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We generate jammed packings of monodisperse circular hard-disks
in two dimensions using the Torquato–Jiao sequential linear pro-
gramming algorithm. The packings display a wide diversity of
packing fractions, average coordination numbers, and order as
measured by standard scalar order metrics. This geometric-struc-
ture approach enables us to show the existence of relatively large
maximally random jammed (MRJ) packings with exactly isostatic
jammed backbones and a packing fraction (including rattlers) of
ϕ= 0:826. By contrast, the concept of random close packing (RCP)
that identifies the most probable packings as the most disordered
misleadingly identifies highly ordered disk packings as RCP in 2D.
Fundamental structural descriptors such as the pair correlation
function, structure factor, and Voronoi statistics show a strong
contrast between the MRJ state and the typical hyperstatic, poly-
crystalline packings with ϕ≈0:88 that are more commonly
obtained using standard packing protocols. Establishing that the
MRJ state for monodisperse hard disks is isostatic and qualitatively
distinct from commonly observed polycrystalline packings contra-
dicts conventional wisdom that such a disordered, isostatic pack-
ing does not exist due to a lack of geometrical frustration and
sheds light on the nature of disorder. This prompts the question
of whether an algorithm may be designed that is strongly biased
toward generating the monodisperse disk MRJ state.

packing | jamming | randomness

Apacking in d-dimensional Euclidean space Rd is defined as
a collection of particles that do not overlap with one an-

other. In three dimensions (3D), hard particle packings have
served as simple, yet powerful models for a wide variety of
condensed matter systems including liquids, glasses, colloids,
particulate composites, and biological systems, to name a few (1–
5). In two dimensions (2D), they have been used to model sys-
tems such as the molecular structure of monolayer films (6, 7),
adsorption of molecules on substrates (8, 9), and the organiza-
tion of epithelial cells (10, 11). Moreover, particular interest has
been devoted toward packings that are jammed (roughly speaking,
packings that are mechanically stable) (12–18).
Jammed packings of monodisperse spheres in 3D exist over

a wide range of packing fractions from ϕ= π=
ffiffiffiffiffi
18

p
≈ 0:74048 . . .

to ϕ= π
ffiffiffi
2

p
=9≈ 0:49365 . . ., where the former corresponds to the

fcc lattice, and the latter corresponds to the “tunneled crystals”
(19). In addition, jammed packings exist with intermediate
packing fractions and a wide variety of order, including packings
that are fully noncrystalline. Of particular interest is the “maxi-
mally random jammed” (MRJ) state, defined as the packing that
minimizes some scalar order metric ψ subject to the jamming
constraint, replacing the familiar notion of random close packing
(RCP) (20), originally defined as the densest configuration
that a “random” packing could attain without ever defining
“randomness.” The concept of the MRJ state is a natural out-
come of the geometric-structure approach, in which packings are
analyzed primarily on an individual basis.
The situation for disordered monodisperse disk packings in

2D is very different from the 3D counterpart because the former
lacks geometrical frustration, i.e., the densest local packing
arrangement is compatible with the globally densest packing

arrangement (the triangular lattice). As a result, packing proto-
cols have struggled to generate disordered, jammed packings of
monodisperse disks, suggesting that the most disordered packing
is a polycrystalline arrangement—a dubious proposition for the
MRJ state. Nonetheless, a truly disordered, jammed disk packing
has remained elusive. Here we show by construction, using the
geometric-structure approach, that the MRJ state for mono-
disperse disks is not polycrystalline; rather, it is isostatic and sig-
nificantly more disordered as measured by bond-orientational and
translational order metrics, as well as its vivid visual impression.
To formalize the concept of jamming, Torquato and Stillinger

have provided rigorous definitions for local, collective, and strict
jamming (12). Because collectively jammed packings are stable
to uniform compression, and strictly jammed packings are ad-
ditionally stable against shear deformations, we will restrict
ourselves to considering only these two categories of jamming for
the purposes of our current work. It is not uncommon to find
that some subset of particles is jammed (the backbone) while the
remainder are not jammed but are locally imprisoned by their
neighbors (the rattlers). If there is no jammed backbone, then
the packing is unjammed. Note that, unless specified otherwise,
packings are typically characterized (e.g., in order maps) while
including rattlers.
The family of jammed packings is conveniently described via

“order maps” that classify packings according to their packing
fraction, order metric, and whether or not they are jammed. Fig. 1
provides a schematic order map for 3D frictionless mono-
disperse sphere packings. We first contrast a schematic order
map for the 2D case in Fig. 2 that has some important dis-
tinctions. In 3D, the densest packing is the fcc lattice or its
stacking variants (line B–B′ in Fig. 1). By contrast, in 2D, the
densest packing, the triangular lattice, is unique; therefore, it is
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represented by a single point B in Fig. 2. In a similar manner, the
least dense jammed 3D sphere packing, conjectured to be the
tunneled crystal (19), is not unique, and has stacking variants;
these populate the line A–A′ in Fig. 1. Similarly in 2D, the
analogous reinforced kagomé lattice packings [conjectured to be
the least dense jammed disk packings (21)] populate the line
A–A′ in Fig. 2, and are generated by altering the way in which
vacancies are selected from the triangular lattice. In both 2D and
3D, intermediate packings may be generated by filling in the
vacancies in these packings (curves A–B and A′–B′ in 3D, and
A–B and A′–B in 2D).
It is important to note that the order map paradigm is protocol-

independent and does not conflate existence with frequency of
observation. Just as the reinforced kagomé lattice is an interesting
structure that is elusive to typical packing protocols, the MRJ state
is interesting in its own right, regardless of how (often) it is ob-
served. A characterization of the MRJ state by construction is
thus of general interest.
Similarly, the MRJ state is protocol-independent and quantifies

the order of an individual packing, regardless of its frequency of
occurrence, i.e., using a geometric-structure approach (16). This is
to be contrasted to the current prevailing definition of RCP, in
which an entropic measure is used to define randomness, i.e., that

RCP packings are an ensemble of jammed configurations that are
the most probable outcome upon uniformly densifying a random
initial configuration to the point of jamming (13–15, 22, 23). Such
an ensemble-based definition implies that the most probable
configurations represent the most disordered state. This is a rea-
sonable postulate because entropy is the standard way of thinking
about randomness in thermodynamic systems, and indeed the
distinction is subtle for spheres in 3D because the packing fraction
of the MRJ state seems to be coincident with such a location in
phase space based on information gathered from many standard
protocols (13, 20, 24–27). However, many other properties, such
as the degree of order (as measured by the standard scalar order
metrics) and rattler attributes have been found to vary in disor-
dered packings at the MRJ packing fraction depending upon
the protocol used to generate them. In other words, packing
fraction alone is not sufficient to characterize a disordered
jammed packing (27–29).
The distinction between the geometric-structure and ensem-

ble-based approaches is even more critical in 2D, especially for
monodisperse disk packings. In particular, the lack of “frustra-
tion” (30, 31) in 2D analogs of 3D computational and experi-
mental protocols that lead to putative RCP states result in highly
crystalline packings, forming rather large triangular coordination
domains (grains) (21, 26, 32). Because such highly ordered
packings are the most probable outcomes for these typical pro-
tocols, “entropic measures” of disorder misleadingly identify these
as the most disordered. This has even caused some to hypothesize
that RCP does not exist at all for monodisperse disks (33). An
appropriate order metric, on the other hand, is capable of iden-
tifying a particular configuration (not an ensemble of config-
urations) that is consistent with one’s intuitive notion of maximal
disorder. However, typical packing protocols do not generate such
large disordered disk configurations due to their inherent implicit
bias toward undiluted crystallization. It has been suggested that
jammed packings with a significantly lower ϕ and ψ exist (16, 34);
the geometric-structure approach involved in the definition of the
MRJ state is necessary to identify such packings, even if rare with
respect to most protocols, as highly disordered.
Before the advent of these aforementioned rigorous defi-

nitions of jamming and the MRJ state, numerous attempts
were made to generate RCP packings of monodisperse disks (6,
25, 35–38). Upon devising a rigorous jamming test (39), these
results were revisited, and it was found that these packings were
not even collectively jammed (21).
The Torquato–Jiao (TJ) linear programming algorithm (40)

can be used to generate sphere packings in an arbitrary dimen-
sion that are guaranteed a priori to be strictly jammed. In ad-
dition, the sphere packings that it produces in d≥ 3 are exactly
isostatic with high probability. [An isostatic packing is one that is
jammed and has the minimum number of contacts required for
mechanical stability. In 2D, this is z= 4− 2=NB for collective
jamming and z= 4+ 2=NB for strict jamming, where NB is the
number of backbone disks (41).] It has been used recently to
provide new details to the nature of the MRJ state in 3D (27).
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Fig. 1. Schematic order map in the density–order (ϕ–ψ) plane for 3D strictly
jammed, frictionless, monodisperse hard-sphere packings, adapted from ref. 16.
White and blue regions contain the attainable packings, the blue region rep-
resents the jammed subset of packings, and the dark shaded region contains no
packings. The locus of points A–A′ corresponds to the lowest-density jammed
packings, conjectured to be tunneled crystals with ϕ= π

ffiffiffi
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=9 (19). The locus of

points B–B′ corresponds to the densest jammed packings (stacking variants of
the fcc lattice). Packings along the curves joining these extrema can be gen-
erated by randomly inserting spheres into the vacancies of the tunneled crystal
until the corresponding fcc variant is obtained. The point MRJ represents the
maximally random jammed state, i.e., the most disordered state subject to the
jamming constraint.
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Fig. 2. Schematic order map in the density–order (ϕ–ψ) plane for 2D strictly
jammed, frictionless, monodisperse hard-disk packings in the infinite-system
limit. White, blue, and dark-shaded regions are the same as in Fig. 1. The
locus of points A–A’ corresponds to the lowest-density jammed packings,
conjectured to be the reinforced kagomé lattice, reinforced rectangular
kagomé lattice, and other combinations, all with ϕ= π

ffiffiffi
3

p
=8 (12). The point B

corresponds to the triangular lattice. Packings along the curves joining these
extrema can be generated by randomly inserting spheres into the vacancies
of the packings found along A–A′ lattice until the triangular lattice is
obtained. The point MRJ represents the maximally random jammed state.
The entropically defined location of RCP is labeled to stress the difference
between using ensemble-based and geometric-structure approaches.
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Fig. 3. Order maps of disk packings that are (A) collectively jammed and
(B) strictly jammed. Initial configurations were generated from RSA with
ϕinit =0:10. Isostatic packings are shown as green squares.
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Given its promising abilities in generating disordered, jammed
sphere packings in 3D, we now turn our attention toward the
2D problem to see if it might provide new insights.
We use the TJ algorithm to produce collectively and strictly

jammed packings of monodisperse disks that are exactly isostatic
and lack any sixfold-coordinated disks. These packings are char-
acterized according to their packing fraction and order using
bond-orientational and translational order metrics to determine
the candidates for the MRJ state. We also present pair correlation
function and Voronoi statistics. The packings that we have gen-
erated demonstrate the existence of an isostatic MRJ state in 2D
that is fundamentally different from the polycrystalline packings
produced by typical protocols.

Packing Generation
Here, we use the TJ algorithm to generate frictionless jammed
packings of monodisperse disks within a fundamental cell (FC)
with periodic boundary conditions. The process may be broken
into two steps: generating initial configurations and densifying
said configurations to the point of jamming.
Because TJ is very sensitive to the initial configuration, we

explored a variety of initial configurations. The first of these was
the usual random sequential addition (RSA), carried out at a low
packing fraction (typically 0.10) so as to approximate a Poisson
process. We also explored several FC shapes including the usual
square FC as well as slightly distorted FCs to aid in causing
geometric frustration. We also tried a rhombic FC with interior
angle π=3, which is compatible with the triangular lattice if the
number of disks is a square integer.
To explore disordered packings at higher initial packing frac-

tions, we used the serial algorithm for generating packings with
controlled orientational order introduced in ref. 42 and the
version in which no orientational preference is indicated [i.e., the
Eden model (43) adapted to hard disks].
The final initial condition ensemble that we considered was

created by generating bidisperse disk packings with number ratio
0.5 and diameter ratio 1.4. Initial conditions for the bidisperse
packing were generated via RSA at low packing fraction; the
packing was subsequently jammed using TJ. The large disks in
the resulting jammed configurations were then shrunk so that the
packings became monodisperse; these packings were then fed
back to TJ to yield jammed monodisperse disk packings.
The TJ algorithm (40) uses an iterative process to densify

packings of hard spheres in an arbitrary dimension using a linear
optimization scheme to maximize ϕ to first order by shrinking
the FC. The optimization variables are the N displacement vec-
ors for the spheres in the system (Nd variables) as well as the
symmetric strain tensor that deforms and shrinks the FC
(dðd+ 1Þ=2 variables). The constraints are that no pair of spheres
may overlap (to a locally linear approximation). By iteratively
solving this linear program (LP), one obtains a local packing
fraction maximum of the initial configuration. Furthermore,
when the LP cannot find any further densification up to some
numerical threshold, the packing is guaranteed to be strictly
jammed to a corresponding tolerance, and is therefore a local

packing fraction maximum. Furthermore, if the FC is disallowed
from deforming (i.e., its shape is preserved), the packing is in-
stead guaranteed to be collectively jammed. For mathematical
details, see the Materials and Methods.

Results
We generated at least 104 packings per system size ð10≤N ≤ 200Þ
per initial condition for both collective and strict jamming. The
following subsections characterize various statistical and geo-
metrical details of the packings.

Order Maps. We begin by presenting order maps of the packings
that we have generated. Fig. 3 A and B show scatter plots of
collectively and strictly jammed packings, respectively. The
packings were generated with (Fig. 3A) N = 150 and (Fig. 3B)
N = 110 from RSA initial conditions in a rhombic FC with in-
terior angle 2π=5. Isostatic packings are shown as green squares.
The order metric ψ used here is the pair correlation function-
based order metric Tp (44), defined as

T* =

R ξc
Dρ1=d jg2ðξÞ− 1jdξ

ξc −Dρ1=d
;

where D is the disk diameter, ξ= rρ1=d is a dimensionless dis-
tance, g2ðξÞ is the isotropic pair correlation function, ρ=N=V
is the number density, and ξc is a dimensionless cutoff value,
chosen here to be 3. For most monodisperse disk packings, this
corresponds to a pair distance that is slightly less than three
diameters. The quantity Tp may be thought of as a “disorder
metric” in that it quantifies the amount by which a packing
differs from a Poisson point process, for which g2 = 1 every-
where. It is interesting to note that the MRJ state for mono-
disperse disks is nearly as disordered (as quantified by Tp) as
typical disordered packings of bidisperse disks with diameter ra-
tio between unity and 1=1:4, which more readily exhibit disor-
dered, isostatic jammed states; see the SI Appendix for further
details. One may also consider other order metrics aside from
Tp; we discuss this as well in the SI Appendix.
We expand the traditional order map paradigm here by adding

a third axis: the average backbone coordination number, z (16).
Projections of this three-axis (ϕ–ψ–z) order map onto the ϕ–z
and ψ–z planes are shown in Figs. 4 and 5, respectively; again, we
chose to use Tp as our order metric. This expanded picture shows
that, as the degree of order decreases and the MRJ state is
approached, the range of z narrows toward isostaticity, implying
that the MRJ state for monodisperse disks has an isostatic
backbone, just as is the case for MRJ packings of hard spheres
in 3D (27).
For collective jamming, the MRJ state has a packing fraction

of 0:826± 0:001 and a rattler fraction of NR=N = 0:035± 0:002;
for strict jamming these values are ϕ= 0:826± 0:002 and
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Fig. 4. The ϕ–z projection of the three-axis order map for 1,000 (A) collectively
jammed and (B) strictly jammed packings generated from RSA with ϕinit = 0:10.
Isostatic packings are shown as green squares.
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Fig. 5. The ψ–z projection of the three-axis order map for 1,000 (A) collectively
jammed and (B) strictly jammed packings generated from RSA with ϕinit = 0:10;
the order metric used here is the g2-based order metric T*. Isostatic packings
are shown as green squares. As T* decreases, the distribution of packings in
terms of coordination number narrows toward isostaticity.
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NR=N = 0:034± 0:004. The rattler fraction is significantly higher
than that for the MRJ state for 3D (27) and obeys the general
trend that the rattler fraction tends to decrease as d increases
(45). We reiterate that our packings are fundamentally different
from previously obtained disordered disk packings in that our
packings are collectively or strictly jammed, whereas previous
attempts failed to produce packings that were even collectively
jammed (and, in some cases, locally jammed; a locally jammed
packing is one in which no particle may be moved while holding
all other particles fixed. This jamming category is insufficient to
guarantee mechanical stability of any sort.). Thus, we are dem-
onstrating the existence of mechanically stable packings that are
significantly disordered when compared to the usual polycrystalline
packings generated by most protocols. It is important to note that
these packings demonstrate an isostatic MRJ state for 2D that is
distinct from the polycrystalline state that standard jamming pro-
tocols tend to produce. Examples of isostatic MRJ packings are
given in Fig. 6.
Several isostatic, collectively jammed packings were found

with relatively high ϕ and ψ (see Fig. 3A), which to our knowl-
edge are also outcomes unique to the TJ algorithm. Closer in-
spection reveals that these packings possess large distorted grains
similar to those observed in ref. 26. This can be explained by
noting that the FC shape was incompatible with the triangular
lattice, introducing frustration into near-crystalline domains.
Allowing the cell to deform (as is done for strict jamming)
eliminates these isostatic high-ϕ, high-ψ packings by allowing
them to collapse into hyperstatic configurations.

Success Rate. Using TJ, we have found that the probability of
producing a packing with an isostatic backbone decreases in
a roughly exponential manner as N increases; although the
choice of initial configuration and FC shape cannot be dis-
regarded, in general, the probability for N = 100 is approximately
3× 10−3 for collective jamming and 2× 10−4 for strict jamming;
this probability decreases by a factor of 10 for every 40 additional
disks. Details are available in the SI Appendix. Although this
exponential decay may be the case for the present algorithm,
there is no apparent reason why isostatic, MRJ packings would
not exist for arbitrarily large system sizes; it is of interest to de-
vise a protocol that increases their frequency of occurrence.

Pair Correlation Function. We have produced 16 packings with
N = 150 and 177 packings with N = 100 that are exactly isostatic
and representative of the MRJ state for collective jamming; for
strict jamming, we found 28 packings with N = 110. To contrast
these packings with the typical results (“ensemble average”)
generated by the TJ protocol, we randomly selected 1,000 collec-
tively jammed packings with N = 150 and 1,000 strictly jammed
packings with N = 110.

Fig. 7 A and B shows the pair correlation function g2ðrÞ for
collectively and strictly jammed packings, respectively. The peaks
that correspond to the triangular lattice geometry are consider-
ably suppressed among the MRJ packings compared with the
ensemble averages. This stresses the significant qualitative dif-
ferences between the MRJ state and the most common states.
The corresponding structure factors are given in the SI Appendix.

Hyperuniformity.We have found that number density fluctuations
in our MRJ packings grow more slowly than the area of a (ran-
domly placed) observation window, implying that the MRJ state
is hyperuniform (infinite-wavelength density fluctuations vanish;
ref. 46) in 2D (SI Appendix). This is to be contrasted with typical
2D disordered systems in which the variance grows in proportion
to the window area. The 3D MRJ packings have also been shown
to be hyperuniform with quasi-long-range order (47).

Voronoi Statistics.Voronoi diagrams were created using the point
patterns of the disk centers. Fig. 8 shows the probability distribution
of the number of sides per Voronoi cell for isostatic packings as well
as for a full ensemble average. Although most cells are hexagons in
both cases, it is clear that the isostatic packings exhibit a much larger
variability. In addition, although most hexagons in polycrystalline
packings are regular, corresponding to a locally close-packed con-
figuration, this is far from the case for the isostatic packings.
Distributions of the local packing density of the Voronoi cells
are shown in the SI Appendix.

Discussion
We have used the TJ algorithm to produce collectively and
strictly jammed packings of monodisperse disks that are exactly
isostatic with system sizes up to N = 150 and 100, respectively.
These isostatic packings are hyperuniform, have an average
packing fraction of ϕ= 0:826, and are significantly more disor-
dered than the polycrystalline packings generated by typical
protocols. In fact, these packings are candidates for the MRJ
state according to bond-orientational and translational order
metrics. The pair correlation function includes spikes corre-
sponding to some of the local geometries found in the triangular
lattice, but they are strongly suppressed in comparison with the
ensemble average. In a similar manner, the presence of six-sided
Voronoi cells corresponding to hexagonal close packing is strongly
suppressed, and a variety of other geometries have arisen, including
the increased presence of nonhexagonal Voronoi cells.
It is well known that the MRJ state for monodisperse spheres

in 3D is isostatic. In addition, polydisperse disk packings in 2D
have been a popular way to elicit disordered packings, which are
often isostatic (13, 14, 17, 40). However, an isostatic packing of
monodisperse disks has proved to be elusive until now. Although
they remain difficult to obtain, we have shown that they do in
fact exist, and that some of them have properties that are con-
sistent with what one should expect from the MRJ state.

Fig. 6. Examples of exactly isostatic, (Left) collectively jammed and
(Right) strictly jammed monodisperse disk packings with N= 150 and 110
disks, respectively. Disks are colored to indicate their (backbone) co-
ordination as follows: dark blue = 3 contacts, green = 4 contacts, orange = 5
contacts, and white = rattler (0 contacts). The fundamental cell is outlined
in black.
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Fig. 7. Pair correlation function for exactly isostatic, MRJ packings (black
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a guide for the eye.
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It is critical to point out that the 2D MRJ packings that we
have shown are not entropically favored. This is problematic for
a picture of RCP that relies on one’s choice of protocol as well
as an ensemble-based, entropic definition. Assuming that one
chooses an algorithm that is capable of producing disordered,
isostatic packings, one still risks being misled by the likelihood
that most packings will be highly ordered, hyperstatic poly-
crystalline packings, concluding that RCP is a rather unsatisfying
concept in 2D. Rather, one must use a geometric-structure ap-
proach and apply some order metric that is well defined for any
single packing. This method not only allows one to unambiguously
identify disorder in packings without relying on a particular packing
protocol, but is also able to identify disorder in a manner that is
more consistent with one’s intuition. Our findings in this work call
into question the merits of studying RCP by means of an entropic,
ensemble-based methodology because of the misleading picture it
presents for 2D monodisperse disks.
In 3D, the least dense jammed packing known, the tunneled

crystal, is hyperstatic: every sphere is sevenfold-coordinated, i.e.,
z= 7. By contrast, the reinforced kagomé (the least dense packing in
2D) lattice is isostatic in the infinite-system limit with average co-
ordination number z= 4. What happens between these extremal
points and the MRJ points in the jammed subsection of the order
map? Although some transition from z= 6 to 7 is expected in 3D,
it is unclear whether there is an isostatic continuum of packings
connecting the MRJ state and reinforced kagomé lattice in 2D. One
possible picture is that the triangular lattice and reinforced kagomé
lattice both represent states with an infinitely large crystal; by re-
ducing the grain size, disorder increases until the MRJ point is
reached. Then, as the continuum from the MRJ point to the tri-
angular lattice may be spanned by slowly growing crystalline grains
within the packing, the continuum fromMRJ to reinforced kagomé
may be spanned by growing diluted crystals.
Demonstrating the MRJ state for monodisperse disks by

construction is important conceptually in a similar way to the
discovery of the reinforced kagomé lattice in that both are
extremal packings that are very interesting although hard to
observe via traditional packing protocols. This reflects a persist-
ing fundamental lack of knowledge that we still have with regards
to designing packing protocols; nevertheless, the MRJ state for
disks is an interesting state because it represents an extreme state
within the confines of the jamming constraint. This prompts an
algorithmic question: can one devise a packing protocol that
favors MRJ-like states for hard disks? Remarkable examples of
biological processes that suppress crystallization have already
been found in nature such as thermal hysteresis antifreeze pro-
teins, found in both overwintering insects and polar marine fishes
(48, 49), and may be used to inspire the design of specialized
packing protocols and, in turn, materials synthesis techniques.
The question, “What is randomness?” is an extremely funda-

mental, ubiquitous question arising in not only physics and
chemistry, but mathematics and biology as well. By uncovering

the MRJ state for hard disks, we identify a serious challenge to
the traditional notion of disorder—that the most probable dis-
tribution is correlated with randomness. We have shown here
such a distribution that is not correlated with disorder at all; the
most disordered jammed configuration is not the one that shows
up the most frequently in any known protocol. On the other
hand, we confirm that certain order metrics are capable of ac-
curately characterizing the order of packings on an individual
basis even in this challenging case. Moreover, these revelations
concerning randomness are not limited to hard-particle packings:
what does the MRJ state look like for real-world systems such as
water molecules or polymers? The geometric-structure approach
appears to provide the proper groundwork for considering such
questions.

Materials and Methods
The densification process that the TJ algorithm performs is an iterative
procedure driven by solving linear programs (LPs). The protocol goal is to
maximize ϕ [or, in the energy landscape picture (40), minimize −ϕ], and so
we may pose an objective function in terms of a strain tensor e acting on the
fundamental cell’s generating matrix Λ. A linearization gives the following
objective function for the LP:

min TrðeÞ= e11 + e22 + e33 + . . . + edd : [1]

This implies that the components of the strain tensor e are design variables;
the other variables are the displacements for each sphere (in the lattice
coordinate system), Δxλ

1,Δx
λ
2,Δx

λ
3, . . . ,Δx

λ
N , all of which are d-dimensional

vectors, where lambda denotes that the vectors are expressed in terms of Λ.
Because no two spheres can overlap, our LP’s constraints must reflect that
rGmn, the (global) distance between the centroids of spheres m and n; with
diameters Dm and Dn, respectively; be rgmn ≥ 1=2ðDm +DnÞ. Expressing this
in terms of the spheres’ lattice coordinates, and taking into account
the spheres’ displacements and deformable fundamental cell, we haveffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rλmn ·Λ · ð1+ eÞ2 ·Λ · rλmn

q
≥ ðDi +DjÞ=2, where the relative displacement

rλmn = ðxλ
n +Δxλ

nÞ− ðxλ
m +Δxλ

mÞ. Linearizing this gives

Λ · rλnm · e ·Λ · rλnm +Δxλ
m ·G · rλnm +Δxλ

n ·G · rλmn

≥
1
2

�ðDm +DnÞ=2− rλnm ·G · rλnm
�
+R,

[2]

where G=ΛT ·Λ is the Gram matrix of the lattice Λ and R contains all of the
higher-order terms; in practice, it is acceptable to let R= 0. An influence
sphere of radius γ is defined such that a constraint will be included in the
LP for any pair of spheres whose centroids are separated by less than
ðDm +DnÞ=2+ γ. Because Eq. 2 is a local linearization of a quadratic con-
straint, we impose an artificial limit on the extent of the design variables in
each iteration to preserve the accuracy of the linearization.

If we replace the strain tensor e with a scalar, we constrain the shape of
the fundamental cell to remain constant. In such a way, the TJ algorithm
can be quickly modified to produce collectively jammed packings instead
of strictly jammed packings. This LP is solved to determine how the
packing will be rearranged and densified. After applying the sphere dis-
placements and lattice deformation, the LP is reformulated using the new
sphere positions and the fundamental cell’s generating matrix. The pro-
cess is iterated until the solution converges and the packing does not
change by more than some termination threshold. We have found that
the most effective threshold is the fundamental cell volume; when the
cell volume fails to decrease by an appreciable amount, the packing is
jammed to a corresponding precision.

Packings are compressed using the TJ algorithm with an influence sphere
of diameter γ =D=40 (40), where D is the diameter of a sphere. For a single
LP iteration, box deformations (both normal and shear movements) are
limited in magnitude to less than D=200 and sphere translations are limited
to kΔrik≤D=200. The algorithm is terminated when two successive com-
pressions fail to decrease the lattice volume by Vk −Vk−2 < 2:0× 10−12, where
Vk is the volume of the fundamental cell on iteration k.
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