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The structure and dynamics of liquid lithium are studied using two simulation methods: orbital-free (OF) first-principles
molecular dynamics (MD), which employs OF density functional theory (DFT), and classical MD utilizing a second
nearest-neighbor embedded-atom method potential. The properties studied include the dynamic structure factor, the self-
diffusion coefficient, the dispersion relation, the viscosity, and the bond angle distribution function. Simulation results
were compared to available experimental data when possible. Each method has distinct advantages and disadvantages.
For example, OFDFT gives better agreement with experimental dynamic structure factors, yet is more computationally
demanding than classical simulations. Classical simulations can access a broader temperature range and longer time
scales. The combination of first-principles and classical simulations is a powerful tool for studying properties of liquid
lithium. VC 2015 American Institute of Chemical Engineers AIChE J, 61: 2841–2853, 2015
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Introduction

Liquid metals have attracted considerable attention
recently, due to their potential use as plasma-facing compo-
nents in tokamak reactors.1,2 Liquid lithium (Li) and its
alloys, such as lithium-tin, show the greatest promise as
plasma-facing components.3,4 Simulation studies are a useful
complement to experimental ones, particularly so for liquid
metal systems that are difficult to study experimentally. For
example, in the case of liquid Li, its comparatively high
melting temperature of 453.7 K, when compared to organic
materials, and its reactivity with water, pose experimental
challenges that, although not insurmountable, make the avail-
ability of alternative approaches desirable. Various simula-
tion methods exist, ranging from quantum mechanical
approaches relying on density functional theory (DFT) to
classical simulation techniques.

Kohn–Sham (KS) DFT5,6 is a first-principles method
based on quantum mechanics that can be used without
empirical parameters. KSDFT for metallic systems is lim-
ited by its OðN3Þ scaling of time required to complete
simulations, where N is the number of atoms being simu-
lated. Because of this, KSDFT-based molecular dynamics
(MD) methods are impractical when one wants to calcu-
late properties that require computationally demanding
simulations. For example, the calculation of viscosity
requires a fairly large number of atoms and a simulation
time long enough to see the smooth decay of an autocor-
relation function.

Alternatively, orbital-free (OF) DFT is a quasi linear-
scaling (at most OðNlnðNÞÞ) first-principles method based on
quantum mechanics.7 OFDFT is orders of magnitude less
expensive than KSDFT, enabling the routine quantum simu-
lation of many thousands of atoms.8 This method has been
used to study the liquid state of several materials such as
aluminum9 and magnesium.10 It has recently been shown to
be accurate enough to describe both solid and liquid proper-
ties of Li.11 The melting point of Li as well as the diffusivity
and static structure factors of the liquid phase were shown to
agree well with experimental measurements.11 However,
with respect to the diffusivity, the effect of system size was
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not fully investigated in previous work; this will be fully
addressed in this study.

In addition to first-principles methods, classical simulation
methods have also been used to study Li and other metals.
These methods are much less computationally expensive
than quantum mechanical approaches. Therefore, they allow
the simulation of tens of thousands of atoms over periods of
hundreds of nanoseconds.12 Classical simulation methods
require the specification of a force field to describe interac-
tions between atoms. A common class of force fields for
simulating metals is the embedded-atom method (EAM)
family of potentials.13 These potentials are referred to as
semiempirical because experimental and/or first-principles
data are used to determine their parameters. Second nearest-
neighbor modified embedded-atom method (2NN MEAM)
potentials are a class of EAM potentials14 that have been
shown to be particularly well-suited for simulating metals
that form a stable body-centered cubic (bcc) crystal.15

In this work, we employ both OFDFT-MD and classical
MD (utilizing a 2NN MEAM potential) to study structural
and dynamic properties of Li, with an emphasis on the liquid
phase. Knowledge of structural and dynamic properties is of
fundamental importance when considering a liquid metal as
a possible plasma-facing component candidate. We validate
these two methods by comparing results for various proper-
ties of Li to experimental data. This allows us to compare
and contrast the two methods. In addition to liquid proper-
ties, we also examine the relative stability of different Li
crystal structures and the surface energies of the bcc crystal.
The properties of liquid Li obtained from our simulations
that can be directly compared to experimental data include
the dynamic structure factor, the self-diffusivity, the disper-
sion relation, and the viscosity. The simulations also provide
the bond angle distribution function, for which no experi-
mental data are available, to the best of our knowledge.

In this article, the “Models” Section describes both the
OFDFT and 2NN MEAM treatment of Li. The “Methods”
Section provides details of the simulation methods used to
compute different properties of Li. The “Results” Section
presents results of the simulations and compares them to
available experimental data. In addition, we provide a per-
formance assessment for both OFDFT and 2NN MEAM
methodologies. Finally, the “Concluding Remarks” Section
describes conclusions from our work.

Models

Orbital-free DFT

In OFDFT, the total energy of a given system is written
as

EDFT½qðrÞ�5Ts½qðrÞ�1EH½qðrÞ�1EXC½qðrÞ�1EIE½qðrÞ�1EII

(1)

here Ts½qðrÞ� is the kinetic energy density functional (KEDF),
where qðrÞ is the electron density in real space, EH½qðrÞ� is
the Hartree energy representing electron-electron Coulomb
repulsion interactions, EXC½qðrÞ� is the electron exchange-
correlation energy term, EIE½qðrÞ� is the electron-ion energy
term, and EII is the ion–ion energy term that can be calculated
using Ewald summation.8,16

Both KSDFT and OFDFT are founded upon the Hohen-
berg–Kohn theorems.5,6 However, there exist two major dif-
ferences between them. First, in KSDFT the kinetic energy

term is expressed in terms of wave functions while OFDFT
adopts a KEDF. For Ts½qðrÞ�, we use the Wang–Govind–Car-
ter (WGC99) KEDF.17 This is a nonlocal functional with a
density-dependent kernel based on the Lindhard response
function.18 The WGC99 KEDF in real space has three terms
(in atomic units)
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where CTF5 3
10
ð3p2Þ2=3

. The first term of Eq. 2 is the

Thomas–Fermi KEDF,19–21 which is a local KEDF solely
dependent on r. The second term is the von Weizs€acker
KEDF.22 This is a semilocal KEDF due to the use of the
density gradient rqðrÞ. The WGC99 KEDF introduces a

third, nonlocal term. Exponents a and b are set to a5 51
ffiffi
5
p

6

and b5 52
ffiffi
5
p

6
, in order to satisfy two physical limits. First, by

enforcing a1b55=3, the nonlocal term is guaranteed to
recover the uniform electron gas limit, that is, the Thomas–

Fermi KEDF. Next, by enforcing 12 8
9ab 52 3

5
, the WGC99

KEDF also captures the large-q limit (where q is the wave
vector) for rapidly varying densities.17,23,24 The Fermi vector

is kðrÞ5½3p2qðrÞ�1=3
, where the exponent c52:7 is shown to

work well for simple metals.17 The density-dependent nonlo-
cal kernel xabc is obtained by solving a second-order differ-

ential equation, which is chosen to satisfy the Lindhard
linear response relations at the uniform electron gas
limit.17,25 Using the nonlocal KEDF with a density-
dependent kernel within OFDFT provides an accurate
description of both bulk and surface properties of simple
metals.17,26 Here, nonlocal refers to a term with both r and

r
0

variables. Utilizing the WGC99 KEDF, the OFDFT total
energy is explicitly expressed as a functional of qðrÞ. The
ground-state energy of a given system can be obtained by
applying standard minimization methods to Eq. 1. Con-
versely, the kinetic energy term in KSDFT does not have an
explicit functional form of qðrÞ. Minimization methods that
are well suited for OFDFT cannot be used in KSDFT to find
the ground-state energy. The total energy in KSDFT is usu-
ally obtained by diagonalizing the Hamiltonian matrix (the

scaling for the diagonalization method is OðN3Þ) expressed
in wave functions, which makes KSDFT several orders of
magnitude slower than OFDFT.8

The second difference between the two methods comes
from the treatment of the ion-electron interaction term,
EIE½qðrÞ�, in Eq. 1. The pseudopotential approximation is
widely used in electronic structure theory. A pseudopotential
is an effective potential that replaces the all-electron poten-
tial of an atom.27 The influence of core electrons are
included in the pseudopotential, leaving only the valence
electrons to be treated. Using a pseudopotential instead of an
all-electron potential increases the efficiency of KSDFT
because a reduced number of plane wave basis functions can
be used to describe the orbitals and operators. Nonlocal
pseudopotentials28 are constructed by dividing the pseudopo-
tential into a local pseudopotential and a set of nonlocal pro-
jectors. The nonlocal projectors are designed to act on
orbitals. However, OFDFT cannot use nonlocal pseudopoten-
tials due to its lack of orbitals. In this study, a bulk-derived
local pseudopotential29,30 for Li is used instead of a nonlocal
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pseudopotential. The validation of bulk-derived local pseudo-
potentials for solid and liquid states of Li has been discussed
in previous work.11

For EXC½qðrÞ�, we adopt the generalized gradient approxi-
mation in the Perdew–Burke–Ernzerhof (PBE)31 form. All
the OFDFT simulations are performed using the PRinceton
Orbital-Free Electronic Structure Software (PROFESS) pack-
age.32–34 A 900-eV kinetic energy cutoff is used for the
plane wave basis expansion, and periodic boundary condi-
tions are used.

2NN MEAM potential

We used the 2NN MEAM potential for Li developed by
Cui et al.35 As mentioned earlier, one reason for choosing
this potential is because the 2NN MEAM class of potentials
has been shown to perform well for materials that form a
stable bcc crystal phase.15 Additionally, our recent study has
shown that this particular Li potential is the best among five
alternative Li EAM potentials.36 In particular, this potential
was shown to give the best agreement with the zero pressure
melting point, and was successful in predicting saturated liq-
uid densities and liquid-phase radial distribution functions
without using liquid-phase data during the parameter fitting
procedure. The parameters of this potential were obtained
using a variety of solid properties such as elastic constants,
unrelaxed surface energies, unrelaxed vacancy energies, and
the binding energies of crystal structures as well as three
molecular structures (Li2, Li3, Li4).35 While the data for the
first two properties were taken from experiments, the rest of
the properties were taken from first-principles calculations.
We note that the first-principles calculations for the three
molecular structures utilized the PBE treatment of the
exchange-correlation term. Note that the same form of
exchange-correlation term is used in OFDFT-MD
simulations.

The potential energy of the system described by the 2NN
MEAM potential is given by

E2NNMEAM
pot 5

X
j

Fjð/jÞ1
1

2

X
j

X
k 6¼j

ujkðrjkÞ (3)

In the above expression, Fj is the embedding energy, a
function of the effective electron density /j at the site of
atom j. This term is a many-body term and can be thought
of as the energy it takes to embed atom j into a background
electron density /j caused by surrounding atoms. The
embedding energy is typically viewed as accounting for
metallic bonding. The second term, ujkðrjkÞ, is a pair poten-
tial, which accounts for effective electrostatic interactions
and rjk is the distance between atoms j and k. All the 2NN
MEAM calculations are done with the LAMMPS molecular
dynamics package12 (http://lammps.sandia.gov; September
30, 2013 version) using periodic boundary conditions.

Methods

Although the focus of this work is on liquid properties of
Li, we briefly address the performance of each method for
the prediction of selected properties of solid Li. Specifically,
we chose to examine the relative stability of four crystal
structures of Li. These are the body-centered cubic (bcc),
face-centered cubic (fcc), simple cubic (sc), and diamond
(dia) structures. Out of these crystal structures, only bcc and
fcc are known to appear on the phase diagram of Li.37 We

also studied the surface energies of bcc Li, the stable phase
under ambient conditions.

In all OFDFT and classical MD simulations of liquid Li, a
time step of 0.5 fs was used. Unless otherwise specified, a
1024-atom cell size was used. The mass of the natural abun-
dance of Li was used, corresponding to an assignment of
m 5 6.941 atomic mass units to all atoms.

Solid Li

Close to 0 K, it has been shown experimentally that Li
has a close-packed rhomobohedral 9R crystal structure.38

However, bcc is the most stable structure under ambient con-
ditions. During our comparison between the OFDFT and
2NN MEAM simulations, we do not consider the rhomobo-
hedral 9R crystal structure.

In the OFDFT simulations, the electron density optimiza-
tion problem of various crystal structures of Li at 0 K was
defined on a uniform three-dimensional grid in real space. A
steepest descent algorithm is used for cell optimizations; all
the cell vectors were allowed to vary independently during
the cell optimizations. At each cell optimization step, the ion
positions are fixed at their positions determined by their
space group symmetry, while a truncated Newton algo-
rithm32 was used to optimize electron density to find the
ground-state energy. For 2NN MEAM calculations, the ener-
gies and equilibrium volumes of various crystal structures of
Li at 0 K were found by performing an energy minimization
by varying atom coordinates and the box dimensions using a
steepest descent algorithm.

We examined the surface energies for different surfaces of
the Li bcc crystal, specifically the bcc (100), (110), and
(111) surfaces. The surface energy Es is defined here as30

Es5
Eslab2NE0

2A
(4)

where Eslab is the total energy of a periodic slab with a
relaxed geometry and in-plane lattice vectors fixed at those
optimized for bulk bcc Li, N is the number of atoms, E0 is
the energy per atom of bulk bcc Li, and A is the area of the
surface under consideration. The factor of 2 accounts for the
two surfaces of the slab. Equation 4 is used to calculate the
relaxed surface energies in both OFDFT and classical calcu-
lations. For OFDFT, the ion relaxation was performed using
the conjugate-gradient algorithm as implemented in PRO-
FESS32 while for classical simulations a steepest-descent
algorithm was used. Seven layers of Li were used to ensure
convergence of surface energies.

Liquid density

All liquid properties were calculated in the canonical (con-
stant NVT) ensemble. However, before this was done we
needed to ensure the densities in the simulations were chosen
such that they were at zero pressure. We did this by per-
forming preliminary simulations in the isothermal-isobaric
(constant NPT) ensemble.

In the OFDFT-MD simulations, liquid densities at zero
pressure and various temperatures were calculated using a
1024-atom cell. The Nos�e–Hoover thermostat39,40 and Pari-
nello–Rahman41 barostat were used. By monitoring the
potential energy, we found that an interval of 15 ps was suf-
ficient to reach equilibrium. We deemed a system to be in
equilibrium when we saw that the potential energy fluctuated
without drifting about a time-independent average value. The
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fluctuations in potential energy were no more than 0.06% of
the average value. This was followed by a 30-ps long pro-
duction run to collect statistics. The liquid densities were
then calculated by taking samples every 2.5 fs during the 30
ps production run.

Liquid densities at zero pressure for the classical simula-
tions were calculated using a 6750-atom cell using the
N�ose–Hoover thermostat39,40 and N�ose–Hoover barostat.42,43

It was found that an initial period of 1.5 ns was more than
enough to reach equilibrium. Fluctuations of the potential
energy during the production runs were no more than 0.4%
of the average value. This was followed by a 1-ns long pro-
duction period to collect statistics on the liquid density at a
given temperature. The liquid densities were then calculated
by taking samples every 20 fs during the production run.

We would like to briefly point out that we observe larger
fluctuations in potential energy with the 2NN MEAM model
as compared to OFDFT. The origin of this seems to be a dif-
ference in heat capacity between the two models, which can
be calculated from fluctuations in the total energy of the sys-
tem. However, in this work, we have not rigorously investi-
gated this. It may be interesting to study the difference
between the two models with respect to this property in the
future, as well as the comparison to experimental data.

Dynamic structure factor

The dynamic structure factor, Sðq;xÞ, contains informa-
tion on the collective dynamics of density fluctuations over
both length and time scales. Here, x is frequency and the
wave vector q is defined as the length of

q52p
n1

L1

;
n2

L2

;
n3

L3

� �
(5)

where L1, L2, and L3 are the lengths of the lattice vectors of
a given simulation cell, and n1, n2, and n3 are non-zero inte-
gers. For all simulations performed in this work, we have L1

5L25L3 because we utilized a cubic simulation box. The
lengths of lattice vectors depend on the liquid density. As
shown in the “Results” Section, the liquid density values cal-
culated from OFDFT and classical MD simulations are
nearly identical. Therefore, the same set of q vectors in both
simulations are used.

Experimentally, Sðq;xÞ can be measured by inelastic neu-
tron or inelastic x-ray scattering experiments.44 Thus, the
dynamic structure factor calculated from OFDFT and classi-
cal MD simulations can be directly compared to experimen-
tal results. Sðq;xÞ is defined as the Fourier transform with
respect to time of the intermediate scattering function I(q, t),
which is defined as

Iðq; tÞ5 1

N

* XN

j51

e2iq�rjðt1t0Þ

 ! XN

k51

e2iq�rkðt0Þ

 !+
(6)

where t is time, t0 is the starting time, rj and rk are the
atomic coordinates of atoms j and k respectively.

The system in OFDFT-MD simulations was equilibrated
for 30 ps, followed by a 50-ps production trajectory. For
classical MD simulations, the system was equilibrated for 1
ns, followed by a 1-ns production period. For OFDFT-MD
simulations, fluctuations in potential energy during the pro-
duction run were found to be no more than 0.06% of the
average potential energy, while for classical MD simulations
the fluctuations were no more than 0.6%. In both methods,

configurations after every 2.5 fs were used to calculate the
dynamic structure factor. For comparison purposes, we also
performed a 50-ps production period in classical MD simula-
tions and found that the resulting dynamic structure factors
are almost identical to the ones from the 1 ns production
period, indicating the dynamic structure factors at these
selected q vectors are converged within 50 ps. In the follow-
ing discussions, the calculated properties from classical MD
simulations are analyzed based on the 1 ns trajectory unless
otherwise specified.

Self-diffusivity

For both types of simulations, the calculated self-diffusion
coefficient Dcalc was obtained using the Einstein relation

Dcalc5
1

6
lim
t!1

d

dt
hDrðtÞ2i (7)

Here, hDrðtÞ2i is the mean squared displacement of atoms
at time t.

For OFDFT-MD simulations, three different cell sizes
with 250, 686, and 1024 atoms were used at temperatures
ranging from 470 to 620 K, in order to investigate the effect
of cell size on the calculated diffusion coefficient. For the
1024-atom cell, we used the trajectory described in the sec-
tion on calculation of the dynamic structure factor. For the
other two cells, we used the same procedure that was used
for 1024-atom cell; that is, first we equilibrate the system for
30 ps, followed by a 50-ps production run. In all simulations,
the fluctuations of the potential energy during the production
run were smaller than 0.2% of the average potential energy.

For the classical MD simulations, we examined five differ-
ent cell sizes at temperatures ranging from 470 to 1000 K
with 250, 686, 1024, 2662, and 6750 atoms. A 10 ns-long
production period was run after an initial equilibration period
for all simulations. For all systems a 1-ns long equilibration
period was more than enough time to reach equilibrium.
Fluctuations in potential energy during the production period
never exceeded 1.7% of the average value for all simula-
tions. Three to five independent runs were performed in
order to obtain sufficient statistics.

Viscosity and dispersion relation

We utilized two methods for calculating the viscosity of
liquid Li, namely, the transverse current autocorrelation
function method and a Green–Kubo relation. The dispersion
relation is computed from the longitudinal current autocorre-
lation function, as discussed below.

Transverse Current Autocorrelation Function. A current
function is defined as

jðq; tÞ5
XN

j51

vjðtÞeiq�rjðtÞ (8)

where vjðtÞ is the velocity of atom j and rjðtÞ is the position
of atom j at time t. jðq; tÞ can be divided into two parts

jðq; tÞ5jlðq; tÞ1jtðq; tÞ: (9)

Here, jlðq; tÞ is the longitudinal component of jðq; tÞ paral-
lel to wave vector q, and jtðq; tÞ is the transverse component
of jðq; tÞ perpendicular to wave vector q. The current auto-
correlation functions are defined in terms of their longitudi-
nal and transverse components
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Clðq; tÞ5
1

N
hjlðq; tÞjlðq; 0Þi (10)

Ctðq; tÞ5
1

N
hjtðq; tÞjtðq; 0Þi (11)

The Fourier transform of the time domain of Clðq; tÞ is
Clðq;xÞ, which satisfies the condition: Clðq;xÞ5x2Sðq;xÞ.
A well-defined side peak can be observed in Clðq;xÞ. The
dispersion relation can then be obtained by plotting the fre-
quency of the side peak from Clðq;xÞ as a function of q.
The dispersion relation can also be directly compared to
inelastic x-ray or neutron scattering experiments. In the small
q region where q is approaching the hydrodynamic limit, the
q-dependent adiabatic sound velocity can be calculated from
the dispersion relation and it becomes the bulk adiabatic
sound velocity at q 5 0.

For OFDFT-MD simulations, the viscosity was calculated
using the transverse current autocorrelation function.45 This
method has been used in prior studies.9,10 The formula to
derive the shear viscosity using this method is

Ctðq; tÞ5
kBT

m
exp 2

q2gðqÞt
mq

� �
(12)

where kB is the Boltzmann constant, T is temperature, m is
the mass corresponding to the natural abundance of Li in
atomic mass units, and q is the liquid number density. After
performing an integration over t for Ct(q,t), we obtain the
formula for the shear viscosity

gðqÞ5 kBTq
q2Ctðq;x50Þ (13)

The shear viscosity g was obtained by extrapolating gðqÞ
to the hydrodynamic limit (q! 0 Å21) using the formula
proposed by Palmer45

gðqÞ5g1aq2 (14)

where g is the viscosity in the hydrodynamic limit and a is a
fitting parameter. Because the systems we studied have inver-
sion symmetry upon q, this implies that gðqÞ must be an even
function of q. We used q vectors greater than 0.7 Å21 to fit Eq.
14 and obtained the final viscosity of liquid Li for different
temperatures. We also applied this method for classical MD
simulations to compare to the Green–Kubo relation described
in the next section. We used the same data and statistical analy-
sis methods as for the dynamic structure factor calculations.

Green–Kubo Relation. For the classical MD simulations,
shear viscosity was calculated using a Green–Kubo relation
which relates the shear viscosity to the integral of the stress
autocorrelation function46

g5
V

kBT

ð1
0

hPxyð0ÞPxyðtÞi dt (15)

Here, kB is the Boltzmann constant, T is temperature, V is
the volume, and PxyðtÞ are values of the off-diagonal compo-
nents of the stress tensor at time t. One can obtain improved
statistics in the calculation of viscosity by including all com-
ponents of the stress tensor.47 The relation is then adjusted
to the following equation48

g5
V

10kBT

ð1
0

X
ab

hPabð0ÞPabðtÞi
 !

dt (16)

where ab5xx; xy; xz; yx; yy; yz; zx; zy; and zz. In the above
equation, we have

Pab5ðpab1pbaÞ=22dabð
X

c

pccÞ=3 (17)

where dab is the Kronecker delta and

pab5
1

V

X
j

mjvjavjb1
X

j

X
k>j

ðrja2rkaÞfjkb

" #
(18)

Here, mj is the mass of atom j, and vja and vjb are the a and
b components of the velocity of atom j. rja and rka are the a
components of the position vectors of atom j and atom k and
fjkb is the b component of the force on atom j due to atom k.

Calculations of viscosity using the 2NN MEAM potential
used the same set of simulations as the diffusion coefficient
calculations.

Bond angle distribution function

The bond angle distribution function, g3;rc
ðhÞ, is a quantity

used to characterize the local structure of liquid systems. For
each atom j in a simulation cell at each temperature, rc is
the finite radius that includes the two nearest neighbors of
atom j. Note that the value of rc varies for each atom j due
to the different locations of its nearest neighbors. h is
defined as the angle between two vectors joining atom j and
its two nearest neighbors. We chose a bin width of h50:1

�
.

We used the same set of simulations as the dynamic struc-
ture factor calculations.

Results

Solid Li

Table 1 displays the energy differences between various
crystal structures of Li and the bcc crystal phase at 0 K. We
also list the equilibrium volumes for each of the crystal struc-
tures studied. In addition to the predictions made by OFDFT
and classical simulations, results from KSDFT11 and any avail-
able experimental data are also shown. Table 1 also contains
the surface energies of the bcc crystal calculated from Eq. 4.

In terms of the energy orderings of the crystal structures,
we can see that the OFDFT results reproduce the KSDFT
results very well. Both predict fcc and bcc to be nearly
degenerate and lower energy than any of the other crystal
structures studied. The classical treatment predicts the bcc
crystal to be the most stable at 0 K among the crystal struc-
tures studied. The energy differences between sc and bcc for
all three computational approaches agree well. For the
energy difference between dia and bcc, the agreement
between the three is reasonable. We also see good agreement
for the equilibrium volumes between all three computational
methods, aside from the hypothetical diamond structure. Its
four-coordinate motif is challenging to describe within the
2NN MEAM and OFDFT formalisms.

The most stable surface of the bcc crystal predicted by both
OFDFT and classical calculations is the (110) surface. This
contradicts the result from KSDFT, which predicts the (100)
surface to be the most stable. However, the energy difference
between Li bcc (110) and (100) is small (at most 51 mJ/m2)
for all three types of calculations, and it is known that the
most stable surfaces of bcc metals are in fact these two facets.

Liquid density

For both OFDFT and classical MD simulations, the calcu-
lated liquid densities for different temperatures at zero pres-
sure are shown in Table 2.

AIChE Journal September 2015 Vol. 61, No. 9 Published on behalf of the AIChE DOI 10.1002/aic 2845



The data in the first row of Table 2 were used for subse-
quent OFDFT-MD simulations while the values in the sec-
ond row were used for classical MD simulations in order to
simulate the bulk liquid at zero pressure in the NVT ensem-
ble. From these simulations, we were able to calculate a
variety of structural and dynamic properties of liquid Li.

In general, we can see liquid densities from the two simu-
lation methods agree well with experimental data. We note
that the experimental data shown in Table 2 were taken from
a linear fit to the raw data found in the references. The liquid
densities from OFDFT-MD are slightly lower than those cal-
culated from classical MD and experimental data.53,54 The
difference between the liquid densities predicted from
OFDFT-MD and the other datasets becomes larger at higher
temperatures. This may due to the fact that the WGC99
KEDF and bulk-derived local pseudopotentials begin to
exhibit errors as the liquid expands and becomes less “nearly
free-electron-like” at higher temperatures. We note that the
agreement between the predicted liquid densities from classi-
cal MD simulations using the Cui 2NN MEAM potential
and experimental data is consistent with the results of our
previous study of classical Li potentials.36

Dynamic structure factor

Figure 1 shows the normalized intermediate scattering
function I(q, t) from both OFDFT and classical MD simula-
tions for several q vectors. The values of q shown are 0.72,
1.24, and 3.53 Å21. For each q value, we show I(q, t) at two
different temperatures, namely, 470 and 620 K.

For a given type of simulation and at a given value of q,
we see similar behavior in all I(q, t) for both temperatures.
All I(q, t) decay quickly and vanish after approximately 1.0
ps. The peaks for the intermediate scattering functions at
620 K are smoother than those at 470 K, indicating that cor-
relations are weaker for liquid Li at higher temperatures. For
q 5 3.53 Å21, the OFDFT results agree very well with the
classical results for both amplitudes and peak positions.
However, there are some discrepancies between the OFDFT
and classical results at q values of 0.72 and 1.24 Å21, where
the classical results have a significantly larger amplitude
than the OFDFT results. We also found that the results
obtained from 50 ps and 1 ns trajectories using classical sim-
ulations are almost identical for all three q vectors. This
indicates that a 50-ps trajectory is long enough to get a suffi-
ciently converged intermediate scattering function.

The dynamic structure factors of liquid Li at 470 K are
shown in Figure 2. Results from OFDFT and classical MD
simulations are compared to experimental data.44

There are several important observations to note from
these results. First, in general, the OFDFT results provide
better agreement with experimental data than the classical
results. However, it can be seen that the classical results
agree better with experimental results at small values of x
with the exception of the dynamic structure factor at
q 5 1.24 Å21. The dynamic structure factor obtained from
classical simulations agrees well at q 5 3.53 Å21 with both
experiment and OFDFT simulations. We note that the
OFDFT-MD results yield good agreement with the location
and amplitude of the second peak when compared to experi-
ment for q 5 0.72 Å21 and q 5 1.24 Å21. At these q values,
the classical results underestimate the location of the peaks
by about 10 ps21 and also overestimate the magnitude of the
peaks in Sðq;xÞ by about 0:531023 ps.

Self-diffusivity

As mentioned in the “Methods” Section, several different
cell sizes were examined in order to investigate the size-
dependence of the calculated self-diffusion coefficient. The
calculated self-diffusion coefficients Dcalc for different cell
sizes (as a function of the inverse of the simulation box
length) from both OFDFT and classical MD simulations are
shown in Figure 3.

Table 1. Comparison of Solid Properties of Li

Property System KSDFT OFDFT Classical Exp.

DE (eV/atom) DEbcc! fcc 20.002 20.001 0.012 20.001149

DEbcc!sc 0.121 0.150 0.144
DEbcc!dia 0.394 0.427 0.527

V (Å
3
/atom) bcc 20.354 20.207 20.626 21.6350a

fcc 20.318 20.266 20.624
sc 20.509 21.948 19.904
dia 25.798 30.328 22.152

Es ðmJ=m2Þ bcc (100) 465 438 422
bcc (110) 492 412 371 522,51 52552b

bcc (111) 549 507 514

We display results from KSDFT, OFDFT, and classical simulations. DE is
the calculated energy difference between a specified crystal structure and bcc
structure of Li, V is the equilibrium volume, and Es is the surface energy.
All DFT results are from Ref. [11]. Available experimental data are also
included.
aExperimental volume at 294 K.
bThese values are not assigned to any particular surface.

Table 2. Temperature Dependence of the Density of Liquid

Li (in g/cm
3
)

Methods 470 K 520 K 570 K 620 K

First-Principles 0.5066 0.5001 0.4939 0.4876
Classical 0.5098 0.5051 0.5005 0.4960
Exp. (Novikov et al.53) 0.5157 0.5117 0.5054 0.5002
Exp. (Yakimovich et al.54) 0.5124 0.5077 0.5028 0.4981

We display results from OFDFT and classical MD simulations. Two sets of
experimental data are also included.

Figure 1. Intermediate scattering function I(q, t) for
liquid Li.

The left column shows results from 50 ps long OFDFT-

MD simulation trajectories at 470 K and 620 K at three

different q vectors. The right column shows results

from 1 ns long classical MD simulation trajectories at

470 and 620 K at three different q vectors.
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It is clear that Dcalc depends on the size of the cell for both
methods. To obtain a self-diffusion coefficient Dextr that does
not have an artificial size effect, a weighted linear regression
is performed on Dcalc as a function of inverse simulation box
length at each temperature. Each point is weighted by the
inverse of its variance. Dextr is obtained from an extrapolation
of Dcalc to infinite cell size (1

L! 0 Å21). After we
obtained Dextr, we went back to each Dcalc and applied a
correction which accounts for cell-size effects in simula-
tions with periodic boundary conditions given by Yeh and
Hummer.55 The corrected self-diffusion coefficient Dcorr is
written as

Dcorr5Dcalc1
kBTn
6pgL

(19)

Here, kB is the Boltzmann constant, T is temperature, n is
a constant equal to 2.837297, g is the viscosity, and L is the
length of the simulated cubic cell. For g, we use the values
calculated from simulations discussed in the next section. In
Figure 3, Dcorr are shown as filled symbols at each cell size.
It is clear that the corrected values agree well with Dextr,
therefore validating the correction scheme for both simula-
tion types.

Dextr from both OFDFT and classical MD simulations are
presented in Figure 4. Experimental data are also shown for
comparison.56 As illustrated in Figure 4, both simulation
results agree well with each other for temperatures up to
620 K. They also agree with the experimental results in this
temperature range. The classical simulations were performed
at temperatures up to 1000 K. The classical simulations con-
tinue to give excellent agreement with experimental data,
which extends to 830 K.

For the OFDFT-MD simulations using the 1024-atom cell,
we found that a numerical instability exists at systems with
temperatures higher than 620 K. This instability can occur
during an MD trajectory and prohibit the correct ground-
state energy and forces from being obtained. As stated ear-

lier, the WGC99 KEDF is based on Lindhard linear response
theory, which is exact for a uniform electron gas and very
accurate for light metals. However, when a simulation cell
has localized electrons (which can occur in systems contain-
ing covalent bonds, atoms in close proximity, or isolated
atoms), this KEDF is inappropriate and does not perform
well. Specifically, in spatial regions where the electron den-
sity is highly nonuniform and/or very low, as could be
expected at higher temperatures, the WGC KEDF can give
infinitely deep kinetic potentials in the self-consistent loop
used to converge the electron density. Here, we see that the
total energy from the self-consistent loop diverges. This
divergence may be due to the truncated (second-order) Tay-
lor expansion of the WGC response kernel used to achieve
the quasilinear scaling of the OFDFT computation.17 This
problem prohibited us from performing the OFDFT-MD sim-
ulations at higher temperatures. A similar issue was observed
when applying the same KEDF for a silicon diamond
structure.57

Viscosity and dispersion relation

The viscosity results calculated by the transverse current
autocorrelation function method and the Green–Kubo rela-
tion are presented below. Figure 5 shows the transverse cur-
rent autocorrelation functions Ct(q,t) from OFDFT and
classical simulations using four different values of q: 0.22,
0.72, 1.24, and 3.53 Å21.

Two lengths of trajectory are used: 50 ps and 1 ns. We
did not perform a 1-ns trajectory with OFDFT-MD simula-
tions because the calculation is too expensive. For the three
values of q, excluding q5 0.22 Å21, there is good agreement
between OFDFT and classical simulations. Also, as can be
seen from Figure 5, the transverse autocorrelation functions
from both the 50 ps (green line) and 1 ns (blue dashed line)
trajectories using classical methods are almost

Figure 2. Dynamic structure factor Sðq;xÞ of liquid Li
at 470 K.

We display experimental results44 and results from

OFDFT and classical MD simulations.

Figure 3. Self-diffusion coefficient of liquid Li at ambi-
ent pressure and at 470, 520, 570, and 620 K
from (a) OFDFT and (b) classical MD simula-
tions for different cell sizes.

The solid lines are lines of best fit from a weighted lin-

ear regression. The horizontal dashed lines correspond

to the self-diffusion coefficient in the hydrodynamic limit

Dextr. The open symbols are the calculated self-diffusion

coefficient Dcalc taken directly from simulations, while

filled symbols are the values of the self-diffusion coeffi-

cient Dcorr using the cell size correction proposed by

Yeh et al. (see Eq. 19).55 For both first-principles and

classical simulations, error bars represent the 95%

confidence interval calculated from independent

simulations.
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indistinguishable, indicating a 50-ps trajectory is long
enough to obtain a converged Ct(q,t) at these three q vectors.
However, for the smallest q value in Figure 5a, only the
Ct(q,t) from the 1 ns trajectory smoothly decays after 1 ps.
This indicates a 50-ps trajectory at q 5 0.22 Å21 is not long
enough to obtain a converged Ct(q,t). Furthermore, we con-
clude that Ct(q,t) is difficult to converge as the hydrody-
namic limit (q! 0 Å21) is approached.

The q dependence of the calculated viscosity is shown in
Figure 6.

Here, we use 50 ps trajectories for the OFDFT simulation
and 1 ns trajectories for the classical simulation. Both simu-
lation methods show the same dependence of the calculated
viscosity with respect to q. From Figure 6, we are able to
extract the value of viscosity in the hydrodynamic limit. At
low values of q, the data from the classical simulation is less
noisy when compared to the data from the other simulation.
This is because the viscosity at each q is calculated from
longer trajectories for the classical simulation. This is con-
sistent with the conclusions drawn from Figure 5.

We were also able to obtain the dispersion relation from
longitudinal current autocorrelation functions. The dispersion
relation for liquid Li at 470 and 620 K from both simulation
methods and experimental data44,58 are shown in Figure 7.

Both simulation methods are in very good qualitative
agreement. However, there are noticeable discrepancies
between the two sets of experimental data. The data from de
Jong et al.58 have large uncertainties, while the data from
Sinn et al.44 provide smaller uncertainties and encompass a
wider range of q. The OFDFT-MD simulation results agree
well with the experimental results from Sinn et al.44 The
classical simulation results give quantitatively comparable
results to OFDFT results except for q vectors ranging from
0.5 to 2.2 Å21, with the largest difference observed at
approximately q51.5 Å21. The experimental sound velocity
in bulk Li at 470 K (4550 m/s)59 is shown as a black solid
line in Figure 7. Both simulation results match the experi-
mental sound velocity as the hydrodynamic limit is
approached.

Next, we discuss the viscosity calculated from the Green–
Kubo relation. Figure 8 shows the stress autocorrelation
function of liquid Li at a few temperatures calculated from
classical simulations.

It is clear that the function decays within 1 ps. Results
from first-principles simulations are not shown because the

Figure 4. Self-diffusion coefficients Dextr from extrap-
olation method using OFDFT and classical
simulations compared to experimental
data.

Experimental data from Blagoveshchenskii et al.56 are

also shown. For the simulation data, the error bars

represent the 95% confidence interval taken from the

extrapolation to infinite system size (see Figure 3).

Figure 5. Transverse current autocorrelation functions Ct(q,t) for liquid Li at 470 K.

The red line is from a 50-ps OFDFT-MD simulation. The green line is from a 50-ps classical MD simulation and the blue dashed

line is from a 1-ns classical MD simulation. Plots (a), (b), (c), and (d) use a q of 0.22 Å21, 0.72 Å21, 0.124 Å21, and 3.53 Å21

respectively.
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Green–Kubo formalism was not applied for these simula-
tions. Although the decay time of the stress autocorrelation
functions for first-principles simulations was similar to the
classical simulations, a long trajectory is still needed to
obtain sufficient statistics. As mentioned in the “Methods”
Section, the classical simulations used a 10-ns production
period to collect statistics on the stress autocorrelation
function. This length of time cannot be easily reached in
first-principles simulations. Therefore, even though the stress
tensor can be calculated from the first-principles simulations,
we did not apply the Green–Kubo relation to these simulations.

The effect of cell size on the calculated viscosity using
the Green–Kubo relation for classical simulations is shown
in Figure 9.

We used the same set of cell sizes mentioned in the self-
diffusion coefficient section, that is, 250, 686, 1024, 2662,
and 6750-atom cells. Analogous calculations for first-
principles simulations using the transverse current autocorre-
lation function were not performed for two reasons. First,
due to the relatively short trajectories of the first-principles

simulations, the calculated viscosity has a larger uncertainty
when compared to those obtained from classical simulations.
Therefore, the size effect for viscosity cannot be accurately
studied with first-principles simulations. Second, it is much
more computationally demanding to simulate larger cells
using first-principles simulations than using classical simula-
tions. It is clear that the effect of cell size on the calculation
of viscosity is less pronounced when compared to the calcu-
lation of the diffusion coefficient. The data show that the
calculated viscosities become statistically indistinguishable
once a certain cell size is reached. From Figure 9, it seems
that the viscosity converges for cell sizes of 686 atoms and
larger. We can therefore come to the conclusion that the vis-
cosity has negligible size effects in the 6750-atom cell (the
largest cell we examined when calculating viscosity), from
which we choose to take the converged viscosity. The final
results for viscosity are plotted in Figure 10.

The simulation results are compared to available experi-
ment data.60–63 The OFDFT results (red circles) are taken
from the transverse current autocorrelation function method-
ology, while the classical results (blue squares) are taken
from the Green–Kubo relation. As mentioned earlier, we
compared the values of viscosity from classical simulations
calculated using the transverse current autocorrelation

Figure 6. Calculated q dependent viscosity gðqÞ for
liquid Li at 470, 520, 570, and 620 K.

Plot (a) shows results from OFDFT-MD simulations and

plot (b) shows results from classical MD simulations.

Figure 7. The calculated dispersion relation for liquid
Li at 470 and 620 K from OFDFT and classical
simulations.

The black line represents the bulk adiabatic sound

velocity (4550 m/s) at 470 K from experiment.59 Experi-

mental data from de Jong et al.58 and Sinn et al.44 are

also shown.

Figure 8. Stress autocorrelation function for liquid Li
from classical simulations at 470, 520, 570,
and 620 K.

Figure 9. Cell size dependence of the calculated vis-
cosity of liquid Li from classical simulations.

The error bars represent the 95% confidence interval

calculated from independent simulations.
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function method to the values using the Green–Kubo treat-
ment for several temperatures. We show the comparison in
Table 3. We find that the calculated viscosities show good
agreement between the two methods. This illustrates the
equivalence between the two methods.

As was the case for the self-diffusion coefficient, we
observe excellent agreement between the viscosity calculated
from both simulation methods. The agreement with experi-
mental data is reasonable, however, it is not as good as the
agreement of the predicted self-diffusivity with experiment.
The calculated viscosities are about 20% smaller than experi-
mental data from Andrade.63 Because the viscosity data
given by Andrade are systematically lower than those
obtained from the other studies shown, we point out that our
simulation predictions give worse agreement with the other
datasets plotted in Figure 10. It should be noted that there is
a significant spread in the experimental data. There can be
several reasons for this. For example, Ito et al.61 mention
that the disagreement may be due to a difference in theories
for extracting the viscosity from experiments, or because
corrosion at the walls of the experimental apparatus used in
certain studies may have influenced measurements. Both
simulation methods capture the temperature dependence of
the viscosity. This is made clear by examining the results
from classical simulations which extend to 1000 K.

Bond angle distribution function

In Figure 11, we compare the bond angle distribution
functions from both simulation methods at 470 and 620 K.

As stated earlier, as far as we know, there are no experi-
mental data to compare to the simulation results. Both meth-
ods yield similar bond angle distribution functions. From
Figure 11, we can see that both simulation methods display
two peaks at both temperatures. All bond angle distribution
functions rise at approximately h545

�
and smoothly go to

zero at h5180
�
. Both methods capture the correct trend that

at higher temperatures the peaks tend to become wider and
smoother. However, there are some differences between the
results obtained from the two methods. The two peak posi-
tions of the bond angle distribution functions from OFDFT
simulations are around h567

�
and h5114

�
while for classi-

cal simulations they are located around h572
�

and h5117
�
.

We also observe that bond angle distribution functions from
classical simulations are slightly higher than those from
OFDFT simulations between the two peaks. However, we
assert that the bond angle distribution functions for both sim-
ulations methods agree reasonably well.

Performance assessment

A performance assessment for both simulation methods
can provide useful information on the relative computational
cost of each method. Three different sizes were chosen: 128,
1024, and 11,664-atom cells. Table 4 compares the wall
time per MD step for both methods.

The OFDFT-MD simulations were carried out by PRO-
FESS 3.034 and classical MD simulations were carried out
by the LAMMPS package (http://lammps.sandia.gov).12 All
wall times were obtained by averaging 10,000 MD steps.
Both simulations were performed on nodes with two Intel

Figure 10. Calculated viscosity of liquid Li from OFDFT
and classical MD simulations.

Experimental data60–63 are also displayed. For the first-

principles simulations, error bars represent the 95%

confidence interval calculated by fitting gðqÞ for q > 0.7

in Figure 6 to Eq. 14 (polynomial fit) and extrapolating

to the hydrodynamic limit. For the classical simulations,

error bars represent the 95% confidence interval calcu-

lated from independent simulations.

Table 3. Viscosity (in mP) from the Transverse Current

Autocorrelation Function Method and Green–Kubo

Relations for Classical Simulations

Method 470 K 520 K 570 K 620 K

Transverse current
autocorrelation
function

4.89 6 0.09 4.52 6 0.08 3.83 6 0.05 3.45 6 0.06

Green–Kubo 5.00 6 0.14 4.37 6 0.06 3.76 6 0.13 3.43 6 0.04

Figure 11. Calculated bond angle distribution functions
g3;rc
ðhÞ of liquid Li from OFDFT and classical

MD simulations at 470 K (a) and 620 K (b).

Table 4. Wall Time (in s) for each MD Step Carried Out by

OFDFT and Classical Simulations

Method
Number of
Processors

128
Atoms

1024
Atoms

11,664
Atoms

First-Principles 1 3.6 32 N/A
8 0.70 6.8 130

16 0.48 4.1 71
Classical 1 0.0025 0.019 0.22

8 0.00073 0.0030 0.029
16 0.00061 0.0019 0.015

Three different sample sizes of liquid Li were used: 128, 1024, and 11,664
atom cells.

2850 DOI 10.1002/aic Published on behalf of the AIChE September 2015 Vol. 61, No. 9 AIChE Journal



Xeon E5–2670 @ 2.60 GHz, where each node has 16 GB
RAM.

Several points can be drawn from Table 4. First, both
methods scale almost linearly with system size, between 128
and 11,664 atoms. Second, we obtain excellent speedup in
both methods when increasing the number of processors to
16. Third, although the OFDFT simulations used in this
study are already several orders of magnitude faster than
simulations that utilize KSDFT, the classical simulations are
about three orders of magnitude faster than the OFDFT sim-
ulations. Therefore, it is not surprising that classical simula-
tions can easily reach MD trajectory time scales that are on
the order of tens of ns, while OFDFT-MD simulations are
only able to easily obtain results over time scales that are on
the order of tens of ps. It should be noted that for the largest
cell size (11,664 atoms), OFDFT simulations run into mem-
ory limitations on a single processor with 2 GB of memory.

Concluding Remarks

In this article, we presented a comprehensive study of Li
using both first-principles (OFDFT) and classical (2NN
MEAM force field) MD. We briefly examined solid Li struc-
tures and then focused on structural and dynamic properties
of liquid Li. For solid Li, we looked at the relative stability
and equilibrium volumes of various crystal structures at 0 K.
We also examined the surface energies of bcc Li. We com-
pared our results to KSDFT calculations and available exper-
imental data. The properties of liquid Li we studied include
the dynamic structure factor, the self-diffusion coefficient,
the dispersion relation, the viscosity, and the bond angle dis-
tribution function. For the first four of these, we compared
results from both simulation methods to the available experi-
mental data. This allowed us to comment on the accuracy of
each method. For the case of the bond angle distribution
function, we were only able to compare the two simulation
methods to each other because of the lack of experimental
data. Comparing first-principles and classical simulations
allowed us to examine the advantages and disadvantages of
each method.

For solid Li, we found that both methods generally give
good agreement with the KSDFT results in terms of the rela-
tive stability of crystals and equilibrium volumes. However,
both OFDFT and the 2NN MEAM potential predict the
(110) face of the bcc crystal to be the most stable. This con-
tradicts KSDFT calculations.

For the dynamic structure factor, when compared to the
experimental data,44 first-principles simulations are generally
more accurate than classical simulations. With respect to the
self-diffusion coefficient, we have shown that there is a
dependence on the system size for the calculated value for
both simulation methods. Both show a linear relationship
between the calculated self-diffusion coefficient and the
inverse of the simulation box length. By simulating several
system sizes and extrapolating to the hydrodynamic limit
(1
L! 0 Å21), we were able to obtain the self-diffusion coeffi-

cient without size effects. The values calculated from both
simulation methods agree well with each other and also match
experimental data within the temperature range 470–620 K.
The classical simulations are able to access higher tempera-
tures, and in fact we continued to see agreement with experi-
mental data as we increased the temperature. For the
dispersion relation, we found that the first-principles simula-
tion calculations gave excellent agreement with experimental

data. Classical simulations showed noticeable deviations with
respect to experiments, however, they were able to yield good
agreement in the hydrodynamic limit. Viscosity was calcu-
lated from the transverse current autocorrelation function for
OFDFT simulations and from a Green–Kubo relation for clas-
sical simulations. Both methods give good agreement with
one another, but they underestimate the values with respect to
experiment. However, they do seem to capture the qualitative
dependence of viscosity on temperature. We compared the
bond angle distribution function given by the two simulation
methods at two different temperatures. We found that there is
generally good agreement between both methods. Finally, we
performed benchmark calculations to emphasize the difference
in the cost of computing resources between both simulation
methods. We showed that the classical simulations are
approximately three orders of magnitude faster than OFDFT
simulations.

This study enables us to make recommendations concern-

ing which simulation method to use when studying selected

properties of liquid Li. Although both simulation methods

gave similar results for the self-diffusion coefficient and vis-

cosity, we recommend that the classical simulations be used

when these properties are important. We claim this for two

reasons. The first is that classical simulations are computa-

tionally less demanding than first-principles simulations,

which is clearly shown by the performance assessment.

Therefore, one is able to simulate larger systems over longer

time scales when this method is employed. Second, although

the WGC99 KEDF gives the most accurate description for

simple metals near their melting points, it suffers from diver-

gence problems at significantly higher temperatures. This

limits the temperature range for which that functional can be

used to study liquid Li. Classical simulations are not

restrained in this respect.
In spite of the above considerations, there are still proper-

ties in which first-principles simulations outperform classical

simulations. As stated earlier, this is shown to be the case

for the dynamic structure factor and the dispersion relation.

In studies where these properties are important, it would

therefore be advantageous to use the first-principles simula-

tions given that they yield better agreement with experimen-

tal data. For example, in addition to providing a convenient

comparison to experimental measurements, it has been sug-

gested that analysis of the dynamic structure factor for liquid

alkali metals may aid in identifying the presence of the

metal–nonmetal transition, which takes place near the liq-

uid–vapor critical point.64 The dispersion relation is useful

for obtaining the bulk adiabatic sound velocity, as we dem-

onstrated in this work. First-principles simulations also pro-

vide a good comparison with classical simulations for

properties where experimental data are not readily available.

This was the case for the bond angle distribution functions

of liquid Li.
This work emphasizes an important relationship between

quantum mechanical simulation methods, such as OFDFT
simulations, and classical simulations. While there are
advantages and disadvantages associated with each method,
they can be used together in order to obtain a better under-
standing of a wide range of materials and properties. As
stated earlier, 2NN MEAM force fields contain parameters
that need to be fitted using either experimental data or first-
principles calculations, as is the case for many classical force
fields. In the absence of experimental data, comparison with
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first-principles calculations is the most reliable way to fit
parameters of empirical force fields. Therefore, OFDFT cal-
culations (as well as other quantum mechanical approaches
such as KSDFT) should be used to fit 2NN MEAM (or other
classical) potentials for systems where experimental data are
scarce. Indeed, future work will focus on systems in which
this is the case. This includes systems such as hydrogen/deu-
terium–lithium mixtures and various lithium alloys.
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