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In particle systems with cohesive interactions, the pressure-density relationship of the mechanically
stable inherent structures sampled along a liquid isotherm (i.e., the equation of state of an energy
landscape) will display a minimum at the Sastry density ρS. The tensile limit at ρS is due to cavitation
that occurs upon energy minimization, and previous characterizations of this behavior suggested
that ρS is a spinodal-like limit that separates all homogeneous and fractured inherent structures.
Here, we revisit the phenomenology of Sastry behavior and find that it is subject to considerable
finite-size effects, and the development of the inherent structure equation of state with system size
is consistent with the finite-size rounding of an athermal phase transition. What appears to be a
continuous spinodal-like point at finite system sizes becomes discontinuous in the thermodynamic
limit, indicating behavior akin to a phase transition. We also study cavitation in glassy packings
subjected to athermal expansion. Many individual expansion trajectories averaged together produce
a smooth equation of state, which we find also exhibits features of finite-size rounding, and the
examples studied in this work give rise to a larger limiting tension than for the corresponding
landscape equation of state. Published by AIP Publishing. [http://dx.doi.org/10.1063/1.4959846]

I. INTRODUCTION

The macroscopic physics observed in an experiment
or molecular simulation is encoded in the microscopic
interactions among constituent species. In turn, such
interactions, often approximated in simulations as a pairwise
potential, must contain a minimal set of “ingredients” to give
rise to particular phenomena. Obtaining a comprehensive
understanding of the macroscopic consequences of such
interactions both enriches our scientific understanding of the
natural world and provides a basis for the rational design of
engineered systems with tailored interactions.

In the context of fluid phase behavior, one feature of
the intermolecular pair potential that has received much
attention is the attractive interaction among constituents.
While the physics of dense simple liquids is largely governed
by short-range repulsive interactions,1,2 thermodynamically
distinct vapor and liquid phases do not exist without attractive
interactions. In other words, a dense “liquid” with no attractive
interactions, when undergoing continuous decompression,
will form a “vapor” without cavitation. Even with attractive
interactions, the range of such interactions will dictate if the
vapor/liquid binodal exists in a stable region of the phase
diagram,3–5 a fact that has implications in the crystallization
of proteins.6 A number of works have considered how
the existence and range of attractive interactions affect the
structure and dynamics of thermal fluid systems.7–13

The present work explores features of the energy
landscape in several systems that have sufficient cohesive
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interactions to exhibit a vapor/liquid transition. Specifically,
we will consider the equation of state of their energy
landscape,14,15 that is to say the pressure-density relationship
of the inherent structures generated along a liquid isotherm.
The inherent structure formalism16,17 allows one to decouple
structural and thermal contributions to a system’s behavior.
In any configuration, a liquid will find itself within a given
basin of attraction that is uniquely associated with one of the
many local minima on its high-dimensional potential energy
hypersurface. Characterizing the mechanically stable packings
(i.e., inherent structures) that are produced through mapping a
given configuration to its local potential energy minimum has
provided physical insights into numerous topics in condensed
matter physics, most notably in the context of supercooled
liquids and the glass transition.18–22

The nature of the inherent structures produced from
systems with and without attractive interactions appears to
reflect the presence or absence of a distinct vapor/liquid phase
transition. Specifically, there exist qualitative differences
between the equations of state of their energy landscape. A
schematic illustrating the difference between the equations of
state of a system of particles interacting through a purely
repulsive, finite-ranged potential (e.g., Weeks-Chandler-
Andersen) and one with an attractive tail (e.g., Lennard-Jones)
is shown in Figure 1.

For systems composed of particles with purely repulsive
interactions that decay to zero at finite distance (e.g., Hookean,
Hertzian, and Weeks-Chandler-Andersen interactions), the
equation of state of the energy landscape is akin to curve
(i) in Fig. 1. A salient feature of this curve is that at low
enough density, the pressure reaches zero and remains so
upon any further decompression of the parent fluid. In this
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FIG. 1. Schematic representation of the equation of state of the energy
landscape of a system of particles interacting through a purely repulsive,
finite-ranged pair potential (i) and a potential with attractive interactions (ii).
Curve (i) will reach zero pressure and remain so at densities lower than
the jamming threshold φJ . Curve (ii) can extend to negative pressure due
to cohesive interactions and reaches a mechanical instability at the Sastry
density ρS where further decompression of the parent liquid results in lower
tension in the underlying inherent structures.

region, the inherent structures can reach their global potential
energy minimum, namely zero, as all particles can distance
themselves from each other beyond the range of interaction.
The region where the pressure crosses between positive and
zero in such systems is often called point J (density φJ),
and characterizing the behavior of inherent structures in the
neighborhood of φJ has received much attention in the context
of the jamming scenario.23–26 In addition, such studies often
employ sequential volume expansion and energy minimization
(athermal quasistatic expansion) as a method of probing the
behavior of packings as they approach this crossover.25,27 The
latter method is convenient as any expansion run will have
a well-defined point where the pressure becomes zero, while
quenching from an equilibrium fluid in the neighborhood
of φJ will yield a distribution of jammed and un-jammed
packings.25

For model systems with attractive interactions typical of
real molecular liquids, much of the intellectual framework
(that we will ultimately build upon here) has been
developed by Sastry and co-workers.28–30 However, the first
report of the phenomenology discussed here is credited to

LaViolette.31 For systems with attractive interactions such
as pure component29,31 and binary30,32 Lennard-Jones, ortho-
terphenyl,33 alkanes,34,35 molten zinc() bromide,36 and SPC/E
water,15 the inherent structures generated along a liquid
isotherm have an equation of state similar to curve (ii)
in Figure 1. At low enough density the inherent structure
equation of state extends to negative pressure, as the cohesive
interactions among particles allow the system to support
isotropic tension. The inherent structures continue to withstand
greater tension upon decompression of the parent liquid until
reaching a minimum at ρS, the Sastry density. Below ρS, the
inherent structures are unable to sustain further tension.

The physical process associated with the tensile limit
occurring at ρS is the yielding of the inherent structures,
in other words their mechanical failure. An example of an
inherent structure produced slightly below ρS in a binary
mixture is presented in the left-hand side of Fig. 2. The yielding
below ρS is associated with formation of compact voids
that emerge upon energy minimization. An instantaneous
interface37 rendering of the cavity is shown in Fig. 2 on the
right. This void appears similar to critical nuclei reported in
studies of homogeneous bubble nucleation (e.g., see Figure 4
of Ref. 38). Liquids subject to isothermal decompression will
sample fractured inherent structures at densities well above the
binodal if the temperature is sufficiently high. In other words,
cavitation in the thermal liquid and cavitation in its inherent
structures can be well-separated phenomena. It should be
noted, however, that we have found this cavitation of inherent
structures is preserved for fluids sampled along supercritical
isotherms.

Due to the shape of the inherent structure equation
of state resembling a mean field liquid isotherm as well
as the physical process representing a mechanical failure,
the Sastry point was interpreted as a singular spinodal-
like point for a liquid’s inherent structures. Above ρS all
inherent structures are homogeneous, and below ρS all are
broken. It was suggested that the Sastry point represented
the T = 0 limit of the liquid spinodal as well as the limit of
stability for the homogeneous glassy state.14,29,39 Mean-field
calculations supported the notion that the liquid spinodal and
the Kauzmann locus (collection of state points corresponding
to equal entropy between liquid and crystal) intersect at zero
temperature.14 Later work suggests that the liquid spinodal
and glass transition line do intersect at ρS, however, they do
so at finite temperature.30,33,40

FIG. 2. Energy minimization of a liquid configuration
below the Sastry density for an 80:20 binary mixture of
500 particles interacting via a (7,6) generalized Lennard-
Jones potential (see Sec. II for details on the potential).
The image on the left presents an example of an inherent
structure that has fractured upon minimization to create
an internal cavity (cyan=A particles; pink=B particles).
On the right is an instantaneous interface representation
of the void space produced in the same configuration.

 Reuse of AIP Publishing content is subject to the terms: https://publishing.aip.org/authors/rights-and-permissions. Downloaded to  IP:  128.112.65.67 On: Sun, 06 Nov

2016 19:24:11



211905-3 Altabet, Stillinger, and Debenedetti J. Chem. Phys. 145, 211905 (2016)

In this paper, we revisit the phenomenology of Sastry
behavior with interactions typical of simple molecular liquids.
In particular, we consider the behavior of two binary
mixtures whose interactions are part of the (n,6) generalized
Lennard-Jones potential (described in Sec. II). In Section III,
we consider a system with an inherent structure equation
of state similar to curve (ii) in Fig. 1 and show that in the
region below ρS, the liquid samples a mix of fractured (low
tension) and homogenous (high tension) inherent structures,
resulting in a bimodal distribution of inherent structure
properties. A portion of the equation of state below ρS
represents an average between distinct low and high tension
branches. Thus, the Sastry density in such a system appears
to signify the onset of fracture rather than being singular
in nature. Next, in Section IV, we show that the observed
bimodality and the inherent structure equation of state are
subject to considerable finite size effects. The behavior
of the inherent structure equation of state as system size
increases is similar to the finite-size rounding of the first
order vapor/liquid transition, suggesting that the Sastry
point represents an athermal phase transition. This section
also contains a characterization of the void space as well
as a discussion of the role of potential softening in the
context of Sastry behavior. Section V includes a discussion
of behavior in the thermodynamic (infinite system) limit,
where we suggest that in this limit, the inherent structure
pressure PIS becomes discontinuous at ρS as the parent liquid
jumps abruptly from sampling homogeneous (high tension)
to fractured (low tension) inherent structures. In Section VI,
we present results of athermal quasistatic expansion and
show that the physics is qualitatively (but not quantitatively)
similar to quenching from an equilibrium liquid. Qualitative
differences do arise at low density between quenches of
a supercritical fluid and athermal expansion. Section VII
contains concluding remarks as well as suggestions for further
study.

II. METHODS

A. Interaction potential

In this work we employ a recently introduced41

generalized (n,6) Lennard-Jones pair potential

φ (r) = 4ϵ

λ
(
σ

r

)n
− α

(
σ

r

)6

. (1)

The coefficients λ and α are defined as

λ =
3
2

(
2n/6

n − 6

)
, α =

n
2(n − 6) , (2)

and are designed such that, upon varying n, the location of the
minimum and the well depth are unchanged with respect to the
values for the standard (12,6) Lennard-Jones potential. One
feature of this (n,6) family is that it allows one to continuously
tune potential softness. In this study, we focus on the (12,6)
and (7,6) variants of the potential. The attractive well of
the softer (7,6) version is wider than the more typical (12,6)
version. Here, we employ a cut-off rc = 3.5 with force shifting
of the potential to ensure that both the potential and the force

between two particles are zero at the cut-off and beyond,

φfs (r) =



φ (r) − φ (rc) − (r − rc) φ′ (rc) r ≤ rc
0 r > rc



. (3)

B. Simulation details

In this work, we study a binary 80:20 mixture with the
frequently employed Kob-Andersen42 parameters: ϵAA = 1.0,
σAA = 1.0; ϵAB = 1.5, σAB = 0.8; ϵBB = 0.5, σBB = 0.88. This
model is closely related to the one employed in earlier studies
of amorphous Ni80P20.43,44 All masses are the same, and we
report results in the traditional reduced units in terms of the
AA interaction parameters.

Molecular dynamics is performed in a cubic simulation
box with periodic boundary conditions in the NVT ensemble.
Time integration is performed via the velocity Verlet algorithm
with a molecular dynamics time step of 0.002 in the
LAMMPS45 software package. Simulations performed at fixed
temperature employ a Nosé-Hoover thermostat.46 Inherent
structures are generated through energy minimization at
fixed density using the Polak and Ribiere47 method of
conjugate gradients. Minimization was considered complete
if the relative change in energy per iteration was less than
10−8. All images of simulation configurations are rendered
in VMD.48

III. THE SASTRY DENSITY AS AN ONSET POINT

Earlier presentations of the equation of state of an energy
landscape14 divided the equation of state into three density
intervals: (I) densities where pressure is positive, (II) densities
characterized by negative pressure and positive slope, and
(III) densities below the minimum where the slope is negative.
The minimum that separates regions II and III is called the
Sastry point, which is defined by its density ρS and the
corresponding pressure PS. In this section, we will provide an
example of a system that has an inherent structure equation
of state akin to previous observations. However, additional
analysis shows that the Sastry point in this system represents
the onset of fracture rather than an abrupt transition from
homogeneous to broken.

In Figure 3, we present the equation of state of the energy
landscape for the (7,6) version of the potential for a system size
of 500 particles sampled along the T = 1.0 liquid isotherm.
In agreement with previous observations,30 this equation of
state is fairly insensitive to the liquid’s temperature as long
as cavitation in the liquid is avoided. In Fig. 3, vertical
solid lines define the three regimes of this equation of state
discussed above. As density is reduced from ρ = 1.50, the
average inherent structure pressure is positive and decreases
monotonically, reaching zero at roughly ρ = 1.41. Densities
below 1.41 result in inherent structures under isotropic tension,
a feature that is only possible due to the attractive interactions
in the pair potential. Reducing density further results in
greater tension until a minimum occurs at ρS = 1.188 and
PS = −6.338, the Sastry point for this system. Below the
Sastry density, reduction in density results in a reduction of
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FIG. 3. Equation of state of the energy landscape for the (7,6) potential
(N = 500). In region I, inherent structures are under compression (PIS > 0);
in region II, they are under isotropic tension and spatially homogeneous;
in region IIIa, the parent liquid samples both homogeneous and fractured
inherent structures; in region IIIb, all inherent structures are fractured. See
text for further details.

tension. The features discussed so far have been reported
in previous characterizations of this phenomenology.14,15,29,35

The new feature, discussed below, is the subdivision of the
third region below the Sastry density, denoted by a vertical
dashed line.

The equation of state below ρS is now subdivided into
two regions: the cross-over region IIIa and the fractured region
IIIb. Previous descriptions14 attached a singular significance
to ρS, describing it as the density where the inherent structures

can no longer both sustain isotropic tension and satisfy spatial
homogeneity. Accordingly, all inherent structures produced
below ρS were presumed to be fractured. However, this is
not the case in this system. Rather, our observations are more
consistent with ρS indicating the onset of fracture. We first
describe this scenario qualitatively.

Reducing the density to just below ρS results in only
a small fraction of the inherent structures fracturing. The
majority remain homogenous and experience a larger isotropic
tension than the inherent structures generated at larger density.
The minimum in the equation of state at ρS is the result of
a relatively small number of fractured inherent structures
at much lower tension raising the average pressure. As
the density is reduced further below ρS, the fraction of
fractured structures increases, and the resulting equation of
state exhibits lower tension. The range of densities where both
fractured and homogenous inherent structures are sampled
delineates the cross-over region. Once the density is reduced
to roughly 1.13, only fractured structures are observed. Such
a description arises by examining the distributions of inherent
structure pressures and potential energies, as we explain
below.

If all the inherent structures below ρS are fractured, one
would expect the distribution of pressures to be unimodal
and centered about its mean value, provided by the equation
of state. Turning to the distributions presented in Fig. 4,
we indeed see a unimodal distribution of inherent structure
energies and pressures at ρS. However, as the density is
reduced to just below ρS, a tail begins to develop on the
low-tension side of the distribution. A modest decrease in
density results in the distribution becoming bimodal due

FIG. 4. Development of the distributions of the inherent structure pressure and potential energy per particle at and below ρS for the (7,6) potential (N = 500).
Below ρS the distributions become bimodal due to a collection of homogeneous and fractured inherent structures being sampled by the parent liquid. At low
enough density, the distributions become unimodal, and all inherent structures are fractured. The insets, demonstrating how the low-tension tail of inherent
structure pressure distribution develops below ρS, range from PIS=−6.16 to −3.04.
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to a second peak emerging from the low-tension tail. Note
that the high tension peak moves to even higher tensions as
density is reduced. Inspection of the inherent structures reveals
that configurations corresponding to the high tension portion
are homogenous while those in the low tension portion are
fractured. Further reduction in density results in the area under
the high tension portion diminishing as the area under the low
tension region grows. Thus, as the density is reduced further
below ρS, a greater fraction of the inherent structures exhibit
fracture. Once the density is reduced sufficiently below ρS,
only a low tension peak remains, and all the inherent structures
are broken.

We now turn to discussing the corresponding development
of the distribution of inherent structure potential energy per
particle, eIS (right column of Fig. 4). The first observation
of interest is that at fixed density within the cross-over
region, broken inherent structures have lower (more negative)
potential energies than homogeneous inherent structures.
Similar to the behavior of the pressure distributions, slightly
below ρS a tail develops on the low-energy side of the
distribution, and this tail soon evolves into a second peak.
This second peak augments as the original peak diminishes.
Note that the behavior of the lower energy peak follows the
evolution of the low tension peak.

Within the crossover region, the liquid samples two
qualitatively different sets of basins of attraction: (1) basins
with minima that correspond to homogeneous configurations
and (2) basins that have minima with fractured (yet still
mechanically stable) inherent structures. In either of these
basins, the liquid itself is largely homogeneous, yet in the
fractured basin, the path to the local energy minimum is
accompanied by barrierless cavitation. Such fracture results
in an inherent structure comprised of void-space and a
dense particle region, the latter of which enables these
packings to have much lower energy than their homogeneous
counterparts.

Turning to the average inherent structure energy per
particle as a function of density (Fig. 5), we see that the split
behavior of the distributions of energy results in a loop. A local

FIG. 5. Average inherent structure energy per particle for the (7,6) potential
(N = 500). The curve is divided into distinct homogenous and fractured
branches.

maximum occurs at roughly ρ = 1.186, a value essentially the
same as the Sastry density. We proceed by observing that
at sufficiently low density, ⟨eIS⟩ is linear in density, and at
sufficiently high density, it is quadratic. In other words, the
curve can be parsed into two distinct branches: a homogeneous
branch and a fractured branch. Fitting the data to these two
functional forms and allowing for modest extrapolation yields
a crossing point at about ρ = 1.21, a value greater than ρs.
Above this intersection, the homogeneous branch has lower
potential energy, and below, the fractured branch has lower
potential energy. The cross-over region is a window where the
liquid can “hop” between either branch, readily sampling both
fractured and homogeneous basins of attraction. Such hopping
results in a bimodal distribution of energy and pressure.
As the density is reduced, the separation between branches
increases, and the liquid samples basins corresponding to the
lower energy fractured branch with increasing proportion.
At low enough density, the liquid exclusively samples
the fractured branch and the distribution returns to being
unimodal.

IV. SYSTEM SIZE EFFECTS

Here we show that the spinodal-like Sastry point and the
accompanying bimodality of the pressure and potential energy
arise as a result of the system’s finite size. The evolution of
the equation of state of the energy landscape with system size
resembles previous observations of finite-sized rounding of
the vapor/liquid transition in simulations. Such a development
suggests that the behavior considered here may be a finite-size
manifestation of an underlying athermal first-order phase
transition.

A. Behavior of average properties

The presence of finite-size effects is illustrated through
both the (7,6) and a (12,6) version of the generalized (n,6)
Lennard-Jones potential. Inherent structures along the T = 1.0
isotherm were generated for system sizes ranging from 500
to 20 000 particles for the (7,6) version and 500 to 60 000
particles for the (12,6) version. For runs with 500 particles,
25 000 independent configurations at each density were used
to generate inherent structures. For system sizes ranging from
N = 1000 to 4000, 10 000 configurations were used; N = 8000
used 5000 configurations; N = 20 000 used 1500; N = 60 000
used 600 configurations.

From Figure 6, it is immediately clear that Sastry behavior
is subject to finite size effects. We begin by considering
the equation of states for the two versions of the potential
considered here (first row in Fig. 6). At higher density, the
curves exhibit very modest system size dependence. However,
as one reduces density, these curves “peel-off” at different
densities, with larger system sizes peeling off at higher density,
resulting in a minimum that is now system-size dependent. In
other words, the location of the Sastry point (both its density
and the corresponding tension) is a function of system size.
In addition, the region of the equation of state just below ρS
becomes much steeper with increasing system size, suggesting
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FIG. 6. System size effects for the (7,6) and (12,6) potentials in both the inherent structure equation of state and the average potential energy per particle.

a more abrupt transition from exclusively homogenous to
exclusively fractured inherent structures. Within the range of
densities shown here for the (12,6) variant, only the system
sizes of 20 000 and 60 000 appear to converge to a large
system-limit at lower density. For the (7,6) variant, system
sizes of 8000 and 20 000 appear close to converging to the
large-system limit at low density.

The finite-size effects observed here bear resemblance to
the behavior of the equation of state of molecular liquids in
NVT simulations. As the density of the liquid is reduced
(below the range of densities considered here), it will
ultimately undergo cavitation, and the equation of state will
display a minimum. Such a minimum is often interpreted as
a spinodal. However, it is in fact a consequence of finite-size
rounding of the first-order vapor/liquid transition.49 Likewise,
this liquid “spinodal” point shifts to higher density with
increasing system size,50 and bimodality in the potential
energy is observed in the neighborhood of the minimum.51 We
stress that the T = 1.0 equilibrated liquid isotherm remains
unchanged with system size for the range of densities
considered here. It thus appears that the Sastry point is subject
to similar finite-size rounding.

The average potential energy per particle (second row
Fig. 6) also exhibits finite-size effects. Similar to the equation
of state, at high enough density, there is little change with

system size. Likewise, the position of the local maximum
shifts to higher density with increasing system size, as the
liquid begins to predominantly sample the fractured branch.
In addition, the density difference between the local extrema
diminishes, demonstrating the occurrence of a more abrupt
transition. In addition, the separation in inherent structure
energy between the two extrema widens with system size. It
appears that while the function describing the homogeneous
branch is nearly system size independent, it is largely the
fractured branch that exhibits strong system size effects. Not
only does the fractured branch shift to lower energy as system
size increases, it also changes shape. As system size increases,
what could pass for linear energy vs. density behavior at
modest system sizes acquires progressively more pronounced
negative curvature.

B. Behavior of distributions crossing the Sastry point

As discussed in Section III, examining the distributions
of inherent structure pressures and energies resulted in the
insight that the Sastry density is where the liquid begins to
sample fractured basins of attraction. The behavior of the
average quantities (pressure and energy) within the crossover
region reflects the proportion of either the homogenous or the
fractured branches that the liquid samples. Here, we discuss

 Reuse of AIP Publishing content is subject to the terms: https://publishing.aip.org/authors/rights-and-permissions. Downloaded to  IP:  128.112.65.67 On: Sun, 06 Nov

2016 19:24:11



211905-7 Altabet, Stillinger, and Debenedetti J. Chem. Phys. 145, 211905 (2016)

how these distributions evolve with system size to yield the
average behavior discussed above.

In Figures 7 and 8, for system sizes ranging from 500 to
20 000, we provide the distributions of pressure and energy
for a range of densities crossing the Sastry density for the
(7,6) and (12,6) versions of the potential. Since the Sastry
density changes with system size, a different density range is
presented for each system size. As expected, all peaks become
sharper with increasing system size. Both the (7,6) and (12,6)
variations begin to exhibit bimodality at higher density as
the system size increases, consistent with the observation

that ρS increases with system size. For both pressure and
energy, the separation of the two peaks is more dramatic with
increasing system size. Widening of the separation between
the peaks is consistent with a more sudden increase in pressure
below ρS as well as the widening in the energy difference
between the local extrema in Fig. 6. In addition, the density
range over which bimodality is observed shrinks with system
size, consistent with the more abrupt transition observed
in the average properties as the system size increases. The
behavior of the distributions also suggests that the width of the
crossover region diminishes with system size, a reflection of

FIG. 7. Development of the distributions of the inherent structure pressure and potential energy per particle crossing ρS as a function of system size for the
(7,6) potential.
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FIG. 8. Development of the distributions of the inherent structure pressure and potential energy per particle crossing ρS as a function of system size for the
(12,6) potential.

the liquid transitioning more abruptly to exclusively mapping
onto fractured inherent structures.

C. Void surface characterization

Instantaneous interface representations37 of the void space
provide a set of points that delineate the boundary between
the void space and compact particle regions. If a particle was
within a distance of 1 from any point on that boundary, it was
counted as a surface atom. Figure 9 shows how the average
number of surface atoms develops with density and system size
in both the systems that we have considered. At sufficiently

high density, the number of surface atoms is zero, as no fracture
occurs at those points. At ρS for a given potential and system
size, the curve departs from zero and increases monotonically
with decreasing density. In the neighborhood below ρS, we
observe a mixture of configurations with voids and with
exactly zero surface atoms, again showing that bimodality
in the pressure and potential energy is due to presence of
both homogeneous and fractured inherent structures. In the
averages presented here, the kink in the curves, most notable
for the largest system size, marks the end of the cross-over
region, and below that point, only fractured inherent structures
are observed.
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FIG. 9. Average number of surface atoms ⟨Nsurf⟩, the number of particles at the interface between the void space and compact particle region, of inherent
structures for the (7,6) and (12,6) potentials.

While the overall A:B composition is 80:20, we have
found that the fraction of A particles at the surface is largely
greater than 90%. Such an enrichment of A at the surface is
preferable energetically, as placing a B at the surface sacrifices
attractive AB pair interactions, the strongest in this mixture.
It appears that concentration fluctuations in the liquid which
result in regions that are enriched in component A create
“weak spots”29 that facilitate cavitation upon minimization.
We expect that such “weak spots” should also serve as
preferential sites for cavitation in the same binary system
at finite temperatures.

D. Potential softening

Studying both the traditional (12,6) and the softer (7,6)
version of the (n,6) potential allows us to comment on the
effect of potential softening in the context of the Sastry
phenomenology. The softer version of the potential exhibits
bimodality at much smaller system size (see top rows of
Fig. 7 vs. Fig. 8). For systems of 500 particles, the (7,6)
variant shows bimodality, while the pressure and energy
distributions of the (12,6) variant lack two distinct peaks.
Rather, the distributions become smeared and asymmetric
as density is reduced, owing to overlap in the distributions
at small enough system size. The original studies of the
Sastry phenomenon used the more common (12,6) variant
(both single component and Kob-Andersen mixture) with
256 particles,29,30 a system size below the threshold for
observing bimodality in the (12,6) version. Thus, bimodality
in the inherent structure properties, which only emerges either
with potential softening or with larger system size, went
unnoticed.

V. BEHAVIOR IN THE THERMODYNAMIC LIMIT

Given the strong finite-size effects discussed above, we
now consider how Sastry behavior is likely to manifest itself
for typical molecular liquids in the thermodynamic (infinite
system size) limit. The first clue we turn to is the observation

that the cross-over region shrinks as system size increases. In
the distributions of pressure and energy, this trend presents
itself in the narrower density window over which bimodality
is observed. In the inherent structure equation of state, a
narrower cross-over region results in the curve just below
ρS becoming increasingly steep. For the average potential
energy per particle, the density difference between the two
local extrema shrinks with system size. If these trends were
to persist, the limiting behavior at infinite system size would
result in discontinuities in both the equation of state and
potential energy. In such a scenario, the width of the density
range constituting the cross-over region would be exactly
zero.

Such behavior would be due to a sharp transition in the
liquid. Above ρS, the liquid exclusively resides in basins with
minima that correspond to homogeneous inherent structures.
Below ρS, the liquid samples basins with minima that are
fractured. To some extent the original interpretation of the
Sastry point is preserved in such a scenario. The minimum in
the inherent structure pressure equation of state is a sharp
transition separating homogeneous and fractured inherent
structures.

To estimate ρS in the thermodynamic limit, we first
calculate the fraction of homogeneous inherent structures
fhomo, using the fact that such packings will have zero surface
atoms (see Sec. IV C). The fhomo versus density curve has an
S-shape, and is well described by

fhomo(ρ) = 1
1 + exp

�
−k

�
ρ − ρ1/2

�� , (4)

where k is a constant describing the steepness of the transition
and ρ1/2 is the density where sampling homogeneous
and fractured inherent structures are equally probable (i.e.,
fhomo

�
ρ1/2

�
= 1/2). Fitting the available data to Eq. (4) yields

an estimate of ρ1/2, which we consider as the nominal location
of the transition in a finite system. For both versions of the
potential, ρ1/2 size dependence follows roughly a 1/N1/3

scaling law. We emphasize that such scaling is an empirical
finding not associated with any theory. Approaching the
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FIG. 10. Finite-size scaling of ρ1/2, the density where homogeneous and
fractured inherent structures are sampled in equal proportions by the parent
liquid, for the (7,6) and (12,6) potentials. In the thermodynamic limit, ρ1/2
and ρS will converge to a single value.

thermodynamic limit, ρ1/2 and ρS will converge to a single
value. Figure 10 displays this scaling, and suggests that in the
thermodynamic limit ρS for the (7,6) potential is 1.229 and
for the (12,6) potential is 1.131.

The inherent structure formalism decomposes the
partition function into contributions from the distinct inherent
structures and the deviations from those minima that arise
from thermal motion.16 Such a decomposition allows the
free energy and in turn all thermodynamic properties to be
expressed as the sum of an inherent structure contribution and
a thermal contribution,14 often referred to as a “vibrational”
contribution. In the context of the liquid’s equation of state,
one may express the pressure as

P = PIS + Pvib, (5)

where Pvib is the contribution that arises from thermal motion.
We have suggested that PIS exhibits a discontinuity at the
Sastry point in the thermodynamic limit. However, P itself
is continuous at ρS. Thus it must be that at the Sastry
point, Pvib exhibits a discontinuous negative jump to precisely
compensate for the discontinuous positive jump in PIS. A
schematic of the liquid equation of state along with its inherent
structure and vibrational decomposition in the neighborhood
of ρS is presented in Fig. 11.

We now turn to discussing the implications of these
observations for a typical equilibrium phase diagram. In
agreement with previous observations,29,30 we see negligible
effects of temperature on the location of ρS. The only
exception that we have found is by sampling the T = ∞
fluid distribution, created by generating random configurations
of particles at a given density, which upon minimization,
exhibits a Sastry point at slightly higher density. This suggests
that somewhere between typical fluid temperatures and
infinite temperature, there is a modest increase in the Sastry
density.

The modest temperature dependence of ρS suggests that
there is a nearly vertical line in the temperature-density plane
that separates the state points that map to homogeneous

FIG. 11. A schematic liquid equation of state crossing the Sastry density
along with its corresponding inherent structure and thermal contributions. If
the inherent structure equation state is discontinuous at the Sastry density,
continuity of the liquid’s pressure requires that the thermal (“vibrational”)
contribution to the pressure undergo a compensating discontinuity.

inherent structures and those that map to fractured inherent
structures. In Fig. 12, we present a schematic of the
temperature-density phase diagram for a typical, single
component material where such a line has been included.
Previous work suggests that the Sastry density is close to the
zero temperature extension of the liquid spinodal,30 placing
the line well above the critical density. Its position with respect
to the triple point density remains to be clarified. The portion
penetrating the binodal, denoted by a dashed extension, is only
applicable to metastable liquids that have resisted cavitation.
In sum, Sastry behavior separates the phase diagram into
two non-overlapping regimes: one that samples homogeneous
basins of attraction and another that samples fractured
basins.

Though our observations here are supported by a binary
mixture (designed specifically to inhibit crystallization), we

FIG. 12. The weak temperature dependence of the Sastry density suggests
that a nearly vertical Sastry locus separates the phase diagram into two
non-overlapping regions. Densities above ρS produce homogeneous inherent
structures and densities below ρS result in fractured inherent structures. The
precise location of this line with respect to the triple point requires future
clarification.

 Reuse of AIP Publishing content is subject to the terms: https://publishing.aip.org/authors/rights-and-permissions. Downloaded to  IP:  128.112.65.67 On: Sun, 06 Nov

2016 19:24:11



211905-11 Altabet, Stillinger, and Debenedetti J. Chem. Phys. 145, 211905 (2016)

have performed calculations with single component (7,6) and
(12,6) generalized Lennard-Jones systems up to N = 4000, and
we observe similar trends to those reported above. The strong
attractions between components in the mixture considered in
this work inhibit demixing. However, for mixtures more prone
to component separation, the density of spontaneous demixing
along an isotherm may preempt single-phase Sastry behavior.
It may be that the two phase-separated portions of the liquid
would have distinct Sastry points.

VI. ATHERMAL QUASISTATIC EXPANSION

We now turn to considering similar physics of cavitation
in inherent structures through a different procedure: athermal
quasistatic expansion. In the procedure we adopt here, the
initial inherent structure configurations are generated through
energy minimization of configurations from a T = 1.0 liquid at
a given density above ρS. Following the initial minimization,
the density of the inherent structure system is reduced by
scaling the particle sizes (i.e., σi j where i, j = AA,BB,AB)
down by 0.01%, followed again by energy minimization.
Sequentially reducing density and minimizing constitute
athermal quasistatic expansion. Similar protocols have been
applied in numerous studies of plasticity in amorphous solids
dating back to the early 1980s.52–54 The procedure considered
here is identical to that employed in a number of studies on
the jamming scenario in granular media.25,26,55

Such a procedure corresponds physically to limiting
regimes of two governing relaxation time scales, thermal
relaxation τT , and mechanical relaxation τM, with respect to
the expansion rate ρ̇.54,56 Temperatures must be sufficiently
low that ρ̇/ρ ≫ 1/τT , meaning thermal relaxation is entirely
absent. On the other hand, the expansion rate must be low
enough such that ρ̇/ρ ≪ 1/τM, so that mechanical relaxation
can proceed fully in response to a given density perturbation.

Athermal expansion represents a fundamentally different
way of exploring a system’s density-dependent energy
landscape than minimizing liquid configurations at different
densities. Results presented above characterized the basins of
attraction most readily sampled by an equilibrium liquid. The
series of density perturbations and minimizations presented in
this section explores how a particular minimum evolves with
density. We limit this section to discussing results for the (7,6)
version of the potential, though similar results are obtained
for the (12,6) version.

The presentation of the results in this section is similar
to that above in the sense that we will mostly consider
“ensemble” averages. “Ensemble” here is used rather loosely,
as the averaging is over many expansions that start from the
same density ρ0. Specifically, the average inherent structure
property MIS at a given density ρ is calculated through an
average over many expansion runs,

⟨MIS (ρ)⟩ = 1
Nr

Nr
i=1

Mi(ρ), (6)

where Nr is the number of runs starting from the same density
ρ0. ⟨PIS (ρ0)⟩ will accordingly coincide with a point on the
traditional inherent structure equation of state.

FIG. 13. The inherent structure pressure for 20 individual athermal qua-
sistatic expansions and the average of 5800 runs for a system of 1000 particles
interacting via the (7,6) potential.

An example of such averaging over 5800 expansion
runs is presented in Fig. 13 along with 20 representative
runs, all originating at ρ0 = 1.30 for a system size of 1000
particles. The general trend is that all trajectories experience
progressively greater isotropic tension upon expansion until
reaching a density where roughly 50% of the tension is
suddenly relieved as the system undergoes catastrophic
failure due to cavitation. This sudden release of tension is
accompanied by a dramatic decrease in potential energy.
Following failure, further expansion is followed by a saw-
tooth pattern in both the pressure and potential energy.
The linear portions of this pattern correspond to an elastic
response, and the jumps correspond to plastic events, similar
to what has previously been observed in athermal shear
flow.56,57

Numerous individual trajectories are averaged together
to produce a smooth equation of state. This curve exhibits a
minimum at a density which we will call ρA (for “athermal”)
in order to distinguish results of the two procedures. Similar to
the results presented in Section II, the minimum at ρA is due to
a small fraction of trajectories fracturing and again signals the
onset of fracture. Most trajectories exhibit fracture between
ρA = 1.11 and 1.17, a range that delineates the equivalent of
the cross-over region within this procedure. At low density, the
equation of state (unlike the individual trajectories) is smooth,
suggesting that while individual trajectories will experience
a series of elastic expansions separated by plastic events,
they still oscillate about a characteristic density-dependent
stress.

The existence of a cross-over region here again appears
to be a symptom of finite system sizes. In Fig. 14 we present
equation of state and trajectory averaged inherent structure
energies as a function of system size. All initial inherent
structures are generated from a T = 1.0 liquid at ρ = 1.30. As
before, the curves are system-size independent at sufficiently
high density. The equation of state exhibits a minimum at
larger density with increasing system size. Likewise, ⟨eIS⟩
exhibits a local maximum at larger densities for larger system
sizes, and the low-density branches move to lower potential
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FIG. 14. System size effects in athermal quasistatic expansion for systems interacting via the (7,6) potential.

energy. Here too the cross-over region shrinks with system
size, seemingly approaching a sharp discontinuity in the
thermodynamic limit.

With these similarities noted, several interesting distinc-
tions arise between the results of athermal expansion and
the traditional equation of state of an energy landscape
(Fig. 6). For the same system size, ρS > ρA and |PS | < |PA|,
meaning the limits of expansion are extended (lower density,

higher isotropic tension) through athermal expansion. In fact
for the whole procedure this equation of state is always
below that of the traditional method. Surprisingly, until one
is close to fracture, there is little difference between ⟨eIS⟩
for the two procedures. At sufficiently low density, where all
configurations are fractured, the athermal expansion procedure
results in both lower energy and higher tension with respect
to the traditional method. Recall that the potential energy

FIG. 15. Effect of the initial density of athermal quasistatic expansion on the average inherent structure properties for two system sizes interacting via the (7,6)
potential.
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FIG. 16. Two configurations that correspond to minima
on the same potential energy landscape [(7,6) potential;
N = 20 000; ρ = 0.20]. The configuration on the left is
produced through athermal quasistatic expansion from
ρ0= 1.30; the one on the right is an inherent structure
of a supercritical fluid.

landscape is fixed for a given density. It would appear then
that higher tension minima exist at these lower densities but
are not sampled as frequently or at all by the equilibrium
liquid.

We now consider how the starting density affects
the mechanical limits of an amorphous solid. Again, all
starting configurations are initially generated from a T = 1.0
equilibrium liquid. Here, we present results for system
sizes 1000 and 20 000 (Fig. 15). ρA is fairly insensitive
to starting density, though it appears that the largest starting
density has a slightly lower ρA. However, larger starting
densities result in larger maximum tension, meaning the
high density glasses produced in this manner are stronger
than the low density glasses. It is interesting to note that
even though all starting densities share a common ρA,
the higher-density glasses must undergo far greater strain
before fracture occurs. Part of this fact is simply attributable
to the fact that the material obtained from higher initial
densities starts under compression, so an initial portion of
the strain is dedicated to bringing the system under tension.
Surprisingly, the potential energies appear only to deviate in
the crossover region with the remaining portions being almost
identical. Apparently, different starting densities follow paths
that are on average identical in potential energy, yet the
packing arrangements inherent to those paths have different
stresses.

Unlike equilibrium systems, materials out of equilibrium,
such as glasses, will have properties that depend on their
processing histories. Our results suggest a route to producing
a stronger glass. Producing a glass under high compression
and then slowly allowing it to relax to ambient pressures
should result in a material with a larger ultimate yield stress
than a glass similarly quenched at ambient pressure. It is also
likely that the cooling rate employed in producing the high
compression glass, something we have not explored here,
would be an important design input for such a procedure.

The starkest difference we have observed so far between
minimizing from an equilibrium fluid and athermal expansion
is in the morphologies of inherent structures at low density.
The configuration on the left in Figure 16 is a system of 20 000
particles at ρ = 0.20 that has undergone an athermal expansion
run from ρ0 = 1.30. The void that forms upon cavitation has
simply grown upon further expansion to accommodate the
additional volume. On the right is a configuration minimized

at ρ = 0.20 and T = 2.0, which is slightly above the critical
temperature. Here we observe a number of separate clumps
of particles. Both of these configurations are minima on
the same potential energy landscape, and it is temperature
and processing history that distinguish the pathways to these
minima.

VII. CONCLUDING REMARKS

In a sense, the present work has demonstrated how
cavitation in the liquid phase is imprinted in the underlying
potential energy landscape. The cavitation that inevitably
appears in a molecular liquid upon decompression is
preempted by a sudden shift in the type of basin sampled
at the Sastry density. Above ρS all inherent structures are
homogeneous, and below ρS all are fractured. The signature
of this transition is likely a discontinuity in the equation
of the state of the energy landscape. However, this athermal
transition at ρS is subject to finite-size rounding, and the above
description is only realizable in the thermodynamic limit. Like
previous characterization of the vapor/liquid transition, the
Sastry point appears spinodal-like at finite system sizes. Due
to continuity in the liquid’s pressure, a discontinuity in the
behavior of the inherent structures also implies a perfectly
compensating discontinuity in the thermal stabilization of the
liquid.

If the Sastry locus intersects the vapor/liquid binodal
(as illustrated in Fig. 12), cavitation in liquids produced
through isochoric cooling will follow qualitatively different
pathways on the potential energy landscape above and below
ρS. Liquids below the Sastry density can cavitate simply
by the descending to lower energy regions of the basin of
attraction they already occupy. Above ρS, a liquid would
need to transition to a different basin of attraction in order to
cavitate.

We have also demonstrated that Sastry behavior is not just
a feature of the landscape sampled by an equilibrium liquid
but is in fact also relevant to the physics of non-equilibrium
stretched glasses. In this case, we studied the behavior of
packings subject to athermal quasistatic expansion. Averaging
over many expansion trajectories yields an equation of state
that is qualitatively similar to that produced from sampling
the inherent structures along an equilibrium liquid isotherm.
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Likewise, this equation of state is subject to finite size effects
and displays analogous behavior to finite-size rounding.
The limiting tension increases with the starting density of
an expansion run, suggesting that glasses produced under
high compression will have a larger ultimate yield stress.
The athermal characterization in this study should apply
to finite temperature glasses that are expanded slowly at
sufficiently low temperatures, and at least one study58 to date
has observed similar behavior in the equation of state of
a (12,6) Kob-Andersen system subject to expansion at low
temperatures.

The picture we have developed here is expected to
be general for simple liquids and their mixtures. Liquids
with internal directional constraints such as liquid crystals or
network forming liquids such as water may prove to provide
richer phenomenology in the context of Sastry behavior.
Characterizing Sastry behavior in metallic systems described
by embedded-atom method59 potentials would also be a
fruitful extension of this work, and may shed light on
existing studies of cavitation in metallic glasses at various
applied tensile strains.60 While we have observed minimal
temperature effects in the present work, it is expected that
probing the inherent structures above and below a λ-transition,
such as the sudden viscosity change upon heating in liquid
sulfur,61,62 would yield a rich variety of mechanical behavior.
In addition, it may be interesting to see how this behavior
emerges for systems with metastable vapor/liquid transitions
such as models of C60.3 We have suggested that for the
liquid pressure (as well as other thermodynamic properties) to
remain continuous across the Sastry density, there must be an
abrupt change in the thermal or “vibrational” contributions to
the pressure. This claim is simply based on accounting, and
identifying what this abrupt change physically corresponds
to would certainly enrich our understanding of the liquid
state. A concrete calculation will likely require numerical
evaluation of the intrabasin canonical partition functions for
representative sets of inherent structures produced at densities
that tightly bracket the Sastry density.
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