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Attrition-enhanced chiral symmetry breaking in crystals, also known as Viedma ripening, is a re-
markable phenomenon from a variety of perspectives. By providing a direct route to solid-phase
homochirality in a controllable manner, it is of inherent interest to those who study chiral symmetry-
breaking/amplification mechanisms. When applied to intrinsically chiral molecules, Viedma ripening
may have implications for the origin of biological homochirality, as well as applications in chiral drug
resolution. Despite an abundance of research, the mechanistic details underlying this phenomenon
have not been unambiguously elucidated. We employ a Monte Carlo algorithm to study this driven
system, in order to gain further insights into the mechanisms capable of reproducing key experimen-
tal signatures. We provide a comprehensive numerical investigation of how the model parameters
(attrition rate, liquid-phase racemization kinetics, and the relative rates of growth and dissolution ki-
netics) impact the system’s overall behavior. It is shown that size-dependent crystal solubility alone is
insufficient to reproduce most of the experimental signatures of Viedma ripening, and that some form
of a solid-phase chiral feedback mechanism must be invoked in order to reproduce experimentally
observed behavior. In this work, such feedback mechanisms can take the form of agglomeration,
or of artificial modification of the size dependent growth kinetics. © 2013 AIP Publishing LLC.
[http://dx.doi.org/10.1063/1.4827478]

I. INTRODUCTION

Attrition-enhanced deracemization1 (also known as
Viedma ripening2) is an intriguing phenomenon, capable of
producing solid-phase homochirality. In this process, a crys-
talline slurry composed of a mixture of conglomerate (enan-
tiopure) crystals is vigorously stirred in the presence of glass
beads. The glass beads serve to mechanically break the crys-
tals and maintain a large number of small crystals, thus dras-
tically increasing the total crystal surface area. Over time, the
crystalline population inexorably evolves in an acceleratory
fashion to a homochiral state (e.g., 100% S-crystals). If the
crystal population is initially composed of a racemic (∼50/50)
mixture of chiral crystals, the chirality of the end state is com-
pletely random. Alternatively, if one starts with an initial chi-
ral bias in the crystal population (i.e., a small, but measur-
able excess of one enantiomer over the other), the system will
evolve to homochirality in the enantiomer initially in excess.
Though Viedma ripening was initially demonstrated for chi-
ral crystals composed of achiral molecules (i.e., NaClO3),1

the procedure has been extended to a wide variety of intrinsi-
cally chiral molecules that preferentially form conglomerate
(enantiopure) crystals, provided that the molecules are able to
interconvert at an appreciable rate via solution phase racem-
ization. This technique has been successfully demonstrated on
a range of chiral molecules, including amino acids,3 amino
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acid derivatives,4 and pharmaceutical compounds.5 Though
only ∼10% of known chiral molecules on Earth preferentially
form enantiopure crystals,6 the Viedma ripening process may
have implications for the origin of biological homochirality
and applications in the production of pharmaceuticals. Indeed,
there have already been efforts7 to study the scale-up of this
process for pharmaceutical chiral resolution.

It is important to note that there exist certain commonali-
ties between the various Viedma ripening experiments, which
may be considered signatures of the process. Chief among
these is the approximately sigmoidal evolution of the crystal
enantiomeric excess (eeC = [NC

R − NC
S ]/[NC

R + NC
S ], where

NC
i is the number of molecules of enantiomer i in the crys-

tal population). Experiments of Viedma ripening with crys-
tal attrition via glass beads, and in some cases sonication,
all exhibit this basic trend.1, 3–5 More recently, it has been
demonstrated2 that, for the case of explicitly chiral molecules
that form conglomerates, the solution phase becomes tem-
porarily enriched in the enantiomer which forms the minor-
ity population in the solid phase. For instance, if the crystal
population evolves toward enantiopurity in the R enantiomer,
the solution phase will become increasingly enriched in the
S enantiomer until solid-phase homochirality is achieved, af-
ter which the solution returns to racemic equilibrium. An-
other interesting observation5 was recently made during the
Viedma ripening of a chemical derivative related to the block-
buster drug Clopidrogel (Plavix). After the onset of solid-
phase chiral symmetry breaking, the crystal size distribu-
tion (CSD) was found to undergo a temporary widening, and

0021-9606/2013/139(17)/174503/12/$30.00 © 2013 AIP Publishing LLC139, 174503-1

 This article is copyrighted as indicated in the abstract. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

128.112.66.66 On: Mon, 18 Nov 2013 07:40:00

http://dx.doi.org/10.1063/1.4827478
http://dx.doi.org/10.1063/1.4827478
http://dx.doi.org/10.1063/1.4827478
mailto: pdebene@princeton.edu


174503-2 Ricci, Stillinger, and Debenedetti J. Chem. Phys. 139, 174503 (2013)

subsequently returned to its steady-state form after solid-
phase homochirality was achieved.

Despite the high level of interest and the consequent
accumulation of experimental findings regarding this phe-
nomenon, there is still no general consensus regarding the key
microscopic mechanisms responsible for the observations.
One hypothesis3, 4 emphasizes the role of size-dependent sol-
ubility due to the Gibbs-Thompson effect,8 and particle coars-
ening due to Ostwald ripening,9 which dictates that larger
crystals in a crystal population tend to grow at the expense of
the dissolution of smaller crystals. According to this rational-
ization, an imbalance in the size distributions of left and right
handed conglomerate crystals, creates a solubility-difference
driving force, leading to a net higher rate of dissolution for
the enantiomer with the smaller average crystal size and a net
higher rate of crystal growth for the enantiomer with the larger
average crystal size. As a result, if there is a difference be-
tween the crystal size distributions of the two enantiomers, the
enantiomer population with the smaller average crystal size
will tend to dissolve, and add to the enantiomer population
with the larger average crystal size through the processes of
solution-phase racemization and crystal growth. Hence, it is
believed that the difference between the net rates of growth
and dissolution between each enantiomer’s crystal popula-
tion, coupled with solution phase racemization, provide self-
reinforcing effects that could drive the system inexorably to
homochirality.5

While the continual grinding and breakage of crystals
would indicate that size-dependent solubility is likely a fac-
tor in the Viedma ripening process, other hypotheses incorpo-
rate alternative microscopic phenomena as key factors under-
lying certain experimental signatures, such as the sigmoidal
evolution of eeC. For example, it has been postulated that
small crystalline clusters, perhaps smaller than the critical
size for primary nucleation, physically agglomerate on other
crystals of the same handedness.10, 11 While such small crys-
tals and/or crystalline clusters might be produced by a vari-
ety of mechanisms, we note that the chiral-symmetry break-
ing studies of Kondepudi12, 13 and others14 demonstrated the
formation of crystal clusters around crystals of sodium halite
salts (i.e., NaClO3) via “secondary nucleation.” Chirality-
specific agglomeration of crystals would serve as an explicit
chiral feedback mechanism, effectively saving small crys-
tals from rapidly dissolving and losing their chirality through
liquid phase racemization. Recent experiments by Viedma
et al.15 explicitly demonstrate such chirality-specific aggre-
gation between macroscopic crystals of sodium halite salts
in a liquid-crystal slurry which is being shaken and warmed.
Similar preliminary results are also shown for crystals of thre-
onine, an explicitly chiral proteinogenic amino acid. This fas-
cinating demonstration of macro-scale “enantiomer-specific
oriented attachment” lends credence to the notion that the
micro-scale agglomeration of crystals could be a factor in the
Viedma ripening process, though explicit experimental vali-
dation is still needed. Aside from agglomeration, another hy-
pothesis is that crystal-surface enhanced racemization is a key
mechanism16, 17 in the Viedma ripening of chiral molecules,
though this has been shown18 to be inapplicable to several
experimental systems.

Several mathematical models have been developed in an
attempt to deconvolute the numerous microscopic processes
which are thought to be at play. Modeling efforts have in-
cluded mass-action kinetic equations,2, 10, 19 classical nucle-
ation models,20–22 Monte Carlo (MC) simulations,23–26 pop-
ulation balance approaches,27 dispersive kinetics,28 and agent
based models.29 All of these models are able to reproduce the
sigmoidal time evolution of solid-phase enantioenrichment.
Therefore, models must be able to reproduce other experi-
mental signatures in order to test whether they can capture
the essential physics of the Viedma ripening process.

Among the previous Monte Carlo studies, the work of
Noorduin et al.23 indicated that Ostwald ripening, attrition,
and racemization are sufficient to reproduce the experimen-
tally observed eeC evolution. However, that model did not
explicitly take into account the solution phase, and instead
treated crystal growth and dissolution as the direct transfer
of a molecule between crystals, with acceptance probabili-
ties based on their relative sizes. Katsuno and Uwaha24 de-
veloped a model that included an explicit reservoir of liq-
uid phase molecules in contact with a crystal population. For
the Katsuno-Uwaha model, Ostwald ripening, attrition, and
racemization alone are insufficient; additional microscopic
mechanisms must be included to reproduce the observed sig-
moidal evolution of eeC. They chose to incorporate agglom-
eration of small crystal clusters onto larger crystals, and in
doing so were able to demonstrate the experimentally ob-
served evolution of the crystal enantiomeric excess. While the
Katsuno-Uwaha model provides an interesting Monte Carlo
description of the system based on simple principles, several
issues require further consideration. Mechanical attrition of
crystals is manifested in this model as breakage of a crystal
into two pieces of random size; however, this can only hap-
pen when a crystal grows to a predefined maximum size. As
a result, the simulations evolve to an approximately uniform
crystal size distribution. This is in contrast with experiments,5

where crystal breakage may occur on crystals of varying sizes,
and the CSD becomes skewed towards smaller crystal sizes,
sometimes referred to as an “acceleratory” CSD.28 The choice
of parameters is such that supersaturation values in excess of
2 are reported (where the supersaturation is defined to be zero
at equilibrium, as in Eq. (3) of this paper). Even allowing for
the fact that this is a simple model which is not representative
of true molecular scale or detail, such extreme supersatura-
tion values are not reflective of a near-equilibrium Viedma
ripening system, and serve to drastically augment the rate of
crystal growth during a simulation. Crystal growth through
addition/removal of individual molecules, and the agglom-
eration of small crystal clusters are treated with analogous
phenomenological growth expressions, with the agglomera-
tion expression containing an arbitrarily chosen supersatura-
tion of clusters. While this choice is sufficient to reproduce
the sigmoidal evolution of eeC, no justification is provided
for the rules governing agglomeration. Finally, the behavior
of the solution-phase enantiomeric excess (eeL) was not ad-
dressed, and therefore it is not clear whether the Katsuno-
Uwaha model is capable of reproducing the distinctive ex-
perimental signature of temporary enantioenrichment in the
minority enantiomer in the solid.
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We employ a Monte Carlo algorithm to study this driven
system, and to gain further insights into the mechanisms
responsible for producing key experimental signatures. As
pointed out by Iggland and Mazzotti,27 modeling efforts are
not only important for testing the plausibility of a proposed
mechanism, but also for predicting how a system will respond
to variations in process parameters (i.e., racemization rate, at-
trition rate, etc.). Accordingly, we perform a thorough anal-
ysis of the parameter space, and demonstrate the effects of
racemization rate, attrition rate/intensity, growth/dissolution
rate constants, and system size. The paper is structured as fol-
lows. In Sec. II, we describe the model and the corresponding
Monte Carlo algorithm. In Sec. III, results are presented and
compared to experiments. Finally, in Sec. IV concluding re-
marks are provided along with a discussion of ideas for future
research.

II. MODEL AND NUMERICAL METHODS

To model the Viedma ripening process, we consider a
distribution of conglomerate crystals, each containing “m” in-
trinsically chiral molecules. The crystal population is in con-
tact with solution-phase chiral molecules, for all of which m
= 1. This model assumes a well mixed system, which is a
good approximation due to the high rate of stirring applied
during experiments, and therefore we neglect spatial degrees
of freedom. We also assume that the system is isothermal.
Since Viedma ripening is a near-equilibrium process, we do
not consider primary nucleation events, hence solution-phase
chiral monomers (m = 1) cannot aggregate to form crystalline
species. In our model, we define a crystal to be of size m
≥ 2. As with previous modeling efforts,23, 24 we are model-
ing pseudo-crystals, composed of a computationally tractable
number of molecular constituents.

A randomly selected chiral molecule in the solution
phase attempts racemization with the following probability
per unit time:

pr = exp (−βEr ) , (1)

where β = 1/kBT, kB = Boltzmann’s constant, T = absolute
temperature, and Er is the activation energy for racemization.
The choice of unity for the pre-exponential factor is equiva-
lent to a choice of time unit.

A randomly selected crystal composed of m chiral
molecules may either attempt to grow or dissolve by ad-
dition/removal of single molecules according to the follow-
ing thermodynamically consistent phenomenological rate ex-
pression, which assumes approximately spherical crystals for
simplicity:

j = ασim
2/3 − δm1/3, (2)

where j = 〈d/dt〉m = net rate of growth for the crystal, α

= growth rate constant, σ i = supersaturation of enantiomer
i, where i is the enantiomer of the crystal in question (R or
S), and δ = dissolution rate constant. The supersaturation of
enantiomer i is

σi = (
NL

i − Neq
)
/Neq, (3)

where NL
i = solution-phase molecule number (concentration)

of enantiomer i, Neq = equilibrium solution-phase molecule
number (solubility) of enantiomer i. The subscript is omit-
ted for Neq since the solubility is equal for both enantiomers
{R, S} in accordance with the Meyerhoffer double solubility
rule.30 Equation (2) is of the same form suggested by Katsuno
and Uwaha,24 and its derivation can be found in Appendix A.

In order to test the robustness of the symmetry-breaking
phenomenon, we also performed simulations with a slightly
modified phenomenological rate expression which assumes
that the rate of dissolution is proportional to the crystal’s
surface-to-volume ratio, yielding a dissolution term which
goes as m−1/3. Even with this modified phenomenology, we
found that the results were qualitatively identical to those pre-
sented below, which utilize Eq. (2). Selected results obtained
with the modified rate expression are given in the supplemen-
tary material.31

The magnitude of the rate constants, α and δ, and the
instantaneous value of the supersaturation, σ i, determine the
critical crystal size, m∗

i , such that crystals larger than m∗
i tend

to grow and crystals smaller than m∗
i tend to shrink. By setting

net crystal growth rate, j, in Eq. (2) equal to zero, we calculate
the critical size as

m∗
i =

(
K

σi

)3

, (4)

where we have defined the ratio of rate constants, K = δ/α. In
the event that the supersaturation is negative, the critical size
is automatically set to infinity in our model. For our Monte
Carlo algorithm, the probability of growth per unit time by
addition of a single molecule for a crystal of size m, and
handedness i is given by

pg = m1/3

m1/3 + (m∗
i )1/3

. (5)

This expression is simply the ratio of the rate of growth to
the sum of the rates of growth and dissolution. The prob-
ability of dissolution per unit time by the removal of a
single molecule is taken as the complement: pd = 1 − pg

= (m∗
i )1/3/(m1/3 + (m∗

i )1/3). With these probabilities, it is
clear that a larger crystal has a higher probability of growth
than a smaller crystal, while the latter has a higher probability
of dissolution.

A randomly selected crystal can also suffer attrition. We
define a minimum size for attrition, mmin = 4, at or above
which a crystal may undergo attrition and below which we
assume a crystal is no longer subject to breakage. The attri-
tion rate, which is related to the amount of mechanical en-
ergy input to the system per unit time, is described by the
probability per unit time that a selected crystal will success-
fully undergo an attrition event, pattr. If successfully selected
for attrition, the crystal is broken into two crystals of random
size ≥ 2.

We also incorporate agglomeration into the model. Ag-
glomeration is a complex phenomenon that occurs when crys-
tals attach to, and can become fully incorporated into, other
crystals. The basic mechanism of agglomeration32 consists of
two independent steps: the collision of two crystals (higher
order collisions are neglected here for simplicity), and the
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physical “sticking” of the two crystals. Hence, in the simplest
model of such a process, one can express the microscopic
probability of agglomeration per unit time as a combination
of these two independent processes

pagglom = p1p2, (6)

where p1 = probability per unit time of collision between two
crystals, and p2 = probability per unit time of the contacted
crystals sticking together. Following crystallization modeling
efforts,32 we developed approximations for p1 and p2. While
the probability of two crystals of certain sizes colliding, p1,
is simply proportional to the product of their respective con-
centrations, the probability of the two crystals then sticking
together is more complex. Previous crystallization modeling
considers the formation of a crystalline bridge between the
two crystals which have come into contact.32 The building
up of this bridge requires the two crystals to stay in contact
long enough to crystallize the mass of the bridge from dis-
solved molecules in the solution, and hence it is directly de-
pendent on the rate at which molecules are deposited onto
crystals from solution. The net mass flux of molecules from
solution onto the crystal surfaces is proportional to the net
growth rate of the crystal population.32 Hence, the higher the
crystal growth rate, the more rapidly molecules will be de-
posited onto crystal surfaces, and the more rapidly crystalline
bridges can be formed between crystals in contact. The recent
work of Viedma et al.15 clearly demonstrates the formation of
such crystalline bridges between macro-scale crystals under-
going enantiomer-specific oriented attachment. Using these
physical arguments, we assume the validity of the following
relationships for agglomeration between crystals of the same
chirality i, with sizes m = p and m = q, respectively:

p1 ∼ CpCq, (7)

p2 ∼ J, (8)

where Cp = concentration of crystals of size p and chirality i,
Cq = concentration of crystals of size q and chirality i, and J
= net crystal growth rate of the overall population.

We use these assumptions to implement agglomeration
in our model by allowing only the smallest crystals (m = 2)
to agglomerate with other crystals of size m ≥ 2. This choice
is made strictly for simplicity, as done previously,24 since the
hypothesized agglomeration in Viedma ripening experiments
is purportedly due to small “sub-critical clusters.” Combining
Eqs. (6)–(8), a randomly selected crystal of size m and hand-
edness i may attempt an irreversible agglomeration event with
the probability per unit time

pagglom = x
(2)
i pg, (9)

where x
(2)
i = fraction of crystals which are dimers of hand-

edness i, and pg = m1/3/(m1/3 + (m∗
i )1/3) = probability per

unit time of growth of the crystal selected for agglomera-
tion. The crystal fraction, x

(2)
i (representing p1 in Eq. (7)) is

proportional to the concentration of dimers of handedness i,
and hence proportional to the probability per unit time that
the selected crystal will collide with a dimer. The probabil-
ity of growth of the selected crystal, pg (representing p2 in

Eq. (8)) determines the rate of crystal growth. This choice
of p2 implicitly introduces a size dependence to the stick-
ing probability.27, 33 If a crystal is chosen and successfully
attempts agglomeration, a dimer of the same handedness is
randomly selected and added to the crystal.

Our modeling of the agglomeration process is different
from that of Katsuno and Uwaha,24 who consider this pro-
cess as reversible, completely analogous with single molecule
growth/dissolution, and utilize an arbitrary supersaturation of
dimers as the thermodynamic driving force. Our approach to
modeling agglomeration is not intended to serve as a detailed
molecular description of this process. Rather, we adopt an ap-
proximate representation of a complex phenomenon, based
on principles of crystal agglomeration,32 in order to explore
its effect on chiral symmetry-breaking.

With the aforementioned processes, our simple model in-
cludes the physical and chemical processes of solution-phase
racemization of chiral molecules, the Gibbs-Thompson effect
(size-dependent solubility, as manifested in Eq. (2)), mechan-
ical breakage of crystals by grinding, and agglomeration. We
first employ the model without agglomeration in order to see
if the Gibbs-Thompson effect alone is sufficient. Since this is
the most basic form of our model, we refer to it as the “ele-
mentary model.” The Monte Carlo algorithm for the elemen-
tary model is as follows:

1. Initialize the simulation with a starting crystal size distri-
bution for each enantiomer and the initial concentration
of chiral molecules in the solution-phase reservoir.

2. A molecule is chosen at random.
3. If it is in the liquid phase, racemization is attempted with

probability pr. If it is in the crystal phase, a crystal of the
same handedness is selected at random (irrespective of its
size) with either growth, dissolution, or attrition randomly
selected with equal probability, and the chosen process is
attempted with its respective probability.

4. Time and system variables are updated.
5. Return to step 2, thus repeating the cycle until the speci-

fied end time.

If we wish to incorporate agglomeration, the algorithm is only
slightly altered. In step 3, if a crystal-phase molecule has been
randomly selected, a crystal of the same handedness is ran-
domly selected irrespective of its size. As before, this is to
ensure that all crystals are accessed with equal probability.
Then either growth, dissolution, attrition, or agglomeration is
randomly selected with equal probability, and the chosen pro-
cess is attempted with its respective probability. Flow charts
of both versions of the algorithm are included in Appendix C.

All simulations begin with a Gaussian CSD. If an initial
enantiomeric excess is present in the solid, we implement it by
maintaining the same mean, but decreasing the total number
of crystals of one enantiomer. A typical starting CSD with
a 5.5% enantiomeric excess in the crystal phase is shown in
Figure 1. Once again, we define the enantiomeric excess of
each phase as follows:

eeψ = N
ψ

R − N
ψ

S

N
ψ

R + N
ψ

S

, (10)
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FIG. 1. Typical initial Gaussian CSD, with eeC(0) = 0.055, NR
C+NS

C

= 186 660. The blue points represent the R-enantiomer, and the red points
represent the S-enantiomer. The curves are the Gaussian functions from
which the CSD was created, and the noise in the distribution arises from
discretization. For this CSD, we define, Neq = 10 000, hence the simulations
using this initial CSD have Ntotal = 206 660.

where ψ represents the phase (crystal = C, solution = L),
and N

ψ

i is the total number of molecules of handedness i in
phase ψ .

Since this is a near equilibrium process, we choose to be-
gin all simulations with the equilibrium (solubility) number
of chiral molecules in the solution phase. Hence, at t = 0 we
have NL

R (0) = NL
S (0) = Neq . The value of Neq is set based

on the initial number of crystal-phase molecules. For the pur-
poses of an efficient simulation with adequate mass-transfer
between the crystal and solution phases, Neq for each enan-
tiomer is taken to be roughly one order of magnitude smaller
than the total number of molecules initially in the solid,
NC

R (0) + NC
S (0). For example, for the initial CSD in Figure 1,

NC
R (0) + NC

S (0) = 186 660, and Neq = 10 000. For more in-
formation on variable definitions, refer to the supplementary
material.31

III. RESULTS AND DISCUSSION

Our first aim was to determine whether our model is
capable of reproducing the experimental signatures with
only racemization, size dependent growth/dissolution (Gibbs-
Thompson), and mechanical attrition. As previously men-
tioned, we refer to this as the “elementary model.” A compre-
hensive set of simulations was performed over a large range
of parameter space with the elementary model, and none of
the simulations performed showed a clear resemblance to the
aforementioned experimental signatures. This is illustrated in
Figure 2, where the time evolution of eeC for 100 independent
simulation runs is shown. Note that a MC step is here defined
as one trial event, whether successful or not.

In these simulations, the crystal phase is initially biased
with eeC = 0.055, which is similar to the initial bias employed
in many experiments,1, 3, 4 and we would therefore expect the
system to evolve to enantiopurity in the direction imposed by
the initial bias. In reality, however, the system evolves in an
unpredictable fashion to either state of enantiopurity, while
not exhibiting the experimentally observed sigmoidal evolu-
tion of the crystal enantiomeric excess. This result, which is
in agreement with previous modeling efforts,24, 34 illustrates
the fact that size-dependent solubility by itself is insufficient
to explain Viedma ripening in our model.

The above observation suggests that, in order to repro-
duce the sigmoidal and bias-sensitive behaviors seen experi-
mentally, we need to introduce a chiral feedback mechanism.
This could be achieved by introducing additional mechanisms
such as agglomeration, but it can also be inserted by simply
modifying the phenomenological crystal growth rate expres-
sion. For the purposes of illustration, we modify Eq. (2) as
follows:

j = ασiX
C
i m2/3 − δm1/3, (11)

where XC
i = fraction of crystals which are of handedness i. In-

serting XC
i introduces a chiral feedback, whereby whichever

enantiomer is prevalent in the crystal phase (XC
i > 0.5)

gains an advantage in the growth rate over crystals of the

FIG. 2. Crystal enantiomeric excess trajectories for the elementary model. Simulations began with initial bias, eeC(0) = 0.055. (a) 100 independent simulations,
with 95 trajectories in blue and five highlighted in red for contrast. (b) The five highlighted trajectories in (a) are re-plotted, each in a different color to clearly
illustrate the erratic behavior of each trajectory. All runs performed with βEr = 5, pattr = 0.4, K = 1, Ntotal = 206 660, Neq = 10 000.
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FIG. 3. Evolution of crystal-phase enantiomeric excess for the model with
agglomeration. Simulations began with initial bias, eeC(0) = 0.055. Trajecto-
ries of 100 independent simulation runs are shown. All simulation parameters
identical to Figure 2.

opposite handedness. Solving for the critical size, we now
have m∗

i = (K/(σiX
C
i ))3.

In the context of the current model, this nonlinearity is
artificial, as the growth rate of a single crystal should not be
directly influenced by the overall composition of the crys-
tal population. However, when we insert this nonlinearity the
behavior is markedly different, and our model qualitatively
reproduces key experimental signatures. This is shown in
Appendix B.

While the nonlinearity introduced by XC
i is useful as a

mathematical illustration of the importance of chiral feed-
back, we now turn our attention to the agglomeration mech-
anism, and investigate whether it provides a sufficient chi-
ral feedback in our model. Figure 3 illustrates the evolution
of solid-phase enantiomeric excess for 100 simulations per-
formed at otherwise identical conditions to Figure 2, but with
agglomeration included. One can clearly see that all of the
simulations evolve in a sigmoidal fashion to the expected fi-
nal handedness. In some simulations, we observed that a small

fraction of runs evolved sigmoidally to the wrong handed-
ness due to a large fluctuation at early time which overcame
the initial bias. Hence, the fidelity (i.e., the fraction of runs
which evolve to the expected handedness) is not always 1.
However, this behavior is a system size effect, and disap-
pears with increasing system size. As with our artificial chiral
feedback mechanism, agglomeration provides sufficient chi-
ral feedback to drastically change the system behavior, repro-
ducing the experimental evolution of eeC. This result is also in
agreement with the modeling efforts of Katsuno and Uwaha.24

The present model is capable of breaking symmetry when
we begin with a perfectly racemic crystal population, with
identical Gaussian crystal size distributions for both enan-
tiomers. When simulations are performed with an initially
racemic solid distribution, the final enantiomeric excess of
the crystal population is either −1 or 1, with equal probabil-
ity. For a given set of conditions, we also find that there can
exist a significant variation in chiral induction time among
runs. Some runs may quickly achieve an early-time symmetry
breaking, and then proceed to enantiopurity, while other runs
persist near the racemic state for significantly longer times un-
til one enantiomer eventually gains sufficient excess to drive
the crystal population to a homochiral state. This is illustrated
in Figure 4, where our simulations are compared to experi-
mental results of Hein et al.5 For the simulations shown in
Figure 4(a), all 100 runs eventually achieve crystalline enan-
tiopurity in a sigmoidal fashion, and it seems reasonable to
imagine that the runs in Figure 4(b) would eventually also
achieve homochirality in longer experiments.

When considering whether agglomeration is an appro-
priate chiral feedback mechanism, it is desirable to look be-
yond the behavior of eeC, and examine whether other ex-
perimental signatures are reproduced. We find that, as in
experiments, the solution phase becomes transiently enriched
in the enantiomer of opposite chirality to that which is preva-
lent in the crystal phase, as is shown in Figure 5. We also note
that, for the agglomeration feedback mechanism, our model
predicts transient eeL values that are quite reasonable when

FIG. 4. Symmetry breaking with no initial bias, eeC(0) = 0. (a) eeC trajectories for 100 independent simulation runs. All runs performed with βEr = 5, pattr

= 0.4, K = 1, Ntotal = 206 660, Neq = 10 000. (b) eeC trajectories for 24 independent Viedma ripening experiments, all performed under identical conditions.
Chiral substance being deracemized is a conglomerate imine derivative of 2-Cl-phenylglycine, a component of the blockbuster drug, Plavix. Panel (b) reproduced
by permission from Hein et al., J. Am. Chem. Soc. 134, 12629 (2012). Copyright 2012 American Chemical Society.
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FIG. 5. Evolution of solution-phase enantiomeric excess. These trajectories
are from the same 100 independent simulation runs used in Figure 3.

compared to those measured experimentally in the absence of
racemization.2 When the crystal phase has achieved enantiop-
urity, the solution rapidly racemizes and returns to chemical
equilibrium, which is a racemic mixture of enantiomers.2

Our model assumes that any crystal above the minimum
size for breakage, mmin, may undergo an attrition event. As
a result, our initially Gaussian CSD rapidly becomes skewed
towards smaller particle sizes. This is in qualitative agreement
with recent experimental CSD measurements.5 A typical CSD
evolution for the model with agglomeration is shown in Fig-
ure 6, for which all simulation conditions are identical to those
in Figure 5. Between 105 and 107 MC steps, the CSD becomes
almost a simple exponential, and remains so throughout the
duration of the simulation. Of course, the time until the quasi-
steady CSD is reached, as well as the average width and size
of the CSD, are all dependent on the probability of attrition,
pattr. In this case, by 1010 MC steps the system has gained
crystal-phase enantiopurity in R, which is expected since in
this case R was the enantiomer initially in excess in the solid.

FIG. 6. Typical evolution of CSD for a single simulation run. Simulation be-
gan with initial bias, eeC(0) = 0.055. On the left-hand side of the graph are
the CSDs for the S enantiomer (squares), on the right-hand side are the CSDs
for the R enantiomer (circles). The legend shows the correspondence between
color and number of MC steps. Note that by 1010 MC steps, the crystal phase
has achieved homochirality in R. All simulation parameters identical to Fig-
ures 3 and 5.

FIG. 7. Impact of solution-phase racemization rate on average crystal-phase
deracemization time. Simulation began with initial bias eeC(0) = 0.055. Av-
erages are for 100 independent simulation runs. Error bars represent one
standard deviation. The line is an exponential fit to the data: td = 9.07
× 107*exp(0.82*βEr), R2 = 0.9913. All runs performed with pattr = 0.4, K
= 1, Ntotal 206 660, Neq = 10 000. The fidelity for all data points is 100/100.

We now address the influence of key model parame-
ters on the deracemization time (i.e., the time it takes for
the system to attain enantiopurity in the solid phase). Exper-
imentally, the racemization rate during Viedma ripening is
an important variable. Without the addition of a racemizing
agent (i.e., 1,8-Diazabicycloundec-7-ene, commonly known
as DBU4, 5) racemization is usually very slow, and the Viedma
ripening process becomes frustrated, preventing it from oc-
curring on reasonable time scales. To explore the effect of
racemization rate, we vary the activation energy barrier for
racemization, βEr, and observe how it changes the deracem-
ization time. Referring to Figure 7, we see that the average de-
racemization time increases exponentially with the activation
energy barrier. We model racemization as a first order process,
hence the characteristic time for solution-phase racemization
increases linearly with exp(βEr). The results of Figure 7 in-
dicate that the rate of racemization is a major bottleneck in
the process, and thus determines the overall rate of Viedma
ripening.

Another important parameter is the input of mechanical
energy through vigorous stirring. In our model, that consid-
eration is manifested as the probability of attrition, pattr. The
effects of varying pattr are shown in Figure 8. In the limit of
no attrition (pattr = 0) no crystal breakage occurs, though the
system remains well mixed. This scenario is analogous to per-
forming Viedma ripening experiments in the absence of glass
beads.3 With no attrition, the Viedma ripening process is rel-
atively slow due to the formation of large crystals via Ost-
wald ripening, and hence the average deracemization time is
large, as suggested experimentally.3 In this limit, homochiral-
ity is achieved when one, large crystal remains. As pattr is in-
creased from 0, the deracemization time rapidly decreases by
an order of magnitude, due to the increased rate of mechanical
breakage, and subsequent increase in the crystal population’s
total surface area. As pattr is increased further, the average
deracemization time becomes approximately constant in the
range 0.4 ≤ pattr ≤ 1, with a shallow minimum occurring at
pattr = 0.6. In this range, increasing the rate of attrition does
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FIG. 8. Impact of attrition rate on average deracemization time. Simulation
began with initial bias eeC(0) = 0.055. Averages are for 100 independent
simulation runs. Error bars represent one standard deviation, and the line is a
guide to the eye. All runs performed with βEr = 5, K = 1, Ntotal = 206 660,
Neq = 10 000. The fidelity for these data points is 100/100, with the exception
of pattr = 0 and pattr = 0.1, for which the fidelity is 97/100 and 99/100,
respectively. Runs which did not evolve to the expected handedness were
discarded from calculation of average td.

little more than decrease the average crystal size, and shows
no profound effect on td. The observation of a slight non-
monotonicity in td vs. pattr, coupled with similar results found

in other simulation studies of this process,23 led us to pursue
the role of attrition further. We found that this non-monotonic
behavior can be extended by increasing the intensity of an at-
trition event (i.e., by allowing some attrition events to break a
crystal into more than two pieces). For more information on
the effects of higher-intensity attrition, see the supplementary
material.31

The final model parameter that can be varied is the ra-
tio of rate constants for the growth and dissolution processes,
K = δ/α. Referring to Figure 9, we find that at high values
of K, when the dissolution rate is high, symmetry breaking
occurs very rapidly. However, the high rates of dissolution
result in very high supersaturations, which are not represen-
tative of the near-equilibrium process we are trying to model.
At low values of K, growth begins to dominate over dissolu-
tion and there is not enough mass transfer between the two
competing solids. In this limit, fluctuations in eeC become
more pronounced, and the system behavior tends to become
more stochastic. The dependence of td on the rate at which
molecules are able to dissolve has been suggested previously,5

based on experimental results. In this work, we have used K
= 1 for most calculations, as it maintains near-equilibrium
supersaturation values but gives rise to sufficiently fast ki-
netics and adequate fidelity to achieve results consistent with
experiment.

FIG. 9. Effect of K parameter. Simulation began with initial bias eeC(0) = 0.055. Trajectories of 100 independent simulation runs are shown. Note the
differences in time scale. All runs performed with pattr = 0.4, βEr = 5, Ntotal = 206 660, Neq = 10 000.
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IV. CONCLUSIONS

We have formulated and explored numerically a simple
model, based on a small number of physical mechanisms, in
order to study the key processes underlying Viedma ripen-
ing. The simplest formulation of the model, which we refer to
as the elementary model, includes size dependent growth and
dissolution, mechanical attrition, and solution-phase racem-
ization, yet does not reproduce qualitatively the key experi-
mental signatures. In this model, the crystal enantiomeric ex-
cess fluctuates in an unpredictable manner until the crystal
population eventually achieves homochirality.

It is clear that the model requires a chiral feedback
mechanism in order to reproduce key experimental sig-
natures, as has been suggested elsewhere.10, 23, 27 We have
introduced two such feedback mechanisms: one purely math-
ematical, and the other based on a physical phenomenon,
agglomeration, whose relevance to the Viedma ripening phe-
nomenology remains a matter of discussion.15 Both of these
feedback mechanisms qualitatively reproduce experimental
observations.

It is possible to rationalize why the agglomeration of
small crystals onto other crystals could serve as a suitable chi-
ral feedback mechanism. Agglomeration tends to increase the
average size within a crystal population, while decreasing its
net surface area. In addition, agglomeration of this type res-
cues small crystals from rapid dissolution and racemization.
These self-reinforcing effects constitute a nonlinear crystal-
phase phenomenon which in our model, as with others, is
sufficient to reproduce the experimental behavior.

While our model builds on some of the insightful simula-
tion work that has proceeded it,23, 24 we have chosen to make
less restrictive assumptions and perform a more thorough ex-
ploration of the parameter space. Our systematic study of the
parameter space illustrates the rich phenomenology that one
can extract from such a simple model, and will hopefully en-
rich future mechanistic studies of this process. Racemization
in the solution phase is a kinetic bottleneck of the Viedma
ripening process with explicitly chiral molecules. Our results
indicate that the solid-phase deracemization time increases
linearly with the solution-phase racemization rate. The rate
of attrition has a profound effect on the deracemization time,
with low rates of attrition yielding slow Viedma ripening, and
higher rates of attrition markedly speeding the deracemization
process due to an increase in the total crystal surface area.
In reproducing the crystal-phase evolution of enantiomeric
excess, care must be taken with the choice of the relative
rates of dissolution and growth rates, K = δ/α, which must
be low enough to yield reasonably small supersaturations, yet
high enough to enable sufficient mass transfer between the
competing crystal populations.

One possible area for future inquiry is to study the
separate influences of crystal size and crystal number that one
uses to impose an initial enantiomeric bias. We have chosen
to introduce initial enantiomeric bias by maintaining ap-
proximately the same mean crystal size for both populations
(see Figure 1) since this is the simplest method of doing so.
However, one could also use our model to study how a large
number of small crystals comprising the minor enantiomer

fares against a small number of large crystals of the major
enantiomer.

Perhaps other subtle feedback mechanisms of physical
significance have hitherto been overlooked, and will eventu-
ally be suggested. However, across a wide variety of models,
it appears evident that a chiral feedback mechanism beyond
size-dependent solubility is required in order to reproduce ex-
perimental observations. More detailed experimental studies
focusing specifically on this aspect, particularly as it applies
to the feasibility of the agglomeration process, are required.
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APPENDIX A: DERIVATION OF PHENOMENOLOGICAL
CRYSTAL GROWTH RATE EQUATION

Consider the case of a macroscopic enantiopure crystal
composed of chiral molecular species i = {R,S} in contact
with a liquid solution. At equilibrium, the liquid (volume V)
will contain a saturated molecule number of species i, Neq.
Note Neq is the same for both species R and S due to the Mey-
erhoffer double solubility rule.30 We define the supersatura-
tion of enantiomer i in the liquid as

σi(∞) = (
NL

i − Neq
)
/Neq. (A1)

This equation is identical to Eq. (3) in the main text. The in-
clusion of “∞” in the notation stresses the fact that this refers
to the solubility of an infinitely large crystal.

For moderately small supersaturation ratios, whether
positive or negative, the difference in chemical potentials be-
tween an arbitrarily large crystal of enantiomer i and a solu-
tion at fixed supersaturation, σ i (∞), would be asymptotically
proportional to σ i (∞)

β
(
μC(∞) − μL

i

) ∼ −Aσi(∞), (A2)

where β = 1/kBT, kB = Boltzmann’s constant, T = abso-
lute temperature, σ i (∞) is the supersaturation of the liq-
uid, μC(∞) is the chemical potential of enantiomer i in an
infinitely large enantiopure crystal, μi

L is the chemical po-
tential of enantiomer i in the liquid solution, and A is a con-
stant > 0. While Eq. (A2) is written for an infinitely large
crystal in equilibrium with a solution, finite-size crystals have
an additional contribution to the chemical potential due to
liquid-crystal interfacial energetics. Hence, for an enantiopure
crystal composed of m molecules of species i, the chemical
potential increment over its dissolved form would have the
following expected form:

β
(
μC(m) − μL

i

) ∼ −Aσi(∞) + Bm−1/3, (A3)

where dimensionless constant B > 0. The second term on
the right-hand side of Eq. (A3) is proportional to the crys-
tal’s surface-to-volume ratio, assuming spherical crystals for
simplicity. This last expression can formally be expressed
in terms of a crystal-size-dependent effective supersaturation
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ratio, σ i (m), by setting

− Aσi(m) = −Aσi(∞) + Bm−1/3. (A4)

Rearranging Eq. (A4), we have

σi(m) = σi(∞) − (B/A)m−1/3. (A5)

When σ i (∞) > 0, the thermodynamic driving force in this
system is for large crystals to grow by acquiring molecules
from the supersaturated solution. Note that the chemical po-
tential increment expression, Eq. (A4), is positive for small
crystals in the range

2 ≤ m <

[
B

Aσi(∞)

]3

≡ m∗
i . (A6)

Therefore, the thermodynamic driving force acting on these
small crystals is to shrink in size, whereas the driving force
for crystals of size > mi* is to grow. These observations lead
to a kinetic equation describing the average rate of change of
crystal size m in terms of the effective supersaturation ratio

〈d/dt〉 m = ασi(m)m2/3, (A7)

where 〈d/dt〉m denotes the average rate of growth/dissolution
of a crystal of size m, and α > 0 is a fixed rate parame-
ter. Note that the average rate of growth/dissolution in Eq.
(A7) is proportional to the crystal’s surface area. Substituting
Eq. (A5), we obtain

〈d/dt〉 m = ασi(∞)m2/3 − (αB/A)m1/3. (A8)

If we define j = 〈d/dt〉m, σ i = σ i(∞), and δ = αB/A, Eq. (2)
is recovered identically.

APPENDIX B: ARTIFICIAL CHIRAL FEEDBACK

As mentioned in the main text, in order to reproduce the
autocatalytic behaviors seen experimentally, it appears neces-
sary to introduce a chiral feedback mechanism. This could be
accomplished by considering additional growth mechanisms,
such as agglomeration, or simply by artificially modifying the
phenomenological crystal growth rate expression, as shown in
Eq. (11), reproduced below as Eq. (B1),

j = ασiX
C
i m2/3 − δm1/3, (B1)

where XC
i = fraction of crystals which are of handedness i.

By inserting XC
i into the growth rate, whichever enantiomer

comprises the major fraction of crystals (XC
i > 0.5) gains

an advantage in the growth rate over crystals of the opposite
handedness. Solving for the critical size, m∗

i = (K/(σiX
C
i ))3.

As mentioned in the text, this nonlinearity is completely
artificial, as the growth rate of a single crystal should not be
directly influenced by the overall composition of the crys-
tal population. However, as shown in Figure 10, when we
insert this artificial nonlinearity into the elementary model,
the model’s behavior becomes markedly different. Despite the
fact that all parameters are identical to the simulations in Fig-
ure 2, for all 100 simulations in Figure 10, eeC now evolves
in a sigmoidal fashion to homochirality in the handedness ini-
tially in excess. We also demonstrate that eeL is temporar-
ily enriched in the opposite enantiomer until homochirality
is achieved in the solid and racemization returns the system

FIG. 10. Evolution of crystal-phase and liquid-phase enantiomeric excess
for the elementary model with artificial chiral feedback mechanism, Eq. (11).
Simulations began with initial bias, eeC(0) = 0.055. Trajectories of 100 inde-
pendent simulation runs are shown. (Top) Crystal enantiomeric excess. (Bot-
tom) Solution enantiomeric excess. All simulation parameters identical to
Figure 2.

to equilibrium, as measured experimentally.2 Though we note
that the extent of enantioenrichment in the solution for this set
of conditions is significantly greater than that reported exper-
imentally, the qualitative behavior is correct.

In order to test the strength of this nonlinear term, we
studied how decreasing the contribution of XC

i affects the
time to enantiopurity (deracemization) in the crystal, td, and

FIG. 11. Dependence of the average deracemization time upon phenomeno-
logical kinetic exponent, b. Simulations began with initial bias eeC(0)
= 0.055. Averages are for 100 independent simulation runs. Error bars repre-
sent one standard deviation. All simulation parameters identical to Figure 2.
The fidelity for all points is 100/100.
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FIG. 12. Algorithm flowchart for elementary model.

the fidelity of the simulations to propagate the initially im-
posed enantiomeric excess. We modify Eq. (B1) with an ad-
justable parameter, b, as shown in Eq. (B2). This modifi-
cation changes the definition of the critical crystal size to:
m∗

i = (K/(σi(XC
i )b))3

j = ασi

(
XC

i

)b
m2/3 − δm1/3. (B2)

The effect of decreasing b from 1, where we have the full
effect of the chiral feedback, to 0, where we identically re-
cover the elementary model, is depicted in Figure 11. One can
see that, as the parameter b is decreased, the deracemization
time increases by orders of magnitude. For this system size,
Ntotal = 206 660, the fidelity (fraction of runs which evolve to
the expected handedness in the crystal phase) remains 100%
until b becomes less than 0.025. As b is decreased below

FIG. 13. Algorithm flowchart for model with agglomeration.

0.025, the erratic behavior typical of the elementary model
(see Figure 2) becomes increasingly prevalent, with the der-
acemization time and its standard deviation rapidly increas-
ing, and the fidelity rapidly decreasing.

APPENDIX C: ALGORITHM FLOWCHARTS

See Figs. 12 and 13.
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