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The theoretical program initiated in the preceding paper is continued. The wavelength-dependent di­
electric response function for the "primitive-model" electrolyte, .(k), is e:valuated by m~ans of a self­
consistent torque calculation for ion pairs in an external field. The result IS used to obtam ~e longest­
ranged component of the ion-atmosphere charge density. The rigorous second-mome~t condition on the 
ion atmosphere then is used to compute crudely the short-ranged components. Besides the .usual l~w­
concentration terms, the implied free energy [Eq. (76) ] .and activity coefficient [Eq. (77) ] contam negatIve 
terms varying with the four-thirds power of concentration. 

I. INTRODUCTION 

The preceding Paper Jl provides an ~ternative t? t~e 
usual means of describing electrolytes m terms of lOmc 
distribution functions. Its strategy of pairing all ions 
converts the electrolyte to a fluid of "dipolar molecules" 
of variable length, and invites introduction of a wave­
length-dependent dielectric response function, e(k). 

The quantity e(k) expresses the ability of the electro­
lyte to shield the various Fourier components of a weak, 
externally applied electrostatic potential. Som~ fund~­
mental and important connections were estabhshed m 
Paper I, Sec. III, between e(k) and conventional ionic­
pair distribution functions on the one hand, and between 
e(k) and "dipolar molecule" pair distribution functions 
on the other hand. Since it is our major objective to 
construct a new approach to understanding electro­
lytes, we offer below a calculation of e(~ ~, albeit ~n 
approximate one, which does not expliCItly reqUlre 
knowledge of either class of pair distribution functlOns. 
The result may be used, though, to make an independent 
prediction about the nature of ion-atmosphere charge 
distribution. 

As in Paper I, primary concern centers about the 
"primitive-model" electrolyte; that is, the ions a~e 
regarded as rigid spheres all of diameter a suspended m 
an ideal dielectric medium, and they all bear charges 
±Ze. Even with this restriction the analysis is far from 
trivial, so it is carried out in several stages of ascending 
complication. 

complicated cases. A nonlinear ~ntegral equatio~ for 
p(!) (s) is obtained, and its ~olutlO~, compar~d ~Ith a 
Monte Carlo pairing "expenmental determmatlOn of 
the ideal gas p(l)(S). The most important o.bs~rv:;io~, 
perhaps, is that p(!) (s) possesses a charactenstIc stall 
for large size s. . . 

Section III takes up the next stage of complicatlOn, 
the pairing process for a binar~ mixtur~ of geome~ric~lly 
identical rigid spheres (essentIally a dIsch~rged P:ll~ll­
tive-model" electrolyte). Because of the ngorous ngId­
sphere exclusion, the distribution p(!) (s) vanishes for 
s<a but the existence of a small (s-a) development 
of pC!) (s) for s> a is demons.trated. It.is furthe;more 
argued that the s-6 tail perSIsts upon mtroductlOn of 
rigid-sphere interactions. . .. 

It was shown in Paper I that the partlcle pamng 
process generates strong "steric-hindrance" interacti~ns 
between dipolar molecules, that must be reckoned WIth 
even for the binary ideal-gas case. Section IV provides a 
key observation that permits circu~vention of .these 
complicated steric-hindrance effects m an approXImate 
evaluation of e(k). It is shown that these effects may be 
disregarded (i.e., dipolar molecules treated as rotating 
independently) in calculating system linear response to 
an external field provided that a wavelength-dependent 
renormalization constant X(k) is used to readjust 
appropriately the external field strength. The explicit 
construction of l\(k) shows it to be a functional of 
p(l)(s) . 

In the light of this observation, Sec. V proceeds to 
develop a self-consistent computation for e(k). The 
dipolar molecules formed from the primitive-model ions 
will tend to reorient in the presence of an external, 
sinusoidal electrostatic potential so as to produce a 
mean sinusoidal charge density. The field tending to 
orient the dipolar molecules is then the combination of 
the external plus induced fields, and in accord with the 
remarks of Sec. IV, their sum is renormalized with l\(k). 

The resulting E(k) is applied to determination of the 
electrolyte free energy in Sec. VI. In order to minimize 

* Present address: Department of Chemistry, Washington errors arising from approximations in the e(k) calcula-
University, St. Louis, Mo. 63130. tion, the ion-atmosphere second-moment condition 

The first stage is contained in Sec. II below. There, 
attention is focused on the formal particle-pairing 
process for a binary mixture of point particles without 
interactions. Although at first sight it may seem odd to 
devote any effort to description of an ideal gas mixture 
when the very essence of the concentrated electrolyte 
of interest is strong (and long-ranged 1) interactions, 
the corresponding "dipolar molecule" size distribution 
function p(!) (s) provides valuable guides for the more 

1 F. H. Stillinger, Jr., and R. Lovett, J. Chern. Phys. 48, 3858 derived in Paper I is employed. The free-energy and 1968, preceding article. 
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FlG. 1. Spherical envelopes, for pairs i and j of noninteracting 
point particles, associated with steric hindrance potential u(Xi, Xi). 
The configuration shown is "allowed", i.e., u=O. 

activity-coefficient results exhibit contributions varying 
as the four-thirds power of electrolyte concentration, 
which seem not to have been found in earlier electrolyte 
work. 

A final discussion Sec. VII indicates possible routes 
for extension of our approach, including a variational 
procedure that may prove useful for molten salts. Also, 
Appendices are included concerning (a) an approximate 
integral relation satisfied by the ideal gas pel) (s), and 
(b) roots of a characteristic transcendental equation 
that arises in the theory both here and elsewhere.2-4 

II. PAIRING IN IDEAL GASES 

Into a container of macroscopic volume V we will 
place at random a large number N of each of two types 
of point particles. In view of our ultimate goal the two 
species of particles will be identified by the symbols 
- and +. For convenience we now respecify the com­
plete pairing process advocated in Paper 1. 

(a) From the entire set of distances between pairs of 
points of opposite species choose the smallest,5 and 
consider the two points involved to be paired. 

(b) Examine next the distances between unlike pairs 
only for the remainder set of 2N - 2 particles, and again 
pair off the - and + particles which are closest in this 
reduced set. 

(c) Continue the process of pairing the closest -, 
+ duo in whatever set of unpaired particles remain at 
that stage, until all particles have been paired. 

The end result is that each - particle has one and only 
one + partner, and vice versa. Our problem in this 
section is determination of the size distribution function 
for the pairs, in the infinite system size limit, N IV held 
fixed. 

2 J. G. Kirkwood and J. C. Poirier, J. Phys. Chern. 58, 591 
(1954) . 

3 F. H. Stillinger, Jr., and J. G. Kirkwood, J. Chern. Phys. 33, 
1282 (1960). 

4 V. S. Krylov and V. G. Levitch, Zh. Fiz. Khim. 37,106 (1963). 
~ Accidental equality of two or more distances carries zero 

statistical weight and may be disregarded. 

The configuration of the jth pair is described by a 
six-component vector Xj= R;e:l s;, comprising the posi­
tion R; of the center of the bond between the two 
particles, and the - to + vector separation, s;. In 
precise terms, p(l)(x)dx will be the mean number of 
pairs in configuration element dx. For determination of 
pel) (x) we shall rely upon Eq. (22) in Paper I, tran­
scribed suitably for the present ideal-gas case, 

p(l) (Xl) = (N /V)2 exp[ -,8We(XI)], 

,8= (kBT)-I. ( 1) 

The quantity We(XI) was previously identified as a 
cavity free energy associated with the "steric­
hindrance" potentials U(Xi, x;) that must be designated 
as acting between each pair ij of dipolar molecules. 

Figure 1 presents a convenient pictorial device for 
presentation of the nature of U(Xi, x;) in the binary 
ideal-gas case. One first imagines that spheres are 
drawn about both ends of every pair, with radii equal 
to the pair's separation Si. Then for the two pairs i and 
j, U(Xi, x;) is zero unless either of the distances between 
unlike ends of the two pairs is less than the smaller of 
Si and SiJ in which case U= + 00. In the terms of Fig. 1, 
where Si<S;, this means that the two pairs are free to 
move relative to one another, except that j's + end 
cannot penetrate the sphere around i's - end, and j's 
- end cannot penetrate the sphere around i's + end. 

Cavity free energy We(Xl) in Eq. (1) thus has its 
genesis in the set of u's operative in the system. If the 
Sl component of Xl is very small, the existence of a pair 
at Xl clearly implies virtually no steric hindrance for the 
surrounding pairs; the cavity around Xl that must be 
devoid of other pairs in order validly to contain the 
postulated one will be likewise very small and easy to 
form (small free energy We required). At the other 
extreme of very large SI, the resulting very large cavity 
will require a very large reversible work We to create. 

3/2 

h{x) 

112 

°OL-I~/3~2~/3~1------~2------~3------~4------~5 

FIG. 2. Plot of hex) occurring in the size distribution integral 
Eq. (9) for the binary ideal-gas case, and of ho(x) in modified 
integral Eq. (14). 
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A cluster expansion for Wc(Xl) was displayed in 
Eq. (21) of Paper I, but as is always the case with such 
formal complete expansions, analytic intractability 
prevents general utility. In this section, however, we 
shall proceed by truncating the series after its first term, 
the binary pair cluster. In this approximation, Eq. (1) 
adopts the following form: 

p(ll (Xl) = (~y exp(J dx2S(l) (Xl, X2) p(!) (X2) ); (2) 

S(l) (Xl, X2) = exp[ -/1U(Xl, X2) J-1. (3) 

The nonlinear integral equation (2) has at least the 
virtue of sufficient simplicity that a solution may 
numerically be constructed without undue effort. 
Simplicity alone, however, is hardly adequate justifica­
tion for drawing conclusions about the nature of the 
actual particle-pair size distribution. The important 
point to note though is that Eq. (2) is qualitatively 
correct in both the small-sl and large-sllimits, since the 
relevant cavity is principally outlined by the geometric 

hex) =xl 

extension of the hindrance potential u(Xl, X2). We there­
fore proceed under the presumption that Eq. (2) 
correctly retains the physical essence of the exact 
problem.6 

The kernel S(O manifests translational and rotational 
invariances that insure the intuitively obvious depend­
ence of p(l)(Xl) only on \Sl\. From Eq. (3) we see 
furthermore that S(1) is nonvanishing only for the 
forbidden configurations Xl, X2 for which u(Xl, X2) is 
infinite. For these reasons it is permissible to rewrite 
Eq. (2) thus, 

P(ll(Sl) = (~y exp( - ~oo W(Sl' S2)P(l) (S2)dS2) , (4) 

in which W(Sl' S2) is the five-dimensional overlap volume 
described by u, for a fixed pair of constant separation Sl, 
and a movable one of constant separation S2. 

The actual calculation of W(Sl' S2) requires a great deal 
of petty geometry and trigonometry, whose reproduction 
here would serve no useful purpose. Therefore we 
merely quote the result: 

(5) 
(O:S;x:s;t), 

= (1/64) {8x2[4-3(1-x)2J+4x[8xl- (1-X)3J+ (1/5x) [(I-x)5-32xSJ} 

= (l/64x) {8[4xL 3(x-l)2J+4[8- (x-l)3J+![(x-l)5-32J} 

(t:s;x:S; 1), 

(l:S;x:S;3) , 

=1 

The piecewise rational function hex) has the property 

xl/2h(1/x) =:r-3/2h(x); (7) 

furthermore it is continuous, and is a nondecreasing 
function for x>O. It is presented graphically in Fig. 2. 

Set 
P(l) (Sl) = (N /V)2y(S) , 

s= (N /V)1/3SI• (8) 

The nonlinear integral equation (4) thereupon may be 
transformed to eliminate any explicit occurrence of 
density, 

yes) = exp[ - c~r) S6 ~co x2h(x) y(sx) dx J. (9) 

In view of its meaning as a probability, the solution yes) 
must be nonnegative, and integrable; specifically one 
should require 

1=471-100 

s2y(s)ds, 
o 

(10) 

since from definitions (8) this is the requirement that 
any given particle be bonded at some distance to 
precisely one other particle. By virtue of the approxi­
mate nature of the binary-cluster truncation applied to 
the:full nonlinear p(l) equation, one should not expect 

(3:S;x< <Xl). (6) 

condition (10) still to be precisely obeyed. The devia­
tion indeed could serve as an error indicator in our 
procedure. 

Since our understanding of the operation of steric 
hindrance effects indicates that very large pairs should 
be very improbable, we anticipate that even the approxi­
mate s2y(S) should decay to zero rather rapidly at large 
s. Suppose initially that yes) can be bounded above by 
an exponentially decaying function of S as S~+ <Xl. Then 
for large enough s, the y(sx) integrand factor will decay 
so fast to zero with increasing x that for all practical 
purposes only the first functional form of hex) in Eq. 
(9), xl, need be considered. The integral in Eq. (9) 
then is as follows: 

100 

xSy(sx)dx= S-S100 

(x')5y(x')dx'. (11) 
o 0 

After this result is inserted in Eq. (9), the conclusion is 
that yes) approaches a positive constant at large s. Not 
only is this physically absurd, but it contradicts the 
exponential decay hypothesis. 

6 The appropriateness of the binary-cluster approximation used 
here should be judged in the light of its success in explaining 
completely different phenomena; with regard to liquid crystals 
(where steric hindrances are also of paramount importance) see; 
L. Onsager, Ann. N.Y. Acad. Sci. 51, 627 (1949). 
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FIG. 3. Comparison of analytic approximation 41rs2yO(S) and 
the Monte Carlo "experimental" result for ideal-gas pair size 
distribution. The unit cube used for the Monte Carlo determina­
tion has edge length equal to about 8.5 times the distance corre­
sponding to the histogram peak. 

One is forced to the conclusion that yes) decays to 
zero more slowly than an exponential function. The 
obvious alternative is an inverse power law for a 
large-s tail, 

(12) 

In order to replicate an inverse power upon inserting the 
function y(sx) in the exponential right-hand member of 
Eq. (9), the integral term must vary logarithmically 
with s in this large-s regime. 

The plausibility of algebraic decay form (12) may be 
supported if we permit a small modification of the 
function hex) defined in Eq. (6). Let 

hoex) =x3 (O~x~1) 

=1 (l~x<oo); (13) 

this modified function also satisfies functional relation 
(7), and is shown by Fig. 2 to differ from hex) in 
i<x<3 only by a slight amount. The ho analog of the 
nonlinear integral equation (9), 

yo(s) = exp[ - C~7r2) S6 ~co x2hoex)Yo(SX)dX], (14) 

is easily seen to have the solution 

(IS) 

Under the presumption that replacement of h by ho 
causes little change, we tentatively identify 1 and n in 
Eq. (12) thus: 

1= (3/47r)l!3, 

n=6. (16) 

It is perhaps significant to note that yo(s) exactly 
satisfies normalization condition (10). 

To provide an independent test of the approximate 

size distribution 47rs2yo(s) just obtained, a Monte Carlo 
"experiment" was also carried out by electronic com­
puter. One hundred fifty points each of - and + 
designation were generated at random within a cube, 
and the requisite pairing carried out under periodic 
boundary conditions. The composite result of 100 such 
runs is presented in histogram form in Fig. 3, along with 
the analytic result 47rs2yo(s). As judged by this Monte 
Carlo result, one concludes that the primary error in the 
binary-cluster approximation is that the distance scale 
is compressed, for the maximum in 47rs2yO( s) occurs only 
at about 80% of the correct $ value. Nevertheless the 
binary-cluster approach does seem to retain the correct 
qualitative sense of the pairing process. 

With regard to the postulated algebraic tail, the 
statistics of the computer experiment do not provide 
definitive characterization. On the required log-log 
plot, however, our sparse results at large $ are definitely 
not consistent with an exponential decay, but are con­
sistent with power law (12) with n approximately 6. 

A final piece of evidence favoring the power law (12) 
with n = 6, in the form of another nonlinear integral 
equation that must be satisfied by the size distribution 
p(l) (s), is derived and analyzed in Appendix A. 

III. PAIRING OF IDENTICAL RIGID SPHERES 

The next case to examine is that of equal numbers of 
geometrically identical uncharged rigid spheres, indexed 
- and +. They will again be paired by the previous 
rules. 

The most obvious modification of size distribution 
p(l) ($1) caused by the sphere collision diameter a is that 
this function now must vanish identically for Sl < a. In 

a 

LOW DENSITY FLUID 

pill 

a 
HIGH DENSITY CRYSTAL 

FIG. 4. Qualitative character of particle-pair size distributions for 
rigid spheres at low and high density. 

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

128.112.200.107 On: Sat, 28 Dec 2013 03:13:48



ION - P A I R THE 0 R Y 0 F CON C E NT RAT E DEL E C T R 0 L Y T E S. I I 3873 

the event that the rigid spheres form a dilute fluid, how­
ever, their distribution outside a given sphere at distances 
greater than a should be essentially identical to the 
ideal-gas distribution. For this reason, we expect 
pCl) (Sl) in the dilute rigid-sphere limit to be merely a 
cutoff version (for Sl < a) of the ideal-gas function, 
suitably renormalized. 

If the rigid spheres are densely packed, however, 
p(1) (Sl) must exhibi t marked deviations from the ideal­
gas form, resulting from the formation of a crystalline 
phase. Although the - and + particles will be randomly 
distributed throughout the crystal, in the close-packed 
limit only discrete pair distances will occur correspond-

. ing to the well-defined coordination shells. Likewise 
pCl) (Sl) can be nonzero only at these discrete distances, 
and must vanish between. At slightly less than the close­
packed density the existence of coordination shells will 
still produce many peaks in pCl) (SI), as shown sche­
matically in Fig. 4. 

Whether or not a dense fluid of rigid spheres would 
also exhibit several PC!)(Sl) maxima (reflecting rudi­
mentary short-range crystalline order) can be answered 
only by detailed computation. We shall not attempt 
such a computation here in part because of its difficulty, 
but also because we do not require the results for the 
electrolyte calculation performed below. 

So far as qualitative understanding of rigid-sphere 
pairing in this intermediate density range is concerned, 
it is instructive to recall the character of the conventional 
rigid-sphere pair correlation function.7 Though the most 
accurate evaluations of this quantity produce damped 
oscillations indicative of local quasicrystalline order,8 

the fact remains that spheres at large distance in the 

fluid are totally uncorrelated, exactly as is the case for 
ideal gases. At an intermediate stage of the particle­
pairing process when a given + sphere, say, is looking 
for a - partner at these distances large compared to a, 
the pairing process should proceed exactly as it does in 
the ideal-gas mixture. One must therefore conclude that 
the hard sphere pCl) (SI) also has an inverse sixth-power 
tai1.9 

We can easily specify the beginnings of a develop­
ment of pCl) (Sl) in powers of (Sl - a). Let g(2) and gC3l, 
respectively, stand for the rigid-sphere pair and triplet 
correlation functions (they reduce to unity for separated 
particles). Consider a spherical shell of thickness dSl and 
radius Sl just slightly larger than collision diameter a for 
a centrally located + sphere, as shown in Fig. S. The 
chance of finding some - sphere in this shell is 
[(N IV) g(2) (Sl) ]41rS12dsl. If this close-by - exists, it will 
be paired with the central + unless: 

(a) the central + has already been paired with an 
even closer -; 

(b) the spherical-shell - has been paired with some 
other + at distance less than Sl from it; 

(c) both the central + and spherical-shell - have 
other partners. 

By comparison with events (a) and (b), the last of 
these three possibilities leads to higher-order cor­
rections which we neglect. The remaining possibilities 
are predicated upon the simultaneous occurrence of a 
triplet of spheres, and will thus naturally bring in g(3). 

The geometry of cases (a) and (b) is a fact identical, 
so twice the same g(3) integral must be subtracted in the 
result, 

(41rsNs1) (~) -1 p(!) (SI)""" (~) g(2) (SI) (41rS12dsl) X [1-2 (~ {I SNS2l" #2 ~r sin812d812 gC3:~~I( ~;' 812)]. (17) 

The distance variables SI, S2, and angle 812 locate the two other spheres in the neighborhood of the central particle. 
In view of the smallness of (sl-a) and (S2-a) , however, we may take in leading order 

g(3) (SI, S2, 812) I g(2) (SI)""" g(3) (a, a, 812) I g(2) (a) 

in Eq. (17). Therefore one obtains the following result, 

(18) 

p(1) (Sl) = (~) g(2) (a) + [(~eg:,<r»)r=a -% (~r i~3 g(3) (a, a, 812) Sin812d812] (SI- a)+O[(SI-a)2]. (19) 

The lower integration limit in this last expression results 
from sphere impenetrability; it is the smallest angle 
possible between the direction to the centers of two 
spheres from the center of a third sphere on which they 
are rolling. 

7 J. G. Kirkwood, E. K. Maun, and B. J. Alder, J. Chern. Phys. 
18, 1040 (1950). 

8 G. J. Throop and R. J. Bearman, J. Chern. Phys. 42, 2408 
(1965) . 

It seems clear that asymptotic development (19) 
could in principal be extended to higher order in 
(sl-a). The results would inevitably involve higher and 
higher-order rigid-sphere gCn)'s, since simultaneous 
occurrences involving ascending numbers of particles at 
small distances must be taken into account. Since so 

9 Owing to modifications at small Sl in pel) (Sl), and the require­
ment of normalization, the multiplicative constant for this tail will 
differ from the ideal-gas value. 
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SHELL WIDTH 

r 
+ 

FIG. 5. Differential spherical shell, concentric with a fixed + 
particle, used in estimating p(l) (Sl) for small (Sl-a). 

little quantitative information is available about these 
functions, the utility of succeeding terms beyond the 
ones explicitly given in Eq. (19) is minimal. 

Eventually it will be profitable to carry out rigid­
sphere Monte Carlo computer experiments to obtain 
pel) (SI) at various densities. If they were done in 
sufficient accuracy, it should be possible to test our 
conclusion about the persistence of a sixth-power tail. 

IV. EXTERNAL FIELD RENORMALIZATION 

The next aspect of the development working toward 
consideration of the actual electrolyte concerns a 
computational shortcut. Since we shall have to examine 
the way in which the pairs of particles as "dipolar mole­
cules" orient statistically under an applied torque, due 
attention must be given the steric hindrance potential 
U(Xl, X2), and its effect upon such orientation. For the 
types of statistical averages that are relevant ultimately 
to calculation of the electrolyte dielectric response it is 
fortunate that the effect of the hindrances may be 
simply relegated to a renormalization constant. 

We shall continue to focus attention on the mixture 
of geometrically identical rigid spheres, comprising 
equal numbers of - and + particles. Let there be 
applied to the initially homogeneous fluid mixture a 
sinusoidal external field, which adds to the Hamiltonian 
a sum of single-particle potential energies, 

[ 

N 2N ] 
Uo - t; sin(k. ri) + i~1 sin(k· ri) , (20) 

where Uo is a coupling strength parameter, and the -
particles are numbered 1 to N, the + particles N + 1 to 
2N. If Uo is sufficiently weak, it produces only a linear 
response in the hard-sphere mixture whereby a small 
degree of local unmixing occurs (though to the same 
linear order the total sphere density remains unchanged) . 
One may easily calculate the difference in singlet den­
sities produced by potential (20) using the standard 

technique of functional differentiation of the partition 
function 10 ; 

p+(I) ( r) _p_(I) (r) = - (2{3UoN IV) sin(k· r) +O( U03). 

(21) 

Normally such linear response to an external potential 
requires knowledge of the system's pair correlation func­
tions, but the especially simple result (21) reflects the 
model symmetry with respect to + and - particles. 

Next we shall focus attention on a single +, - pair 
produced by the previously advocated pairing scheme. 
In particular we inquire into the effect of the same type 
of sinusoidal potential as shown in Eq. (20), but with a 
different strength Uo'. When the pair has configuration 
x = REEl s, it will experience a torque potential 

U(x) = Uo' {sin[k. (R+!s) J-sin[k· (R-!s)J} 

= 2Uo' cos(k· R) sin(!k· s). (22) 

This torque potential will surely perturb the size 
distribution p(l) of the pairs, rendering this function 
dependent upon both orientation and center position. 
We may write the following expression for the perturbed 
distribution: 

p(l) (s) +Op(l) (R, s), (23) 

where the first term is the isotropic unperturbed size 
distribution, and opel) is the change induced by U (x). 
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FIG. 6. Charge density induced by "'aD in the vicinity of a fixed 
ion pair with separation s. The wave vector k determines the spatial 
variation of "'aD' It is assumed that the only local effect of the fixed 
pair is exclusion of charge from the spheres w_ and w+ of radius a 
surrounding its ends. The parallel dotted lines are nodes of P;n (r). 

10 J. L. Lebowitz and J. K. Percus, J. Math. Phys. 4, 116 (1963). 
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Obviously Opel) alone will contribute to a singlet den­
sity difference of the type shown in Eq. (21). In the 
event that one could disregard hindrances between 
different particle pairs, a very simple expression for opel) 
is available, since the perturbed distribution may be 
obtained merely by multiplying pCl) (s) by a Boltzmann 
factor containing U(X),ll 

p(l)(S) +op(l) (R, s) =p(l)(S) exp[ -,6U(x)]; 

op(l) (R, s) = -,6U (x) pCl) (s), (24) 

to order (UO')2. The implied singlet density difference 
may next be found by integrating out the internal 
variable s for pairs in favorable positions to contribute 
to the spatial position r of interest, 

p+ (1) (r) -p_ Cl) (r) 

= f ds[op(l) (r-!s, s) -opCl) (r+!s, s)]. (25) 

By using Eqs. (22) and (24), we may convert this last 
expression to the following one: 

2,6Uo'N . 
p+Cl)(r) _p_Cl)(r) = - -v- sm(k· r) 

X f ds (~rl pCl)(s)[1-cos(k·s)]. (26) 

The reason that the two expressions shown in Eqs. 
(21) and (26) for p+(l)_p_Cl) do not agree when Uo'= Uo 
is precisely due to neglect of steric hindrance between 
pairs. They would formally agree if 

Uo'IUo="A(k) , 

[ 1'" (Sin(kS))(N)-l J-1 "A(k) = 471" 0 S2 1- ----,;;- V p(1) (s)ds . 

(27) 

For small k, sin (ks ) I ks in the integral will be close to 
unity over most of the integration range for which 
pCl)(s) is significant, so consequently "A(k) is very large. 
On the other hand "A(k) will just become unity as k-too, 
since the rapid oscillations of the trigonometric factor 
are inconsequential, and thus leave merely the size­
distribution normalization integral, 

471" (~rl ~'" s2pCl)(s)ds= 1. (28) 

These features of "A(k) are fully consistent with the 
character of pair steric hindrance previously established. 
Because the hindrance potential U(Xi' Xj) acts repul­
sively between opposite ends of pairs (as shown for 
example by Fig. 1), there will be a statistical tendency 

11 To the linear order in Uo' in which we work, normalization of 
the size distribution is preserved. 

for neighboring pairs of average size to line up parallel 
to one another to minimize u's effect. As one such pair 
reorients under the influence of a torque potential such 
as U(x) in Eq. (22), when k is not too large, it will tend 
to "drag" its neighbor pairs along, thus giving them an 
extra reorienting agency. On the other hand when k is 
so large that U (x) possesses many oscillations over an 
average pair length, anyone pair of given size can 
experience many different directions of potential 
minimum; the net effect of "drag" by incoherently 
orienting neighbors on a given pair obviously will be 
small. 

We shall proceed to the central electrolyte dielectric 
response calculation in the next section under the 
assumption that "A(k) may be treated as a renormaliza­
tion constant whose use embodies adequate treatment 
of steric hindrance. Thus, whenever a torque potential 
of strength Uo acts on the particle pairs in the system, 
we shall replace the strength simply by Uo"A(k) , and 
proceed as though the pairs did not interfere with one 
another through short-range forces resulting either from 
their rigid-sphere potentials or from u(x). By way of 
justifying this shortcut, it should be stressed that "A(k) 
in Eq. (27), regarded as a functional of pCl), is more 
general than indicated merely by our present hard­
sphere context, since exactly the same form results from 
any assumed short-range force acting between all 
particles in the system. 

v. APPROXIMATE ELECTROLYTE DIELECTRIC 
RESPONSE 

Finally we consider the primitive electrolyte model, 
for which those rigid spheres indexed - bear charge 
-Ze, and those indexed + bear charge +Ze. Our task 
is evaluation of the electrolyte dielectric response 
function f(k). 

In Sec. III of Paper I it was stated that if an ex­
ternal electrostatic potential 

if;.p(r)= (if;o/fo) sin(k·r) (29) 

was applied to the system (fO is the solvent dielectric 
constant), the ions would rearrange so as to shield this 
potential. The resulting average potential ir would then 
define f(k), 

ir( r) = [if;o/f(k) ] sin(k· r), (30) 

and the induced ionic charge density performing the 
shielding would be 

Pin( r) = (if;ok2/471") {[fol f(k) ] -1} sin(k· r). (31) 

The mean potential ir will form the basis for a torque 
calculation on a given ion pair, exactly as done in the 
preceding section, and for which the renormalization 
factor "A(k) is appropriate. 

Even in the electrolyte undisturbed by if;ap we know 
that there is an average charge density that accumulates 
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around any given ion pair as a result of the action of the 
steric-hindrance potential U(Xi' Xj) • However this 
charge must have axial symmetry with respect to the 
pair around which it accumulates, so although it moves 
around as the pair moves, it cannot exert any mean 
torque on that pair. 

Instead, we must be concerned only with the extra 
charge density that builds up around a given fixed pair 
under the influence of iftap. Of course no such charge can 
occur inside the two spherical exclusion volumes w_ and 
w+ with radius a surrounding the ends of the fixed pairj 
far from the pair, however the charge density should 
agree precisely with Piner) in Eq. (31). The central 
assumption to be used is that the functional form Pine r) 
applies everywhere outside the radius-a spherical sur-

faces for the pair's ends. Figure 6 provides an illustra­
tion for this assumption. 

Were it not for the induced charge excluded from the 
two spherical regions, ir( r) itself would be the correct 
potential to use in a mean torque calculation. However 
we must employ in its place a modified mean electro­
static potential ift*( rj s) j this is the potential at position 
r which is at the center of a radius-a exclusion sphere, 
while another radius-a exclusion sphere also lies at 
position r+s. In terms of Fig. 6, ift*(rj s) will be the 
mean electrostatic potential (exclusive of the fixed-pair 
self-potential) at the center of the - end exclusion 
sphere. The corresponding perturbed singlet ion-pair 
distribution function involves a Boltzmann factor with 
the product of ift* and renormalization factor "A(k), 

P(1l(s)+5p(l}(R, s) =p(I}(S) exp{ -,8Ze"A(k) [ift*(R+!sj -s) -ift*(R-!sj s)J} j (32) 

only the linear approximation is relevant, so 

op(1}(R, s) =,8Ze"A(k)p(I}(S) [ift*(R-!sj s) -ift*(R+!sj -s)J. (33) 

The induced charge density, whose phenomenological form has already been given in Eq. (31), may next be 
expressed in terms of 5p(1}, exactly as was done for uncharged rigid spheres in the previous section, Eq. (25): 

Piner) =Ze f ds[op(1) (r-!s, s) -op(1} (r+!s, s)J. (34) 

By utilizing Eq. (33) for 5p(1}, we find 

Pine r) = 2,8 (Ze) 2"A (k) f dsp(l) (s) [ift*( r+sj -s) -ift*( rj s) J. (35) 

The potential ift*( r; s) may be regarded as consisting of three parts. The first is justir( r) itself, Eq. (30). The 
second arises from the missing charge that would otherwise have occupied w_, the radius-a sphere surrounding 
position r. The third is the potential change due to the remaining missing charge in the other exclusion sphere 
w+; since w+ and w_ overlap to some extent when s<2a, this last charge should be reckoned only on the basis of 
the region 

w*( r, s) =w+( r+s) -w+( r+s) nw_( r) 

in the standard set-theoretic notation. Thus 

ift*( r; s) =ir( r) -1 Pine r'), dr'-1 Pine r'), dr'. 
",_(r} eol r- r I ",*(r,B} eol r- r I 

Owing to the simple shape of w_( r), the first of these integrals is easy to perform, so 

J f. Piner') d ' 
ift*( r; s) =ifto sin(k· r) ([f(k) jl+ {eo-I-reek) J-l}[1- cos(ka) )- 1'1 r. 

",*(r,B} eo r- r 

(36) 

(37) 

(38) 

Substitution of this last expression for ift* into Eq. (35) yields the following implicit relation for the induced charge 
density: 

Pin (r) = 2,8(Ze)2ifto Ii ( -[f(k) J-l+ {[f(k) jI-eo-I} [1- cos(ka) J) sin(k· r) 
V 

+ 2,8(Ze)2"A(k) f dsp(l}(s) [I dr' Pin(r'; - f. dr' Piner') ,]. 
Eo ",*(r,B} Ir-r I ",*<r+B,-B} Ir+s-r I 

(39) 

The phenomenological Pin form in Eq. (31) may be utilized now to eliminate this quantity from under the 
integrals in Eq. (39). In doing so, it proves convenient to employ the formally exact device of averaging both 
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occurrences of Pine r') over the \ r- r'\ = const sphere. One ultimately finds that Eq. (39) is transformed to 

Pine r) = 2f3(Ze)2if;o ~ sin(k- r) [ -[e(k) J-l+ I [E(k) J-l- eo- 11 [1- cos (ka) J 

+ kA;:) I [e(k) J-Leo-11 f ds (~rl p(l) (s) [l1(S, k) -I2(s, k)]] , (40) 

where 

( k) -l d ,sin(klr-r'i) 
II s, - r 1 '1 2 ' 

",*(r,8) r- r 

I ( k) = 1 d' sin(k\r-r'i} 
2 s, r, \ ' _ 

",*(r-t8,-8) Ir-r 1 r+s-r \ 

Bipolar coordinates12 are useful in transforming each of II and 12 to definite single integrals for all s ~ a: 

I1(s, k) = ~1·-ta [a2-(S-t)2J sin(kt)dt, 
s max(a,s-a) t 

12(s, k) = 21l'1
a 

[s+t- max(a, Is-t!)] sin(kt)dt. 
s 0 

The first of these may be expressed in terms of the integral sine function 

. 1" sin(t)dt ,c. xli X7 
Sl(X) = --=x--+---+ ---

o t 3-31 5-51 7-71 ' 

with the result 

1l' ( 2s-a a-s 
II(s, k) = - (a2-s2)lSi[k(s+a) J- Si(ka)l+ -- cos(ka) + - cos[k(s+a) J 

s k k 

+ ~ {sin(ka) - sin[k (s+a)] I ) 

1l'( . . s+a = - (aL s2) ISl[k(s+a)J- Sl[k(s-a)JI+ -cos[k(s-a)J 
s k 

a-s 2 ) 
+ -k- cos[k(s+a) J- k2 sin (ka) cos(ks) 

The quantity 12 on the other hand is elementary, 

Let 

12(s, k) = (21l'/k2s) {sin(ka) -ks cos(ka) + sin[k(s-a) Jl 

= (41l'/k2s) [sin (ka) -ka cos(ka) J 

(N)-I roo 
T(k) = V io S2p(I)(S) [l1(S, k) -I2(s, k)Jdsj 

(a~s~2a), 

(2a~s) . 

(2a~s) . 

( 41) 

(42) 

(43) 

(44) 

(45) 

(46) 

Eq. (40) then is equivalent to 

Pine r) = 2{3(Ze)2fo(N IV) sin(k- r) (- [e(k)]-1 

enological equation (31) for Pine r) constitutes a 
determining algebraic equation for the electrolyte's 
dielectric response function e(k). The solution is 

+ l[e(k) ]-Leo-1} [1-cos(ka) +kA(k)T(k) J). (47) 

The condition that this formula agree with the phenom-

12 T. L. Hill, Statistical Mechanics (McGraw-Hill Book Co., 
New York, 1956), p. 203. 

eo K2 
- = 1- --::"....---------::-, 
e(k) k2+K2(cos(ka) -kA(k)T(k)J' 

K2= 81l'N(Ze)2/eokBTV. ( 48) 
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VI. ELECTROLYTE FREE ENERGY 

The ion-atmosphere charge density for the primitive­
electrolyte model is described by the difference between 
the two independent ionic-doublet correlation functions, 
g++(2)(r)-g+_(2)(r). It was shown in Eq. (47) of 
Paper I that the correct dielectric function e(k) for the 
electrolyte gives exactly this difference as an integral 
transform, 

( 49) 

It is our purpose now to pursue the implications of the 
specific e(k) result just obtained in Eq. (48). 

In the event that hard-core diameter a were negligible, 
r ( k) defined in Eq. (46) would vanish, and Eq. (48) 
would reduce to an elementary expression to be identi­
fied with the linear Debye-Htickel point-ion theory, 

(50) 

Indeed, insertion of this expression into Eq. (49) 
produces the well-known result 

Ze(N IV) [g+ +(2) (r) - g+ _(2) (r) ] 

"-' -[ZeK2 exp( - Kr) /47r1']. (51) 

The quantity r(k) represents a cross interaction 
between the two exclusion spheres w+ and w_ in Fig. 6. 
At low electrolyte concentration the mean distance 
between these spheres will be large, so interaction 
quantity r will be negligible even without assuming a 
is negligible. In this case the denominator in our di­
electric response function reduces to P+K2 cos(ka). 
This particular denominator combination has been pro­
duced several times before in statistical-mechanical 
theories of electrolytes,2-4.J3 though not previously 
identified as a dielectric response. The correction term 
-K2k'A(k)r(k) that arises in the present theory surely 
must become important at intermediate and high con­
centration. 

On account of the ions' rigid cores, the integral 
transform (49) must vanish identically for all O~r<a. 
The approximate e(k) result (48) no doubt is somewhat 
imprecise, and could not a priori be expected to satisfy 
this identity. However, we shall presume to use Eq. 
(48) only for r> a. 

Since E(k) is an even function of k, the integral in 

13 J. G. Kirkwood, Chern. Rev. 19, 275 (1936). 

Eq. (49) may be extended along the entire real axis, 

ZeN V [g+ +(2)(r) -g+ - (2)(r) ] 

Ze 1+00 
{k2 [ Eo ] } = - -. k exp(ikr) ~ - -1 +1 dk. 

47r21r -CD K2 e ( k) 

(52) 

This form is espe.:ially suited to evaluation by the 
method of residues, and we employ that procedure 
first on the integral resulting from neglect of the 
-K2k'A(k)r(k) correction: 

ZeN 
- [g+ +(2)(r) -g+ (2)(r) ] V -

""_ ZeK2 [00 k exp(ikr) coska dk. (53) 
47r2ir -00 k2+ K2 cos ( ka ) 

When r> a the contour may be closed alon~ the infinite 
semicircle in the upper half-plane, with the eventual 
result 

The summation covers all roots kj of the transcendental 
equation 

(55) 

enclosed by the integration contour. 
Appendix B provides a detailed analysis of the kj 

which are in fact infinite in number. In the small-K 
limit it is found that all kj but one have diverging 
(positive) imaginary parts, and the corresponding 
rapidly damped exponentials in Eq. (54) are negligible. 
The single exception may be taken as kl' for which one 
finds 

(56) 

The single surviving term is in precise agreement with 
the familiar Debye-Htickel result (51) for r>a. The 
terms with j> 1 in Eq. (54) presumably provide an 
approximate account of local ion order at distances 
comparable with a in the moderate-to-high K regime. 

The incorporation of our correction term -K2k'A(k)r(k) 
in E(k) forces consideration of a shifted set of roots k/ 
of the new transcendental equation 

Owing to the universality of the Debye-Htickellimiting 
law as K--+O, we expect again to find in the upper-half 
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complex-k plane a root ki' asymptotic to iK. Therefore 
to establish the lowest-order effect of the correction 
term on this root, it suffices to utilize the small-K limit 
for this correction. From Eqs. (27) and (43)-(46) we 
find for small k 

k"A(k)r(k ) "-'Tok2, 

To= [{'s4P(l)(S) dSri 

X [fa [ -ios6+Has5) -!(a2s4) ]p(1) (s) ds 

+ 1~ [-!(a3s3)+-f-s(2a5s)]p(1)(S)dS]. 

(58) 

The net result of incorporating this result into the t(k) 
expression (48) is the following: 

to/ t(k)"'1- (K2/[( 1-TOK2) k2+ K2 cos(ka)] I. (59) 

Formal substitution of this last expression into the 
general ion-atmosphere formula (52) produces an 
expression which may be compared with the corre­
sponding "uncorrected" version in Eq. (53), 

ZeN 
- [g+ +(2)(r) -g+ _(2) (r)] 

V 

= _ zeK21+'" k exp(ikr) [cos (ka) -Tok2] dk. (60) 
47r2ir -co (1-TOK2)k2+K2 cos(ka) 

Once again the method of residues can be used to 
evaluate the last integral, and will generate a sum of 
exponentials as before. Because Eq. (60) has relied 
upon the small-k expression (59), we can only expect 
accuracy for the least rapidly decaying exponential, the 
one corresponding to root k/. Even with retention of the 
full functional form for the correction term, though, it 
is no doubt true that our t (k) calculation has least error 
for small k. The fact is that we were forced to make 
specific assumptions in the previous section about local 
ordering of ion pairs under the influence of external 
fields, and the imprecision of the assumptions should 
be most evident for large k (wavelengths comparable 
to the range of that order). Therefore we shall use the 
explicit form (60) only to determine the least rapidly 
decaying component of the ion atmosphere, and the 
remainder of shorter range will be subject to independent 
determination. 

Thus Eg. (60) leads us to write 

47rN V [g+ +(2)(r) -g+ _(2)(r)] 

(kn 2 exp(ik/r) fer) (61) 
[1-TOK2-(K2a/2k/) sin(ki'a)]r + -r-' 

As before, the precise multiplicative factor for the 
principal ion-atmosphere decay term has been assigned 
by the appropriate residue in Eq. (60). The function 
fer) then comprises the totality of the shorter-ranged 
contributions. The root k/ satisfies 

( 62) 

which is the same as the preceding transcendental 
equation (55), except for inclusion of an "effective K2." 

We may therefore use Eq. (B5) of Appendix B to 
achieve a low-K development of (ki')2, 

(ki ')2= -K2P+ (!a2+To)K2 

+ [To2+a2To+ (7a4/24) ]K41 +O(KB). (63) 

The fact that our correction term -K2k"A(k)r(k) 
vanishes as K---70 implies that those roots k2', ka', ••• of 
Eq. (57) which contribute to the remainderf(r) possess 
in this limit very large imaginary parts, exactly as do 
the corresponding roots k2, ka, ••• of the simpler Eq. 
(55) as shown in Appendix B. Each of the resulting 
exponential components of fer) decay rapidly to zero, 
so fer) must do the same. The natural presumption must 
be that fer) is determined in the last analysis by the 
rigid ionic cores, and in the dilute electrolyte should 
therefore be confined in spatial extent to a small 
multiple of diameter a. 

We can implement a crude determination of at least 
the dominant features offer) by using the exact electro­
neutrality and second-moment conditions on the ion 
atmosphere [Eqs. (72) and (73) in Paper I]: 

47rN 1'" -1 = V a r2[g+ + (2) (r) - g+ _ (2) ( r ) ]dr; ( 64) 

6 47rN 1'" - -; = - r4[g++(2)(r)-g+_(2)(r)]dr. (65) 
K V a 

In view of Eq. (61) these may be interpreted as two 
integral conditions onf(r) ; with the aid of development 
(63), these integral conditions carried to lowest non­
trivial orders in K are quite simple, 

To~= f'" rf(r)dr; (66) 

HK3a5) = [0 r3f(r) dr. 
a 

(67) 

The more rapid vanishing with K of the second of these 
integrals than the first indicates that fer) has both 
positive and negative portions. 

Of course fer) vanishes inside r= a, and since it is 
presumably rather concentrated just outside this 
collision diameter, we shall suppose that it may be 
represented by a sum of two Dirac delta functions, one 
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at a and the other at 2a: 

f(r) "'/lo(r-a-O) +ho(r-2a). (68) 

h= (4ToK2j3a) - (lCIa2j15) , 

h= - (ToK2j6a) + (K3a2j30). (69) 

Now that at least an approximate determination of 
the ion-atmosphere charge density is available it is 
possible to compute the electrostatic free energy of the 
electrolyte. First it is necessary to find the change in 
mean electrostatic potential 111/!+ at the center of a 
cation due to the charge in its diffuse atmosphere. By 
integrating Poisson's equation we obtain finally 

l11/!+W = (Ze~jEo) 

[-K~+K2a~2+ (7ToK2j6aW+O(~31C1) J; (70) 

here we have quoted the result for ions all partially 
charged to extent~, where ~= 1 corresponds to the fully 
charged ion assembly. The electrostatic free energy per 
ion, divided by kBT, equals an integral over ~ giving the 
reversible isothermal work performed in charging up all 
ions, minus that for free ions; its form is the following: 

Ze 11 (Ze) 2 

kBT 0 l11/!+(~)d~= EokBTa 

X {-i(Ka) +1{K2a2+t(To~) J+O(ICI) }. (71) 

In order to assess the character of the term containing 
To in free energy (71), we pass to the limit of zero con­
centration. In that case the ion-pair size distribution 
function pCl) (s) in definition (58) of To becomes very 
long-ranged relative to sphere diameter a, so we may 
write 

T o"'-a3P3j3P4, (72) 

where the Pn are the moments of p(1)(s), 

Pn= [0 snp(l) (s)ds. 
o 

(73) 

Indeed it is valid in this low-concentration case simply 
to take p(l) to be the ideal-gas function scrutinized in 
Sec. II. Analytic approximation (15) thereupon leads 
to an explicit value for To, 

(74) 

In Paper I the excess Helmholtz free energy per ion, 
divided by kBT, was denoted by F1(.lI, .12), where the 
two dimensionless parameters .II and .12 characterizing 
the interactions were defined by the relations 

.ll=2Na3/V, 

(75) 

The electrical charging work shown in Eq. (71), along 
with expression (74) for To, leads to the following 
prediction: 

The first term in the right hand member is the excess 
free energy for uncharged rigid cores, and it is followed 
by the well-known Debye--Huckel term varying as the 
square root of concentration. The third term (also 
predicted by the standard Debye--Huckel theory with 
ion size a taken into account) arises physically from 
outward displacement of the ion atmosphere by diam­
eter a, but still presuming the relevant decay constant 
is K exactly. The last term shown varies as the four­
thirds power of concentration, and appears to have no 
precedent in other electrolyte theories heretofore ad­
vanced. The terms not shown in Eq. (76) will either 
contain higher powers of .12 than the second, or if they 
are proportional to .122 will have.ll to a power exceeding 
four-thirds. 

VII. DISCUSSION 

The crude delta-function distribution imputed to fer) 
is of course unrealistically sharp, and should be viewed 
in a "smeared" sense. Sincefl is negative andh positive, 
we may infer that the magnitude of the ion atmosphere 
charge density is actually a bit greater just beyond r= a 
compared to the contribution of the single longest­
ranged exponential component, and then around r= 2a 
the magnitude is less. The situation is illustrated 
pictorially in Fig. 7. The resultant ion-atmosphere 
charge density seems very much to be in the process of 
developing regions of opposite charge sign, which was 
shown in Paper I necessarily to obtain when Ka>61/2. 

The mean activity coefficient 'Y± is readily obtainable 

f2 8(r-20) 120 

o o 

"SMEARED" DISTRIBUTION 

fl 8 (r-o-o) 10 

FIG. 7. Components of the ion-atmosphere charge density. The 
princ~pal decay mode corresponds to the single exponential decay 
remaming in the Debye-Huckel limit. The crude two-delta­
function approximation to the remainder, Eq. (68), has been 
added to the principal mode in a mOre realistic "smeared" sense. 
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from the excess free energy FI(fl, f2): 

In'Y±=FI(fl, f2) +f{aFI(fI, f2)/arl] 

= {FI(rl, O)+rl[aFI(rI, O)/arl]I 

- ('lrrl) 1/2r23/2+ 2'lrrIr22--H(i'lrrl)4/3u+", . 

(77) 

The contribution enclosed in braces arises purely from 
the hard-sphere interactions, and would be present even 
if all ions were discharged: 

{F1(rh O)+fl[aF(fl, O)/aFI]1 

=t'lrfl+ (S'lr2/12)f12+3.S1S0r13+0(rI4). (78) 

Although the approximations we were forced to make 
render the numerical coefficient of the last term in Eq. 
(77) a mere estimate, the sign and order of magnitude 
are still probably correct. 

The occurrence of third-integral powers of concentra­
tion (rl) in the free energy or activity coefficient arises 
quite naturally in the present theory as the distance 
scaling for the mean separation of ion pairs. Whereas 
the earlier theoretical descriptions2--4,l3 of concentrated 
electrolytes have computed the distribution of single 
ions in a self-consistent average field set up either by a 
charged electrode or a fixed ion, we have gone a step 
further and attempted self-consistent description of 
pairs. Not only does this present more elaborate treat­
ment generate the -K2k'A(k)T(k) correction (which is 
the source of the r14/3 dependence in free energy), but it 
also utilizes for the first time the exact second-moment 
condition (6S). 

In many ways we have only "scratched the surface" 
in the possible uses of the ion-pair theory. This general 
approach in fact seems well suited to description of very 
concentrated electrolytes and molten salts, since it may 
be set up as a variational problem. The reduced excess 
free energy Fl may be written as a functional of the ion­
pair size distribution, 

(79) 

The first part FHs is the free-energy functional just for 
the uncharged hard-sphere ion cores, and was exhibited 
in Paper I, Eq. (19), as a cluster series. The electrical 
charging work Fe corresponds to Eq. (71) above, and 
through the function E(k) obviously depends on p(l). 
The correct free energy and size distribution will then 
correspond to minimization of functional (79) under 
suitable restraints. 

In principle our ion-pair theory could be extended to 
unsymmetrical electrolytes by definition of uncharged 
complexes of ions containing necessarily more than just 
a pair of ions. Furthermore, the general procedure 
should also be adaptable to description of electrical 
double layers at phase boundaries. However each of 
these projects pose special problems that we leave for 
future investigation. 

APPENDIX A 

The pair correlation function g+_(2)(r) in the ideal 
binary-gas mixture considered in Sec. II is identically 
unity, reflecting absence of forces. A + and a -
particle separated by the requisite distance r mayor 
may not belong to the same "ion" pair, so we write 

(f;l g+_(2)(r) =p(!) (r) + f dSl f dS2 

Xp(2)[SI,!(Sl+s2)-r, S2]. (Al) 

The arguments Sl and S2 as shown in Fig. 8 are the - to 
+ separations of the two pairs involved in doublet 
probability p(2), and! (Sl+ S2) - r connects their centers. 

We approximate p(2) appearing in Eq. (Al) by a 
product of p(!)'s, times a Boltzmann factor for the steric­
hindrance potential u acting between the pairs: 

(~r = p(l) (r) + f dSl f ds2P(!) (Sl) p(!) (S2) 

X exp{ -!3U[SI, !(Sl+S2) - r, s2]1. (A2) 

In view of the normalization condition (28) on p(l), this 
last equation may be rewritten 

p(l)(r) = f dSI f ds2p(l) (Sl)P(1) (S2) 

X(l- exp{-!3u[Sl,!(Sl+s2)-r, S2]}). (A3) 

The quantity in bold parentheses has only values 1 or 0, 
depending on whether or not the pairs overlap. 

Define K to be the angular average of the quantity 
enclosed in bold parentheses in Eq. (A3), over directions 
of both Sl and S2, at fixed r, Sl, and S2: 

As shown, we can take this quantity to depend only on 
distances reduced by r, for if each of Sl, S2, and rare 
doubled, for instance, the fractional overlap K remains 
unchanged. Integral Eq. (A3) thus simplifies to the 
following: 

p(1) (r) = I'" 4'lrs12ds1 1'" 4'lrS22dS2 
o 0 

(AS) 

When distance r is very large, K will be zero or 
negligibly small unless both SI and S2 are also large. 
Therefore we test the algebraic tail asymptote 

(A6) 
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+ 

FIG. 8. Vector variables describing simultaneous configurations of 
two pairs, separations SI and S2, used in Eq. (A1). 

by direct substitution into Eq. (AS), 

= 1671'2(l')2n'y6-2n' 100 

dXl 100 

dX2(XIX2)2K(xl, X2). 
o 0 

(A7) 

The double integral is a pure number, independent of r. 
Consistency requires in Eq. (A7) that exponents of r on 
both sides be equal, 

-n'=6-2n', 

n'=6. (A8) 

This is the same exponent prediction as achieved in 
Sec. II. 

,-, , , 
/ \ 

I , 
I \ 

I \ 
1 1 / ----............... \ 

~--------~~ a 
\'~.:- ___ o ----;;',J!. 7r 31T \",----KO<2.79 
I, "/2 21' 
\ .......... ...;" I \ ........... 
1 - - 1 \ 'Ko=2.79 
1 I \ 
\ 1 1 
'I \ 
\ / \ 

\ I \ 

' ... ,,/ ' ........ KC= >2.79 

FIG. 9. Graphical solution of Eq. (B8). The family of dotted 
curves are - (Ka) 2 cos a for various Ka. 

(3 

a 

FIG. 10. Regions \shaded) for which solutions to Eqs. (B2) and 
(B3) are possible. 

APPENDIX B 

VVe vnsh to examine the roots of the transcendental 
equation (55) in the complex-k plane. Set Z= ka, so 

(Bl) 

If z=a+i{1, the real and imaginary parts of Eq. (Bl) 
separately constitute transcendental equations, which 
are coupled to one another: 

{12-a2= (Ka)2 cosa cosh/1; (B2) 

2a{1= (Ka)2 sina sinh/1. (B3) 

Ko< 1.03 

FIG. 11. Schematic plot of a 2 ({3) defined by Eq. (B14). The 
axis intersections shown for the Ka < 1.03 curve are the small'Ka 
asymptotes given in Eqs. (BS) and (B7). 
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It is clear that if the pair (a, (3) satisfy these coupled 
equations, so also do ( -a, (3), (a, -(3), and ( -a, -(3). 
A solution in anyone of the four quadrants is thus 
replicated in the other three by reflection across the 
axes. 

We first examine the possibility of pure imaginary 
solutions, for which (B3) collapses and (B2) reduces to 

{32= (Ka)2 cosh{3. (B4) 

For sufficiently small Ka it is easy to see that a graphical 
plot of the two members of Eq. (B4) will intersect four 
times, twice near the origin [because the parabolic left 
member increases much faster initially than the right 
member with its small (Ka)2 factorJ, and twice far from 
the origin [since for large j{3j the exponential behavior 
of cosh {3 will overcome (Ka)2]. For the smaller pair, a 
straightforward iteration yields14 

Z= ±iKa{ 1 +t( Ka )2+H( Ka )4+lRo( Ka) 6+0[ (Ka) 8J}. 

(BS) 

In order to find the larger pair, Eq. (B4) may first be 

GAP PRESENT 
FOR KO,<1.03 

I 
I 

I 

/ 
I 

FIG. 12. Plot of the two members, a2({3) and (Ka)4 sinh2{3X 
sin2a({3) /482, of Eq. (B18). Although the curves cross many times, 
only those crossings satisfying (BlO) and (Bll) qualify as solu­
tions to the basic pair of transcendental Eqs. (B2) and (B3), and 
they are denoted by circles. As explained in the text, these solu­
tions must havefl in the heavily shaded intervals, and be on ascend­
ing or descending portions of the directed curve, respectively, if 
they are below or above the {32 parabola. The curves have been 
drawn presuming Ka<1.03, for which the little squares on the 8 
axis locate the two pure imaginary solutions (BS) and (B7). 

14 The root with the upper sign is the one instrumental in recov­
ery of the Debye-Hiickel theory at low concentration. The 
numerical coefficient of the (Ka)6 term shown here was incorrectly 
quoted in Ref. 3. 

f3 
T T T f 

T T 

KC<I.03 

FIG. 13. Position of 
transcendental equation a 
zeros in the first quad- f3 

f rant. The small arrows 
T T indicate roughly the T direction of motion as Ka T increases. 

f 
T 1.03<KC<2.79 

a 

f3 
T T T 

T 
T Kc>2.79 

a 

rewritten 

and then iterated, for small Ka, 

Z=i{3",±i{ lnLK~)2J +2ln lnLK~)2J 
41n In[2/(Ka)2J } 

+ In[2/(Ka)2J +... . (B7) 

Numerical studies show2.3 that as Ka increases from zero, 
the roots (BS) and (B7) approach each other in pairs, 
and coalesce at Ka= 1.03. Thereafter, they move off the 
imaginary axis. 

Pure real solutions must satisfy 

(B8) 

As Fig. 9 shows, the curves a2 and - (Ka) 2 COsa do not 
intersect when Ka<2.79. When Ka=2.79 the curves are 
tangent to each other indicating a pair of double roots. 
As Ka increases beyond 2.79 these roots separate (the 
curves cross), and thereafter at regular intervals further 
crossings continue to appear and persist as the amplitude 
of the cosine curve continues to increase. In the large-Ka 
limit the roots of (B8) will occur at 

(B9) 

out to Jaj"'Ka. 
The remaining solutions correspond to points in the 

first quadrant with a>O, {3>O. Equation (B3) allows 
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us to conclude that sina> 0, or equivalently 

2m"<a< (2n+ 1) 11" (n=O, 1,2,3, .•• ). (BlO) 

Furthermore we see from Eq. (B2) that 

{3>a if cosa>O, 

fJ<a, if cosa<O. (Bll) 

Figure 10 displays the regions allowed by conditions 
(B10) and (Bll) in the a,fJ plane, in the form of 
shaded strips. 

If both Eqs. (B2) and (B3) are squared, the trigono­
metric functions of a may be eliminated, with the result 

a4+ (4fJ2 coth2fJ-2fJ2) «+fJc (Ka) 4 cosh2fJ= O. (B12) 

Solve for a 2, 

«=fJ2-2fJ2 coth2fJ 

± {[2fJ2 coth2fJ-fJ2]2+ (Ka)4 cosh28-fJ4)1/2• (B13) 

Since fJ2-2fJ2 coth2fJ<0 for all positive fJ, we are com­
pelled to take the upper sign, 

a2= {[2fJ2 coth2B-fJ2]2-fJ4+ (Ka)4 cosh2fJ)1/2 

-2fJ2 coth2fJ+fJ2. (B14) 

Obviously we can consider only those positive fJ 
values which render the last expression positive. The 
sign of its right member is the same as the sign of 

(Ka)4 cosh2fJ-fJ4= [(Ka)2 coshfJ+fJ2] 

X[(Ka)2 coshfJ-fJ2], (B1S) 

and is thus the same as (Ka)2 cosh8-fJ2. In the light of 
Eq. (B4) we see that for Ka< 1.03, there will be an 
interval of fJ values which is excluded, but when Ka> 
1.03 the entire set of positive fJ's will be allowed. Figure 
11 provides a schematic diagram of the function a 2(fJ) 
defined by Eq. (B14). Near the origin 

a2(fJ) rv2 {[1 +HKa)4]I/2_1} +0 (fJ2) , (B16) 

and for large fJ, 
a2(fJ)rv!(Ka)2 exp(fJ). (B17) 

Equation (B3) may be put into the following form: 

a2(fJ) = [(Ka)4 sinh2fJ/4fJ2] sin2a(fJ). (B18) 

The eventual rapid increase of a(fJ) as (3 gets large means 
that sin2a(fJ) will oscillate between 0 and 1 faster and 
faster. The amplitude modulating factor (Ka) 4 sinh2fJ/482 
in Eq. (B18) then provides an envelope for these rapid 
oscillations, which itself increases in height essentially 
as exp(2fJ) at large fJ. Since Eq. (B17) indicates a 
slower divergence for the left member of (B 18), the 
curves of the two members will continue to intersect an 
infinite number of times, as shown qualitatively in 
Fig. 12. 

The curve for the right member of (B18) has been 
given a direction by means of arrows. Valid solutions to 
the original pair (B2) and (B3) can occur first only in 
vertical strips indicated by the heavy interval lines 
along the fJ axis [these are the graphical statement of 
(B10)]. Secondly, condition (Bll) demands that if an 
intersection of the curves for the left and right members 
of (B18) occurs on an ascending part of the latter, it 
must also be below the {32 parabola, or if on a descending 
part it must be above the fJ2 parabola. It is clear from the 
figure that eventually the roots will occur on every 
other descent, and the asymptotic character of the roots 
will be 

anrv (2n+ 1) 11", 

fJnrv In[2r(2n+1)2/(w)2]' (B19) 

The infinite set of solutions (B19) in the complex-z 
plane (i.e., the a,fJ plane) is essentially evenly spaced 
along a logarithmic curve, since 

(B20) 

whose starting point is farther and farther up the 
imaginary fJ axis as Ka~. 

In the final Fig. 13 we have assembled in pictorial 
form the behavior of the roots to Eq. (B1) in the first 
quadrant as Ka increases. The two pure imaginary roots 
move toward one another when Ka< 1.03, while the 
remainder along the logarithmic branch (B20) move 
downward, essentially all at about the same rate. After 
the two pure imaginaries merge and move off the axis 
(one into the second quadrant), the entire set of roots 
continue their descent onto the real (a) axis, where one 
by one they stick at positions (B9). 

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to

IP:  128.112.200.107 On: Sat, 28 Dec 2013 03:13:48


