not enough to
make an a priori prediction of the solution class corresponding
to a given target spin configuration. As an example, Fig. 9
depicts the simplest and lowest-symmetry spin configuration
(within a fundamental 2× 2 periodic cell) that yields a class III
solution.

IV. MAPPING SPIN CONFIGURATIONAL SPACE
ONTO THE S2 CORRELATION FUNCTION

A. Simple spin-spin interaction potentials: Nearest neighbors

When the spin-spin interaction potential is limited to nearest
neighbors (Rij = 1) only, as in the simplest Ising model
[cf. Eq. (1)], there are two possible unique ground-state spin

FIG. 9. (Color online) Graphical depiction of the simplest and
lowest-symmetry spin configuration (within a fundamental 2× 2
periodic cell) that yields a class III solution.
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FIG. 10. (Color online) Nearest-neighbor S2 values for a select
subset of spin configurations. From left to right, the corresponding
[S2(1)] values are as follows: CB[1,1], (−2); CB[1,2], (−2/3);
SP[1,1] and CB[2,2], (0); SP[2,2], (1); and FM, (2). Between
the extremal values of ±2, the light gray shading represents the
nearest-neighbor S2 values for the entire spectrum of possible spin
configurations discretized on a periodic square lattice.

configurations (class I solutions): the classic antiferromagnetic
(CB[1,1]) and ferromagnetic (FM) spin configurations, which
correspond, respectively, to the left and right end points of
the line depicting the entire spectrum of spin configurations
(discretized on a periodic square lattice) existing on the S2(1)
axis in Fig. 10.
With each spin antialigned with respect to its nearest

neighbors, the antiferromagnetic CB[1,1], or simple checker-
board, spin configuration has S2 = (−2) and is the unique
ground state corresponding to an optimized spin-spin inter-
action potential of J = (−1). The ferromagnetic FM spin
configuration, on the other hand, is comprised of a system
of fully aligned spins (i.e., either σi = +1 or σi = −1 ∀ i)
with S2 = (+2) and is the unique ground state corresponding
to an optimized spin-spin interaction potential of J = (+1). In
both of these cases, the magnitude of the observed S2 = (∓2)
values is actually the maximum (absolute value) for the S2(1)
component, a reflection of the nearest-neighbor coordination
degeneracy on the square lattice [cf. Eqs. (4) and (8)]. Since the
J (R) are bounded within the interval [−1,+1], each of these
spin configurations can therefore attain the lowest allowed
energetic value when the corresponding nearest-neighbor
interaction potential is also extremal at J = (∓1), respectively
[cf. Eq. (5)]. From the competitor-based optimization point of
view, these nearest-neighbor interaction potentials maximize
the energetic gap �εk between the corresponding target spin
configurations and all possible competitors, and hence the
objective function in Eq. (7).
The optimized nearest-neighbor interaction potentials for

the CB[1,1] and FM spin configurations can also be analyzed
by considering a given nearest-neighbor interaction potential
as the projection of the vector J along the S2(1) axis in Fig. 10.
In this case, finding the unique ground-state spin configuration
(class I solution) corresponding to a given interaction potential
is accomplished by locating the spin configuration with
the S2 that minimizes the energy per spin expression ε =
−J · S2 = −J (1)S2(1) given in Eq. (5). For the antiferromag-
netic J = (−1) nearest-neighbor interaction potential, which
points to the left on the S2(1) axis, one can clearly see from
Fig. 10 that the CB[1,1] spin configuration with S2 = (−2)
represents the extremal point along the negative S2(1) axis;
hence, the CB[1,1] spin configuration minimizes the energy
expression for the antiferromagnetic nearest-neighbor inter-
action potential, and is therefore the unique ground-state spin

configuration corresponding to this interaction potential. In the
same vein, the FM spin configuration is the unique ground-
state spin configuration corresponding to the ferromagnetic
J = (+1) nearest-neighbor interaction potential, as this spin
configuration is located at the extremum of the positive S2(1)
axis with S2 = (+2).
However, the existence of only two possible unique ground-

state spin configurations (class I solutions) at the level of
nearest-neighbor interactions is not contingent upon the in-
teraction potential assuming the extremal values of J = (±1).
For instance, the infinite number of nearest-neighbor in-
teraction potentials given by J ∈ [−1,0) and J ∈ (0, + 1],
which point to the left and right along the S2(1) axis in
Fig. 10 accordingly, will also yield the CB[1,1] and FM
spin configurations as unique ground states, respectively.
Since these spin configurations represent the extremal values
on the S2(1) axis, only these spin configurations can attain
the minimum allowed energy values for the aforementioned
interaction potentials. The only exception in this case oc-
curs for the null nearest-neighbor interaction potential [i.e.,
J = (0)], in which all spin configurations are degenerate with
E = 0, i.e., such an interaction potential is unable to favor
any one spin configuration and therefore can not energetically
discriminate amongst them (class III solution).

B. Simple spin-spin interaction potentials:
Nearest and next-nearest neighbors

When the spin-spin interaction potential is extended to
include next-nearest neighbors as well, an additional unique
ground state (class I solution) emerges: the simple striped-
phase (SP[1,1]) spin configuration, the lower vertex of the
triangle depicting the entire spectrum of spin configurations
(discretized on a periodic square lattice) existing on the S2(1)-
S2(

√
2) plane in Fig. 11. The SP[1,1] striped-phase spin con-

figuration has S2 = (0,−2) [i.e., S2(1) = 0 and S2(
√
2) = −2]

since each spin has two aligned and two antialigned spins
for its nearest neighbors while its next-nearest neighbors are
always antialigned. As such, the SP[1,1] spin configuration,
with an extremal value of S2(R) for the next-nearest-neighbor
interspin separation of R = √

2, was found to be the unique
ground-state spin configuration corresponding to an optimized
interaction potential of J = (0,−1).
In order for the SP[1,1] spin configuration to exist as a

unique ground state (class I solution) at the level of nearest-
and next-nearest-neighbor interactions, the corresponding
interaction potential must simultaneously energetically favor
the SP[1,1] target spin configuration while energetically
disfavoring all other spin configurations, in particular the
strongly competitive CB[1,1] and FM spin configurations,
which now correspond to the upper left and right vertices
of the triangle depicted in Fig. 11, respectively.
At the level of nearest-neighbor interactions, the CB[1,1]

and FM spin configurations have S2(1) = −2 and S2(1) = +2,
respectively, which are in stark contrast to the null value of
S2(1) = 0 found for the SP[1,1] spin configuration. As such,
there is no nearest-neighbor component of the interaction
potential that can favor the SP[1,1] spin configuration over
the CB[1,1] and FM spin configurations. Hence, the opti-
mized interaction potential corresponding to the SP[1,1] spin
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FIG. 11. (Color online) Graphical depiction of the nearest- and
next-nearest neighbor S2 values for a select subset of spin configura-
tions. Clockwise from the upper left-hand vertex, the corresponding
[S2(1),S2(

√
2)] values are as follows: CB[1,1], (−2,2); FM, (2,2);

SP[2,3], (6/5,2/5); SP[2,2], (1,0); SP[1,1,1,2], (2/5,−6/5); SP[1,1],
(0,−2); SC[1,1,1,2] (Ref. 46), (−2/5,−6/5); SC[2,2], (−1,0);
SC[2,3], (−6/5,2/5). Within the triangle delineated by vertices at
(−2,2), (2,2), and (−1,0), the light gray shading represents the
nearest- and next-nearest-neighbor S2 values for the entire spectrum
of possible spin configurations discretized on a periodic square lattice.

configurationmust first minimize the latent energetic stabiliza-
tion that can be accessed by nearest-neighbor interactions in
both the CB[1,1] and FM spin configurations; in this case, this
is most easily accomplished by nullifying all nearest-neighbor
interactions so that J (1) = 0.
At the level of next-nearest-neighbor interactions, the

CB[1,1] and FM spin configurations both have S2(
√
2) = +2,

again extremal for this interspin separation, but opposite
in sign to the S2(

√
2) = −2 value found for the SP[1,1]

spin configuration. Given these values of S2(
√
2), the opti-

mized interaction potential corresponding to the SP[1,1] spin
configuration admits antiferromagnetic next-nearest-neighbor
interactions at full interaction strength, i.e., with J (

√
2) = −1,

since this simultaneouslymaximizes the energetic stabilization
provided by next-nearest-neighbor interactions in the SP[1,1]
spin configurationwhileminimizing the energetic stabilization
provided by next-nearest-neighbor interactions in both the
CB[1,1] and FM spin configurations. From Eq. (5), it is clear
that the J = (0,−1) interaction potential will energetically fa-
vor the SP[1,1] spin configuration and maximize the energetic
gap between the simple striped-phase spin configuration and
the competing ferromagnetic and antiferromagnetic Ising spin
magnets [cf. Eq. (7)].
At the level of nearest- and next-nearest-neighbor inter-

actions, the optimized interaction potential for the SP[1,1]
spin configuration can also be explained by considering this
interaction potential as the projection of the vector J onto the
S2(1)-S2(

√
2) plane [i.e., J = (0,−1)] as depicted in Fig. 11.

Since the projection of this vector is collinear with the S2(
√
2)

axis, it is clear that the SP[1,1] spin configuration, with
S2(

√
2) = −2, will minimize the energy expression in Eq. (5)

given J = (0,−1), yielding the SP[1,1] spin configuration
as the corresponding unique ground state of this interaction
potential.
As discussed above for the simple nearest-neighbor inter-

action potential, there exists some leeway in the interaction
potential vectors that will yield the SP[1,1] spin configuration
as a corresponding unique ground state (class I solution).
In this case, the interaction potential must balance (i) the
energetic stabilization that can be afforded to all other spin
configurations at the level of nearest-neighbor interactions,
i.e., when the projection of the interaction potential vector
onto the S2(1) axis is nonzero, and (ii) the energetic desta-
bilization of the SP[1,1] spin configuration resulting from
an antiferromagnetic next-nearest-neighbor interaction that
is not extremal, i.e., for J (

√
2) ∈ (0,−1). The infinite set

of interaction potential vectors that are able to successfully
balance these energetic contributions are located within the
arc (with a central angle of θ = cos−1 −3/5 = 126.9◦) formed
by the vectors normal to the left edge (connecting SP[1,1]
and CB[1,1]) and right edge (connecting SP[1,1] and FM) in
Fig. 11.
An important point to note here is that interaction poten-

tials that are equivalent to the vectors normal to the left
[J = (−1,−1/2)] and right [J = (1,−1/2)] edges will not
correspond to a unique ground-state spin configuration (class
I solution). For these specific interaction potentials, all of the
spin configurations located on the respective edge, i.e., the
staircase46 (SC) and striped-phase (SP) spin configurations,
respectively, will be energetically degenerate, therefore lead-
ing to a class III solution. Furthermore, the spin configurations
located within the shaded interior of the triangle in Fig. 11,
which includes all other possible spin configurations that
can be discretized on a periodic square lattice, can never be
ground states (either unique or nonunique) for radial spin-spin
interaction potentials that are only nonzero at the level of
nearest and next-nearest neighbors.

V. CONCLUSIONS AND FUTURE OUTLOOK

The primarymotivation behind the research reported herein
was to determine the capacity of the statistical-mechanical
“inverse method” to produce preselected, or target, spin
configurations (patterns) as classical ground-state structures,
using only radial (isotropic) pairwise spin-spin interaction
potentials with a minimumfinite range. For practical purposes,
this initial foray into the inverse Ising spin problem has
been limited to the 2D square lattice subject to periodic
boundary conditions. Detailed analysis of the results has
established that the striped-phase (SP) and diamond (D)
families of spin configurations provide examples of achievable
nondegenerate (unique) ground states (i.e., class I solutions).
However, analogous detailed study has revealed that the block
checkerboard (CB) family of spin configurations (with the
exception of the simplest version, the classic antiferromagnetic
Ising model) inevitably leads to finite-order degenerate ground
states (i.e., class II solutions). This work has also uncovered
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cases of spin configurations that can not serve as classical
ground states for finite-range isotropic pairwise interaction
potentials, without having non-S2-type degeneracies. This
set of results demonstrates that such interactions have an
important but limited capacity to solve “inverse method”
problems in classical statistical mechanics. In addition, one
of the most notable insights has been that the type and
extent of symmetries exhibited by a target spin configuration
are not usefully correlated with the ability to make it the
nondegenerate classical ground state of a radial pairwise
interaction potential.
The entire collection of inverse problems presented by

many-spin systems arranged on an underlying periodic array
is enormous. This class of problems includes many directions
for extending the analysis developed in this paper, and
can legitimately serve as subjects for future investigation.
However, in the interests of clarity and relative simplicity,
the following remarks will be confined to the family of
2D square lattice systems examined above, with interaction
potentials described by Eqs. (3)–(5). Nevertheless, even with
these restrictions, a considerable collection of basic problems
still remains to be addressed by future research.
For one, spin pattern enumeration presents a significant and

prominent challenge. One elementary question to ask is how
many distinct “primary patterns” of Ising spins can actually
exist on an a × a square lattice comprised of N spins, subject
as usual to standard periodic boundary conditions. In this case,
a “primary pattern” includes the set of spin configurations that
are equivalent up to translations, rotations, reflections, and
spin inversion operations. In addition, a primary pattern is also
defined so as to exclude it from being formed by periodic
replication of a smaller primary pattern that resides on a b × b

lattice, where b is a divisor of a. Note, however, that this
requirement does not exclude reduction of a given primary
pattern to smaller periodic unit cells of size b × cwhere b �= c.
It should also be remarked in passing that increasing the lattice
resolution of a given primary pattern (e.g., replacing each
original lattice site and spin by a 2× 2 array of four sites
and four Ising spins of the same spin polarization) converts
that initial primary pattern to another primary pattern of the
correspondingly expanded size.
The basic enumeration questions that follow are how many

distinct primary patterns P (N = a2) exist for a given system
size N , and how does that number behave asymptotically in
the large system limit? Straightforward counting for small N
reveals that

P (1) = 1, P (4) = 3, P (9) = 13,

P (16) = 428, P (25) = 86 055, . . .

apparently indicating the beginning of a monotonically in-
creasing function of N . It would be useful just to establish
qualitatively whether or not the large-N behavior of P (N )
involves an exponential increase.
The target spin configurations that were considered

throughout this work and separated into class I, II, and III
solutions were not necessarily restricted to primary patterns.
However, the SP[m,n] striped-phase and the CB[m,n] block
checkerboard spin configurations (Figs. 1 and 2), as well as
the corresponding CB degenerate structures (contained for

example within the periodically extended structures of Figs. 3
and 4), are indeed formed from primary patterns. The same is
true of the basic repeat units for the diamond wallpaper spin
configurations (Fig. 7).
This overall primary pattern enumeration naturally resolves

into components for each solution class (i.e., classes I, II,
and III) as

P (N ) = PI(N )+ PII(N )+ PIII(N ). (10)

If indeed this total number rises exponentially with increasing
N , then it seems reasonable to speculate that the ratio
PI(N )/P (N ) approaches zero asN → ∞ because the number
of adjustable radial pairwise spin-spin interactions within the
range available for the inverse process of interest only rises
algebraically with increasingN . Our research to date indicates
that the SP[n,n] striped-phase spin configurations (and certain
SP[m,n] spin configurations as explained in Sec. III C) supply
class I primary pattern solutions of arbitrarily large size, but the
question remains unanswered as to whether or not these are the
only contributors to PI(N ) in the large-N asymptotic regime.
Furthermore, based on our current findings and previous results
on the structural degeneracies of disordered binary two-phase
media47 (which can be mapped to two-state spin systems), it
also seems reasonable to conjecture that the number of target
spin configurations contained in PI(N ) that lack any global
symmetries and long-range order would also asymptotically
go to zero in the large system size limit.
With respect to the class II solutions, it also remains

to be determined how the ratio PII(N )/P (N ) behaves with
increasing N ; however, the evidence that is currently avail-
able is insufficient to formulate a confident speculation.
One possibility is that this ratio remains greater than zero
as the system size increases without bound, due to the rapid
rise in the number of class II solutions with N , as suggested
by the CB[n,n] results reported above in Sec. III B. A more
“conservative” possibility is that this ratio converges to zero,
but for allN there exists a slowly increasing number of distinct
groups of degenerate (class II) primary patterns.
Each of the CB[n,n] structures and their respective S2-

type degeneracies (as illustrated in Figs. 3 and 4 for the
simple cases of n = 2 and 4) exhibit up and down spins
that are equal in number and arranged spatially in equivalent
patterns, i.e., structures that have much higher symmetry
and order than other well-known disordered degenerate spin
configurations.48–50 Consequently, in any one of these spin
configurations the spatial distributions of all orders for just
the up spins or just the down spins must be identical. In
this regard, the lattice gas interpretation of an Ising spin
configuration would formally replace each spin variable σi

with a site-occupancy variable

ξi = (σi + 1)/2. (11)

Then, a lattice site i is denoted as occupied by a lattice-gas
particle or empty (vacant) if ξi = 1 or 0, respectively. The
identity of S2(R) for all g(n) degeneracies of the CB[n,n]
spin configurations implies that the radial pair distributions for
lattice gasmolecules,which is straightforwardly obtained from
Eqs. (4) and (11), are identical for all of those spin configura-
tions, at least up to the range of the interaction potential (which
has been shown in Table II to be n times the lattice spacing).
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In other words, within the range of the interaction potential,
the distributions of scalar distances between pairs of occupied
sites are identical for all CB[n,n] spin configurations and their
respective S2-type degeneracies. With this observation as a
stimulus, a numerical study was carried out establishing for
spin configurations with n � 50 that the identity of the scalar
pair distance distributions between particle-occupied sites in
fact extends to the 300th coordination shell; by reasonable
extrapolation this may indeed be true for all distances within
the infinite periodic structures. It should also not escape notice
that such a conclusion about pair-distance degeneracy among
distinct periodic patterns on lattices automatically carries over
to the study of pair-distance degeneracy in Euclidean spaces.51

The focus of the original Ising model with nearest-neighbor
interactions was the determination of its thermodynamic prop-
erties in the macroscopic regime.52 The existence of S2-type
degeneracies (i.e., class II solutions) among primary patterns
on the square lattice leads to possible generalizations of the
relatively simple phase behavior exhibited by the original Ising
model with short-range (nearest-neighbor) interactions. In
particular, one can periodically replicate each of a set of small
class II primary patterns into the macroscopic regime, and then
inquire about the thermodynamic and order-parameter behav-
iors that are produced by the interaction potential involved as
the temperature varies. Is there a positive-temperature critical
point below which one of the degenerate spin configurations
dominates? Alternatively, does the ground-state degeneracy
and its resulting structural ambiguity cause critical behavior
to be depressed to absolute zero temperature with a nonzero
configurational disorder remaining? Such residual disorder
(entropy) at absolute zero would be analogous to, but distinct
from, that known to occur from frustrated antiferromagnetism
on the triangular lattice.53 The S2-type degeneracies indicated
earlier in Figs. 3 and 4 could therefore serve as starting
points for specific analytical and/or numerical examinations
of these currently unsettled issues. In particular, it would be
quite illuminating to determine the low-lying excited states
for each of these degenerate primary patterns, and to see if
their presence tends to diminish statistically the geometrical
distinctions between those degenerate ground states.
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APPENDIX A: CLASS DETERMINATION USING
A FINITE SUBSET OF COMPETITORS

In this Appendix, we demonstrate that the solution class
corresponding to a given target spin configuration T can
be determined by only searching for possible competitor
spin configurations that exist on a subset of lattice sizes
(as determined by the periodicity of T ). To proceed, let us

first assume that ST
2 (R), as defined in Eq. (4), takes on the

maximum allowed value at some radial interspin separation
Rmax, i.e., ST

2 (Rmax) = Smax2 (Rmax). In order for ST
2 (Rmax)

to attain this maximum value, all of the spins in T that are
separated by a distance Rmax must be aligned. This implies
that T is invariant under translations by any integer vector R
with a length equal to Rmax. Hence, T can be represented
as a periodic configuration with lattice vectors chosen in
{R ∈ Z2 : |R| = Rmax}.
Furthermore, let us also suppose that we have identified an

interaction potential J that corresponds toT having the lowest
energy in the subset of all possible spin configurations that also
have a maximal value of S2(Rmax). This is sufficient evidence
that T is a class I solution (i.e., a unique ground state corre-
sponding to J). This can easily be seen by considering the case
where a possible competitor spin configuration C for which
S2(Rmax) < Smax2 (Rmax) has an energy that is lower than (or
equal to) the energy of T using the interaction potential J. In
this case, one can simply replace this interaction potential with
the following updated potential J ′(R) = J (R)− ηδR,Rmax , in
which η is chosen such that C has a higher energy than T .
Such a procedure can then be repeated until the interaction
potential with T as the corresponding unique ground state
is obtained, i.e., as a class I solution. The same argument
also holds for class II solutions since any possible competitor
spin configuration with an S2 that is identical to T (i.e.,
an S2-type degeneracy) will also have a maximal value of
S2(Rmax) by definition. The determination of the remaining
class III solutions, which are those that are not contained in
either class I or II, follows by process of elimination.
All of the target spin configurations considered in this work

can be represented as periodic configurations on an underlying
a × a square lattice. For the cases in which the only lattice
vectors with length |R| = a are given byR = (±a,0) andR =
(0,±a), these target spin configurations will have a maximal
value of S2(Rmax = a). Hence, determination of the solution
class corresponding to these target spin configurations only
requires a search for possible competitor spin configurations
over the subset of a × a periodic configurations.
The situation is slightly more complicated if the distance a

can also be obtained by diagonal vectors (i.e., for a that are
hypotenuse numbers). For instance, the radial distance R = 5
can occur by any of the following lattice vectors: R = (±5,0),
R = (0,±5),R = (±4,±3), orR = (±3,±4). This results in
a maximum value of Smax2 (a) = 6, which is not guaranteed for
a 5× 5 periodic spin configuration, and therefore the previous
argument can not be used in such a case. Nevertheless, our
numerical experiments strongly indicate that accurate solution
class determination only requires consideration of all square
periodic unit cells of the same size as the target spin configu-
ration. In the case of the aforementioned 5× 5 periodic spin
configurations, two such unit cells exist: the first is the standard
square lattice that is periodic along (5,0) and (0,5), and the
other is the “tilted” square lattice that is periodic along (4,−3)
and (3,4). As such, possible competitor spin configurations
that exist on both of these lattices must be considered when
determining the solution class corresponding to a target spin
configuration with this type of underlying periodicity.
It should be emphasized again here that the procedure

outlined in this Appendix can only be utilized to accurately
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FIG. 12. (Color online) Schematic representation of CBhw[n,n],
an S2-type degeneracy of the CB[n,n] (or CB00[n,n]) block checker-
board spin configuration. The spin configuration CBhw[n,n] shares
the same 2n × 2n periodicity as the CB[n,n] spin configuration. In
addition to n, two parameters are required to identify this S2-type
degeneracy: the height h and the width w of the block of spins that
have been flipped in the transformation from CB[n,n] to CBhw[n,n]
(highlighted by yellow dashed lines). Note that both h and w are
integers between 1 and n − 1.

determine the solution class corresponding to a given target
spin configuration; any interaction potential obtained in this
manner must be verified against all possible competitor spin
configurations (i.e., spin configurations of different periodic-
ities). Nevertheless, the arguments presented herein indicate
that the minimum radial extent of the interaction potential
necessary to stabilize a given target spin configuration can
not be longer than the distance Rmax for which ST

2 (Rmax) is
extremal.

APPENDIX B: ENUMERATION OF THE S2-TYPE
DEGENERACIES OF THE CB[n,n]

SPIN CONFIGURATIONS

During the investigation of the sequence of CB[n,n] block
checkerboard spin configurations, it was observed that the

S2-type degeneracies of the CB[n,n] spin configurations (for
n � 2) followed a distinct pattern (see Figs. 3 and 4). To
construct these S2-type degeneracies, one starts with the base
CB[n,n] block checkerboard spin configuration and identifies
all of the corners where four blocks (two blocks of up spins and
two blocks of down spins) meet. At each such corner, one then
reverses the orientation of the spins in a rectangular region of
height h and width w immediately to the top left of the corner.
This transformation preserves the overall magnetization of the
system since there are an equal number of corners forwhich the
top-left block has either of the two possible spin orientations.
In fact, performing the same transformation on any other
quadrant would result in an identical spin configuration up
to a rotational symmetry operation. Throughout this work,
such a spin configuration is denoted as CBhw[n,n], a general
example of which is schematically represented in Fig. 12.
Using this convention, the CB[n,n] block checkerboard spin
configuration can be equivalently denoted as CB00[n,n].
By explicit calculation of S2(R) (up to the 300th

coordination shell), it has been confirmed that all possible
CBhw[n,n] spin configurations formed utilizing this prescrip-
tion are S2-type degeneracies of their respective CB00[n,n]
spin configurations for 2 � n � 50. In addition, we also have
strong computational evidence that these are the only S2-type
degeneracies of the CB00[n,n] series, since repeated verifi-
cation of the optimized interaction potentials through careful
simulated annealing has identified these spin configurations.
By determining which values of h and w lead to the

same spin configuration, one can enumerate the S2-type
degeneracies of the CB00[n,n] series. As seen in Fig. 12,
the exchange of h and w is equivalent to a reflection of the
spin configuration about the principal diagonal of the periodic
square lattice, which allows us to set w � h without loss of
generality. In addition, one can replace h by n − h and also
obtain the same spin configuration. Setting h � n/2 and using
both of these conditions, the number of degeneracies g(n) for
the CB[n,n] block checkerboard spin configurations leads to
Eq. (9) of Sec. III B.
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