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The Perfect Glass Paradigm: 
Disordered Hyperuniform Glasses 
Down to Absolute Zero
G. Zhang1, F. H. Stillinger1 & S. Torquato2

Rapid cooling of liquids below a certain temperature range can result in a transition to glassy states. 
The traditional understanding of glasses includes their thermodynamic metastability with respect to 
crystals. However, here we present specific examples of interactions that eliminate the possibilities of 
crystalline and quasicrystalline phases, while creating mechanically stable amorphous glasses down 
to absolute zero temperature. We show that this can be accomplished by introducing a new ideal state 
of matter called a “perfect glass”. A perfect glass represents a soft-interaction analog of the maximally 
random jammed (MRJ) packings of hard particles. These latter states can be regarded as the epitome of 
a glass since they are out of equilibrium, maximally disordered, hyperuniform, mechanically rigid with 
infinite bulk and shear moduli, and can never crystallize due to configuration-space trapping. Our model 
perfect glass utilizes two-, three-, and four-body soft interactions while simultaneously retaining the 
salient attributes of the MRJ state. These models constitute a theoretical proof of concept for perfect 
glasses and broaden our fundamental understanding of glass physics. A novel feature of equilibrium 
systems of identical particles interacting with the perfect-glass potential at positive temperature is that 
they have a non-relativistic speed of sound that is infinite.

Structural glasses are materials made by supercooling liquids below the “glass transition temperature" (Tg) suf-
ficiently rapidly to avoid crystallization1. According to ref. 2, a qualitative description of a structural glass is “a 
phase of matter with no long-range order but with a nonzero shear rigidity”. It is well known that the glass tran-
sition temperature can be reduced by lowering the cooling rate. However, some have postulated that if the glass 
transition temperature could be postponed down to absolute zero during the supercooling process, then at some 
low but positive temperature, called the “Kauzmann temperature”, the entropy of the supercooled liquid would be 
equal to and then apparently decline below that of the crystal, resulting in the so-called “Kauzmann paradox”3,4, 
which is schematically depicted in Fig. 1. One resolution of this well-known paradox is to assume that supercooled 
liquids at the Kauzmann temperature must undergo a thermodynamic phase transition to “ideal glasses”. Such 
glasses identified as ideal would have vanishing extensive configurational entropy5,6. In this paper, however, we 
present a completely different model system that we call a “perfect glass”. As we will see, one characteristic of the 
perfect-glass paradigm introduced in the present paper is the complete circumvention of the Kauzmann paradox.

Various studies have justifiably placed importance on the local environment of each atom in structural 
glasses7–9. The variations in local motifs and the resulting varying degrees of short-range order have been used to 
explain the physical properties of glasses. For example, it is believed that atoms in ordered local environments are 
responsible for thermodynamic properties and kinetic stability of glasses, while atoms in disordered local envi-
ronments make important contributions to mechanical properties7. By contrast, global structural characteristics, 
such as hyperuniformity, as described below, address key aspects of glass formation that have been unexplored by 
these local descriptive techniques.

Although the compositions and interactions of experimentally investigated glasses are generally complicated 
on the atomic scale, many theoretical and computational models with simpler compositions and interactions 
have been shown to produce glasses under rapid cooling10,11. Moreover, short-range, pairwise additive inter-
actions have been specifically designed to locally frustrate crystallization to create good glass formers12–17. This 
is often achieved by having two components whose simultaneous existence disrupts crystal nucleation in two 
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dimensions (2D)13,14 or three dimensions (3D)16, or by encouraging pentagonal or icosahedral local geometry18,19 
that frustrates crystallization12,15. Despite these design goals to strongly inhibit crystal nucleation, the true ground 
states of these potentials nevertheless turn out to be crystalline15,18,20,21. Therefore, liquids with these interactions 
can still crystallize if cooled slowly enough. Interestingly, there are models that produce amorphous ground 
states22–24, but they cannot resist shear and hence do not behave like glasses, which are mechanically stable. 
Moreover, in all of these cases, crystalline structures are still part of the ground-state manifold, even if the prob-
ability of observing them is extremely small. Therefore, placing such systems in contact with suitable periodic 
substrates would have the effect of inducing crystallization with an appreciably higher probability. As we will 
see, the perfect glass paradigm does not even allow this to occur because ordered states (for all temperatures) are 
completely banished.

Maximally-random jammed (MRJ) packings of hard (nonoverlapping) particles in 2D and 3D are ideal-
ized amorphous states of matter that can be regarded to be prototypical glasses25–28. A packing is called “strictly 
jammed” if no subset of particles may be displaced while allowing uniform volume-preserving deformations 
of the system boundary29, implying resistance to both compressive and shear deformations. Among all strictly 
jammed packings, MRJ states are defined to be the most disordered ones according to suitable order metrics (i.e., 
measures of the degree of geometric order). MRJ packings not only exhibit many characteristics that are typical 
of glasses, but also are extremal in several respects according to the description given in ref. 2: They are nonequi-
librium, nonergodic many-body systems that are maximally disordered subject to the nonoverlap constraint, 
non-crystallizable, and mechanically infinitely rigid (both elastic moduli are unbounded)29. Indeed, they are per-
fectly nonergodic, since they are forever trapped in configuration space.

However, there are still two major differences between MRJ packings and molecular glasses. First, MRJ pack-
ings are hyperuniform26,27,30–32, while typical molecular glasses are not33. A hyperuniform many-particle system 
is one in which the structure factor approaches zero in the infinite-wavelength limit30. In such systems, density 
fluctuations are anomalously suppressed at very large length scales30, which imposes strong global structural con-
straints. All structurally perfect crystals are hyperuniform, but typical disordered many-particle systems, includ-
ing liquids and molecular glasses, are not. Materials that are simultaneously disordered and hyperuniform can 
be regarded to be exotic states of matter that lie between a crystal and a liquid; they behave more like crystals in 
the manner in which they suppress large-scale density fluctuations, and yet they also resemble typical statistically 
isotropic liquids with no Bragg peaks, and hence have no long-range order. Therefore, disordered hyperuniform 
states of matter have been the subject of many recent investigations26,27,30–32,34–42.

Second, given sufficiently long observation times at positive temperature, a typical molecular glass will eventu-
ally crystallize because the free energy barrier between it and its corresponding stable crystal structure is finite. By 
contrast, the hard-sphere MRJ state is a singular point that is trapped in a jamming basin in configuration space 
and hence can never crystallize at constant volume43.

Geometrically motivated by MRJ extremal glasses, we are interested in constructing molecular-glass analogs 
(that are not limited to pairwise additive interactions), which we call “perfect glasses”. These analogs should 
exhibit the following attributes: (1) be disordered and hyperuniform (a global criterion as opposed to the local 
coordination geometry focus of previous studies); (2) possess no crystalline or quasicrystalline energy minima 
so that they remain disordered even in the infinite-observation-time limit at positive temperature, implying that 
they can never crystallize (in contrast to conventional glass formers), as qualitatively shown in Fig. 2; and (3) 
must possess both positive bulk and shear moduli (since a perfect-glass system does not possess a freezing point, 
it is distinctly different from an “ideal glass former,” where the glass transition temperature, Tg, is higher than the 
freezing point, Tf

44).
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Figure 1.  Schematic illustration of the so-called Kauzmann paradox. As a liquid is supercooled, the entropy 
difference between it and crystalline state, SL −​ SC, decreases. If the glass transition can be postponed below 
the Kauzmann temperature, Tk, then the entropy of the liquid would be lower than that of the crystal upon 
extrapolation. The perfect-glass paradigm introduced in this paper completely circumvents the Kauzmann 
paradox.
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In this paper, we explicitly show that such perfect glasses mathematically exist. Specifically, we demonstrate 
that a single-component system with a combination of long-ranged two-, three-, and four-body interactions 
can produce perfect glasses. Our perfect glass interactions are designed in Fourier space, which allows us inde-
pendently to tune the structure factor over the entire range from infinite to intermediate wavelengths, including 
values that will automatically include all possible Bragg peaks, while maintaining hyperuniformity. These global 
constraints therefore permit the suppression of all possible Bragg peaks, which by definition eliminates any crystal 
and quasicrystal formation. This attribute of the perfect glass stands in contrast with the ideal glass concept5,6 as 
well as with previous studies that are intended to frustrate crystallization via local coordination preferences12–15. 
In the case of the former, this means that there is no entropy catastrophe because there is no ordered structure 
with which to carry out an entropy comparison. Our global approach of preventing crystallization applies to 
any dimension, in contrast to previously designed interactions that are specifically tailored for a particular space 
dimension12–15.

The major features of perfect glasses are not limited to our three criteria (hyperuniform, possess no crystalline 
or quasicrystalline energy minima, and possess both positive bulk and shear moduli). We will also see that perfect 
glasses completely circumvent Kauzmann’s paradox. Besides the theoretical existence of perfect glasses, another 
important finding of our work is that liquid-state configurations of our perfect-glass interaction are hyperuni-
form and hence possess a zero internal compressibility, implying they have a non-relativistic speed of sound that 
is infinite. Finally, our results also suggest that up to four-body interactions are necessary to completely avoid 
crystallization, and thus explains the failure to create such an ideal state of matter heretofore.

Perfect Glass Potentials
We apply the collective-coordinate optimization scheme22,45 to construct interactions that can produce perfect 
glasses. This procedure involves finding potentials that are given in terms of a targeted form of the structure fac-
tor. For a single-component system with N particles in a simulation box of volume V with periodic boundary 
conditions in d-dimensional Euclidean space d, the single-configuration structure factor is defined as 
 = |∑ − ⋅ |= i Nk k r( ) exp( ) /j

N
j1

2 , where k is a d-dimensional wavevector and rj is the position of particle j2,46. 
Many previous investigations have focused on targeting “stealthy” structure factors, i.e., those in which the struc-
ture factor is exactly zero within some sphere of radius K around the origin in Fourier space22,45,47–49. When K is 
large the ground states are crystalline22,45,47,48. When K is sufficiently small, however, it has been shown that the 
ground states of the associated interactions are disordered and highly degenerate22,45,48. However, although these 
states are hyperuniform, they are not perfect glasses because they cannot resist shear and crystal structures are 
part of the ground-state manifold, even if they are sets of zero measure in the infinite-volume limit.

However, the collective-coordinate optimization scheme has also been used to prescribe the potential energy 
Φ​ defined by the following more general targeted structure factor50–52:

∑Φ = −
< <

vr k k k( ) ( )[ ( ) ( )] ,
(1)

N

Kk0
0

2 

where rN =​ r1, r2,..., rN represents the configurational coordinates, the summation is over all reciprocal lattice 
vector k's of the simulation box2 such that 0 <​ |k| <​ K,  k( )0  is a “target” structure factor, >v k( ) 0 is a weight 
function, and K is some cut-off wavenumber that determines the number of constrained wave vectors. At low 
temperatures, this interaction potential attempts to “constrain” the structure factor k( )  to the target k( )0  for all 
|k| <​ K, since violating a constraint for any k will increase the potential energy. The number of independent 

Figure 2.  Schematic constant-pressure phase diagrams. Left panel: Typical many-particle systems become 
glasses upon rapid cooling or can crystallize upon slow cooling. Right panel: Our model family creates perfect 
glasses that by construction cannot crystallize upon quenching to absolute zero temperature.
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constraints divided by the total number of degrees of freedom, d(N −​ 1), is a parameter that measures how con-
strained the system is and is denoted by χ. Previous research has focused on χ values less than 1. In such 
under-constrained cases, a minimum of the potential energy satisfies all constraints while still having leftover 
unconstrained degrees of freedom. Although this interaction is defined in Fourier space (i.e., in terms of the 
structure factor), it can be decomposed into a sum of two-body, three-body, and four-body terms in direct space50. 
In the Appendix, we present explicit formulas for each term. In the Supplementary Information (SI), visualiza-
tions of these contributions to the potential energy are provided.

For several reasons, such a model is an excellent starting point for designing perfect glass interactions. First, 
this model enables one to fulfill the requirement that perfect glasses be hyperuniform because this model con-
strains k( )  to a targeted hyperuniform functional form  k( )0  around the origin. In this paper, we select the fol-
lowing form for k( )0 :

= ≤ ≤α k Kk k( ) for 0 , (2)0

where α >​ 0 is an exponent that we are free to prescribe. To ensure that  k( ) has the targeted hyperuniform 
power-law form of k( )0 , we choose a weight function that diverges at the origin:

=





−





≤ ≤
γ

v k Kk
k

( ) 1 1 for 0 ,
(3)

where γ ≥​ 2 is another exponent to choose. The choices of k( )0  and v k( ) are not unique: Other target forms of 
 k( )0  and other forms of v k( ) that diverge to +​∞​ in the zero wavenumber limit could also result in hyperuni-
formity. We choose the forms in Eqs (2)–(3) for simplicity. Because v k( ) goes to zero smoothly as |k| goes to 1, it 
is natural to let K =​ 1. Our choice of K and v k( ) sets the model’s length and energy scales.

Second, this model can completely eliminate crystalline and quasicrystalline energy minima. The structure 
factor of all crystals and quasicrystals contains “Bragg peaks,” i.e., Dirac delta functions (the definition of S(k) 
implies that S(k) =​ S(−k). Therefore, not all constraints are independent). Of all possible periodic and quasipe-
riodic configurations, the structures producing the largest-radius zone around k =​ 0 devoid of Bragg peaks are 
the triangular and body-centered cubic lattices in 2D and 3D, respectively. However, if we set χ >​ 0.9068…​ in 
2D or χ >​ 0.9873…​ in 3D, then even these two structures have some Bragg peaks that fall inside the |k| <​ K 
range; and so do all other crystal and quasicrystal structures48. Thus, any crystalline or quasicrystalline config-
uration will have potential energy diverging to plus infinity and thus cannot be an energy minimum (this also 
includes two dimensional crystalline and quasicrystalline states at positive temperature that do not have per-
fect Dirac-delta-function-like Bragg peaks. Rather, the peaks have an intrinsic broadening characteristic, but the 
broadening is rather limited in magnitude so our interaction still has the effect of banishing phonon-displaced 
crystalline and quasicrystalline structures in two dimensions53).

Third, this model allows us to realize positive shear and bulk moduli. If a structure corresponding to a local 
minimum in Φ​(rN) (called an “inherent structure” in the rest of the paper) is sheared or compressed at zero tem-
perature, then the set of k vectors that are consistent with the simulation box changes. A change in these wave 
vectors then causes a change in 0  (since 0  is a function of k), which in turn will change the potential energy. 
This change is likely positive because the original configuration is an inherent structure. Indeed, in our simula-
tions, we find this perturbation always increases the potential energy and thus the system will resist that pertur-
bation. Therefore, shear and bulk strains cause stresses. However, for an under-constrained system (χ <​ 1), the 
unconstrained degrees of freedom allow the system to gradually relieve the stress over time. Therefore, we always 
employ χ >​ 1 to ensure that stresses are sustained.

The qualitative nature of our combination of two-, three-, and four-body potentials has the effect of assigning 
an impossibly high potential energy to structures that have long-range periodic or quasiperiodic order. Thus 
when the resulting arrangements of particles are disordered by virtue of the nature of the targeted structure 
factor, these two-, three-, and four-body contributions to the total energy effectively cancel one another at large 
distances. Specifically, we show in the SI that for perfect glasses, the three- and four-body contributions to the 
potential energy almost cancel one another in such a way as to produce no infinite-system thermodynamic anom-
alies: the total energy per particle is an intensive quantity (as quantitatively detailed in the SI) and approaches its 
infinite-system-size very rapidly as N increases.

Results
Perfect-Glass Inherent Structures.  We now quantitatively characterize the structure, elastic moduli, and 
degree of order of the perfect-glass inherent structures obtained by minimizing the total potential energy, Eq. (1), 
starting from random initial configurations of N =​ 2500 particles for different parameters χ, α, and γ in two and 
three dimensions. Perfect glasses obtained in this way can be regarded as glasses produced by an infinitely rapid 
quench from infinite temperature to zero temperature because the random initial configuration is equivalent to 
the infinite-temperature state, and an energy minimization process may be thought of as evolving the system to a 
state of zero temperature. Examples of perfect glasses in 2D and 3D are shown in Fig. 3.

Pair Statistics.  The standard pair correlation function46, g2(r), and the angular averaged and ensemble-averaged 
structure factor, S(k), are together effective descriptors for distinguishing crystals, quasicrystals, disordered hype-
runiform systems, and nonhyperuniform systems from one another. We will restrict ourselves to α ≥​ 1 because, 
as we will see, this places a lower bound on the rigidity of a perfect glass and is consistent with the MRJ nature of 
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this ideal amorphous state of matter. These two pair statistics for α =​ 2 and different χ’s and γ’s are shown in 
Fig. 4. All g2(r)’s and S(k)’s are clearly finite and approaches 1 in the r →​ ∞​ or k →​ ∞​ limit, showing that these 
structures are neither crystalline nor quasicrystalline. Additionally, S(k) follows the target  k( )0  and approaches 
0 as k →​ 0, demonstrating that these structures are hyperuniform. In the SI, we present S(k) for other α and γ 
values and show that S(k) has the same scaling as k( )0  near k =​ 0 only if γ >​ α. Otherwise, S(k) will deviate from 
 k( )0  and may even appear to saturate at a positive value in the k →​ 0 limit. If so, the resulting system would not 
be hyperuniform and conform to our definition of a perfect glass.

Bulk and Shear Moduli.  Here we show the capacity of a perfect glass to resist both compressive and shear defor-
mations. The elastic moduli of the inherent structures for γ =​ 3 are presented in Fig. 5. Both moduli increase as 
χ or α increases. In all cases, both moduli are positive, clearly showing that our model meets this criterion for a 
perfect glass. We only present data for γ =​ 3 for simplicity. It is useful to note that we have also calculated these 
moduli for γ =​ 2 or 4 and found the same trend.

Our hyperuniform targeted functional form = αk k( )0  generally produces substantially higher elastic con-
stants than those for non-hyperuniform forms; see SI for details. This correlation between hyperuniformity and 
improved mechanical rigidity appropriately reflects the MRJ-like nature of the perfect glass and hence stresses the 
importance of the hyperuniformity criterion.

Characterizing the Degree of Disorder.  As noted earlier, since perfect glasses are molecular-glass analogs of MRJ 
sphere packings that are maximally random, we determine here the triplet of parameters (χ, α, γ) that produce 
the most disordered inherent structures according to two order metrics: the “local” bond-orientational param-
eter Q6,local

54,55 (also denoted Ψ​6 in some literature) and the translational order metric τ48, which are defined in 
the Methods section. We present the order metrics Q6,local and τ of the inherent structures in Fig. 6. Here we want 

Figure 3.  Snapshots of perfect glasses with N = 2500 with perfect-glass potential with parameters χ = 5.10, 
α = 2, and γ = 3 in 2D (left) and 3D (right). Both of them are clearly disordered.
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www.nature.com/scientificreports/

6Scientific Reports | 6:36963 | DOI: 10.1038/srep36963

0 1 2 3 4 5 6
10

-4

10
-3

10
-2

10
-1

1

B
d=2

0 1 2 3 4 5 6

10
-4

10
-3

10
-2

10
-1

G

d=2

0 1 2 3 4 5 610
-6

10
-5

10
-4

10
-3

10
-2

B

d=3

0 1 2 3 4 5 610
-6

10
-5

10
-4

10
-3

10
-2

G

d=3
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structures in 2D (top) and 3D (bottom) for γ = 3 and selected values of χ. 
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to determine at what value of α is a perfect glass most disordered according to these order metrics. Again, we 
present data only for γ =​ 3 for simplicity, but have found that results for γ =​ 2 or 4 behave similarly. The local 
bond-orientational order Q6,local measures the degree to which the local environments of particles resemble regular 
hexagons (in 2D) or regular icosahedra (in 3D); it can vary from 0 (disordered) to 1 (perfect hexagonal order) in 2D 
or from 0 (disordered) to 0.663... (perfect icosahedral order) in 3D. Our relatively low Q6,local values in 3D indicate 
that our interaction does not favor icosahedral local configuration. This demonstrates that our approach of frus-
trating crystallization is fundamentally different from the previous approach of encouraging icosahedral order12.

As detailed in the Methods section, Q6,local measures only local orientational order, while the translational 
order metric, τ, takes into account both short-range order and long-range order. Nevertheless, τ shows the same 
trend as Q6,local: Perfect glasses with the lowest α and highest χ have the lowest τ. In fact, we plot τ versus Q6,local for 
different χ’s and α’s in 2D and 3D for γ =​ 3 in Fig. 7 and find that these two order metrics are strongly correlated. 
Our results for Q6 and τ are consistent with the qualitative conclusions of ref. 50, which reported that increasing 
α resulted in configurations that increasingly appeared to be more ordered.

While we have shown that the perfect glass is indeed a molecular analog of MRJ, the former is considerably 
richer. Whereas a perfect glass can have a wide range of degrees of order and elastic moduli, MRJ states, by 
construction, can only be maximally random subject to the strict jamming condition, which endows them with 
infinite elastic moduli29. We have shown that as α decreases, the elastic moduli decrease. For this reason and to 
maintain the analogy with MRJ, we restrict the minimum of α to be 1 so as to bound the elastic moduli from 
below. We also must restrict α <​ γ because S(k) demonstrates indisputable hyperuniformity only in such cases.

In summary, we have shown that under the two constraints that α ≥​ 1 and α <​ γ, the inherent structures 
of our potential are clearly disordered, hyperuniform, possess positive shear and bulk moduli, and therefore 
conform to our definition of a perfect glass. We also note that the lowest value of α, equal to unity, produces 
the lowest order and lowest elastic moduli among all of the cases that we have studied. This behavior is con-
sistent with the fact that MRJ, which are maximally disordered sphere packings subject to jamming constraint, 
also have a small-wavenumber scaling of S(k) ~ k1. It has been established that decreasing the exponent α in the 
small-wavenumber scaling S(k) ~ kα in many-particle systems is associated with greater disorder and that sublin-
ear scaling (α <​ 1) induces clustering among the particles52 and is therefore inconsistent with strict jamming in 
the case of hard spheres56.

Simulated Annealing.  The preceding section focused on the inherent structures obtained from random ini-
tial configurations, which correspond to glasses produced by an infinitely rapid quench. However, perfect glasses 
meeting our definition should remain disordered even after annealing with a finite, slow cooling rate. Here we 
study the behavior of our system under slow annealing by performing canonical ensemble (constant temperature 
and volume) molecular dynamics (MD) simulations57 and gradually decreasing the temperature. We have per-
formed such an annealing for a 2D system of N =​ 400 particles with parameters χ =​ 5.1, α =​ 1, and γ =​ 3. During 
the annealing process, the potential energy remains continuous with respect to temperature, suggesting that there 
is no first-order phase transition. As we will mention in the Methods section, the configuration starts to vibrate 
around a single inherent structure when kBT drops below 0.3, suggesting that the glass transition temperature, Tg, 
for this system at this cooling rate is around 0.3/kB. The final configuration is disordered, verifying that our system 
does not crystallize even under slow cooling.

It is worth noting that after slow annealing and a subsequent energy minimization, the final configuration has 
potential energy per particle Φ​/N =​ 2.920, which is not much lower than that of the previously obtained inherent 
structures, for which, Φ​/N =​ 2.971 ±​ 0.014 at the same system size under the same interaction. This may suggest 
that most of the local energy minima of the potential energy surface are not much higher than the ground state 
energy.
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Conclusions and Discussion
We have found a family of interactions that can produce perfect glasses, i.e., hyperuniform glasses with positive 
bulk and shear moduli, in systems that possess no crystalline or quasicrystalline energy minima. We have demon-
strated that the inherent structures (structures obtained by infinitely rapid cooling from infinite temperature to 
zero temperature) of these interactions are disordered, hyperuniform, and have positive bulk and shear moduli 
for parameters 1 ≤​ α <​ γ and χ >​ 1. The lowest α, equal to unity, results in the lowest degree of order, although 
a priori there was no reason to expect that maximum disorder would arise when α is minimized. We have also 
performed a slow simulated annealing on a perfect-glass system and found no first-order phase transition.

Our interactions are designed in Fourier space and completely eliminate crystal and quasicrystal formation. 
As detailed in ref. 48, for χ >​ 0.9068…​ in 2D or χ >​ 0.9873…​ in 3D, any crystal or quasicrystal must produce 
Bragg peaks in the constrained (|k| <​ K) range. Such Bragg peaks would make the potential energy infinite. 
Therefore, crystals and quasicrystals cannot be energy minima it is intersting to note that our approach to ensure 
glass formation (eliminating crystals and quasicrystals) is in sharp contrast with the reason why diboron trioxide 
tends to vitrify. The latter tends to vitrify because of a high energy degeneracy of multiple crystalline structures56). 
Since our perfect glasses are not metastable with respect to a crystal structure, there is no Kauzmann entropy 
crisis that led to the conjectured existence of “ideal glasses” in the conventional Kauzmann picture5,6. The latter is 
defined completely differently from the perfect glasses in this work.

All available understanding indicates that with only isotropic two-body interactions, crystalline ground states 
inevitably occur. However, by adding suitable three- and four-body interactions to appropriate two-body inter-
actions, we show for the first time that crystals and quasicrystals can be completely prevented for any range of 
temperatures down to absolute zero and thus ensures by construction thermodynamically stable glassy states. 
The collective-coordinate procedure that we are using to target perfect glass behavior cannot be simplified to the 
extent of reducing the interaction character below at least four-body interactions. Because the procedure is gen-
eral, this suggests that a perfect glass cannot be created with two- and three- body interactions depending only on 
scalar distances alone. This could explain why previous attempts to produce such an ideal state of matter have not 
been successful. Another observation that suggests the necessity of four-body interactions is that the analytical 
form of our four-body interaction, Eq. (10), appears to strongly penalize long-range bond orientational order, and 
thus prevent crystallization. Without the four-body interaction, one might be able to design a pair interaction that 
reproduces the pair correlation function of perfect glasses at a particular temperature (for example, by imitating 
ref. 59). However, crystallization cannot be prevented if the temperature is lowered down to absolute zero.

It is instructive to compare and contrast the perfect-glass potential with the well-known classical rigidity 
theory of Phillips and Thorpe60,61. This theory applies to glasses with covalent interactions, and states that cova-
lent bonds between atoms in a glass impose constraints on the atomic positions and that the conditions for glass 
formation will be optimal if the number of constraints is equal to the number of degrees of freedom of the atoms. 
By contrast, the perfect-glass picture involves overconstraining the system (i.e., having more constraints than the 
degrees of freedom), which occurs when χ >​ 1, to ensure positive elastic moduli. Moreover, the Phillips-Thorpe 
theory states that normal glasses tend to crystallize if the number of constraints is much larger than the number 
of degrees of freedom, but a perfect glass will never crystallize even for large χ values. Besides these differences, 
perfect glasses have other important distinctive features, e.g., hyperuniformity and complete prevention of crys-
tallization. Lastly, the isotropic perfect-glass interaction is also very different from the directional covalent-bond 
interactions that the Phillips-Thorpe theory assumes, and a perfect glass is achievable with identical particles.

It is worth noting that our model systems can maintain hyperuniformity even at positive temperatures. 
Eqs (1)–(3) suggests that, with sufficiently high γ, any nonhyperuniform structure will have infinite energy, and 
therefore have zero probability of appearing at a finite positive temperature. We analyzed the intermediate config-
urations from the annealing simulation at T =​ 10 and indeed found hyperuniformity. This feature contrasts with 
other interactions that have perfect crystalline, and therefore hyperuniform, ground states but lose hyperuni-
formity at any positive temperature due to phonon excitations (e.g., Lennard-Jones interaction).

The well-known compressibility relation from statistical mechanics62 usually provides some insights about 
the relationship between temperature T and hyperuniformity for equilibrium systems in the infinite-system-size 
limit at number density ρ =​ N/V:

ρ κ= .
→

S k k Tlim ( ) (4)k
B T

0

We see that in order to have a hyperuniform equilibrium system at positive T that obeys this relation, the iso-
thermal compressibility, κT =​ 1/B, must be zero; i.e., the system must be incompressible48,52 (see refs 30 and 63 
for some examples). As stated in the previous paragraph, equilibrium systems of particles interacting with the 
perfect-glass potential at positive temperature (e.g., liquids) are hyperuniform. Does this mean they are also 
incompressible (B =​ ∞​)? Our initial study of perfect glasses in isothermal-isobaric ensembles suggests that they 
are not incompressible. Thus, the compressibility relation is violated. The reason for this violation is that there 
are actually two subtly different compressibilities: the “internal” one and the “external” one. If one divides a large 
system into two halves, compresses one half and decompresses the other half while keeping the total volume con-
stant, the restoring force is related to the internal compressibility. However, if one compresses or decompresses the 
entire system, causing a volume change, the change in pressure is related to the external compressibility. Normally, 
the internal compressibility is equal to the external one and thus the compressibility relation holds. However, for 
perfect glass systems, since the potential energy explicitly penalizes long-wavelength internal density fluctuations 
but not external volume change, the internal compressibility is zero while the external one is still positive and the 
compressibility relation no longer holds. A novel consequence of having zero internal compressibility is that the 
non-relativistic speed of sound is infinite.
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Concerning the violation of the compressibility relation, it is interesting to note that we previously have stud-
ied Dzugutov glasses and Lennard-Jones glasses, which violate the same relation because they are not in equilib-
rium, and introduced the following “non-equilibrium index”33:

ρ κ
= − .→X S k

k T
lim ( ) 1

(5)
k

B T

0

If a system is not in equilibrium and thus violates the compressibility relation, X would be non-zero. However, 
systems of particles interacting with the perfect-glass potential, even in equilibrium, would still have a non-zero X.

Our perfect-glass model has the unique feature of not being metastable with respect to any crystalline or 
quasicrystalline states. We believe these features can open up a variety of possibilities. Without the worry of 
crystallination and with the help of faster computers in the future, one would be able to perform extremely long 
simulations to study glass dynamics. It would be an interesting future project to study the kinetics of glass forma-
tion as a function of temperature and density. It would also be interesting to see whether or not the ground states 
of the perfect-glass interaction have vanishing configurational entropy per particle. If so, this would be the first 
example of this conjectured “ideal glass”5,6. As an initial attempt to see whether the perfect glass has this attribute, 
we have reduced the number of particles to 10, a computationally manageable number, and performed simulated 
annealing 150 times and obtained lowest-energy states four times. Presumably, these are the ground states. The 
ground state configurations obtained this way cannot be related to each other via simple translation, rotation, or 
inversion, and hence are geometrically degenerate. However, this is not a definitive evidence that perfect-glass 
systems are not ideal glasses at absolute zero. It is still possible that, although the ground state is degenerate, the 
number of degenerate structures does not scale exponentially with the system size. If so, perfect-glass systems 
could still have vanishing configurational entropy per particle at absolute zero in the infinite-system-size limit. 
Faster computers in the future should allow the same investigation for larger systems in order to ascertain the 
scaling of the number of degenerate ground states with the system size for perfect-glass systems.

Concerning the first criterion of perfect glasses (hyperuniformity), we note in passing that real polymers64 
as well as polymer models4,65 have succeeded in approaching hyperuniformity. It remains to be seen whether 
the remaining two criteria can be approached by novel polymer systems or suitably defined theoretical models 
of polymers. It is also worth noting that polymer systems are known to involve high-order interactions beyond 
two-body terms66–68, which, as we discussed earlier, are likely required to create perfect glasses.

There is a broader class of mathematical models as those for which ≠→ klim ( ) 0k 0 0  or ≠ + ∞→ v klim ( )k 0 . 
Generally, they would produce nonhyperuniform glasses and if so, would not conform to our definition of perfect 
glasses. Nevertheless, such models still completely eliminate crystalline and quasicrystalline energy minima and 
therefore merit future mathematical analyses and numerical studies. This is in contrast to a study in which a sim-
ilar type of potential was added to a Lennard-Jones interaction in order to inhibit crystallization69,70, but the 
functional form employed prevented that goal from being accomplished70.

Methods
We generate inherent structures of the perfect-glass potential by the following procedure: Starting from initial 
configurations of N =​ 2500 particles in which each particle’s position is generated randomly and independently, 
we minimize the potential energy, Eq. (1), first using the low-storage BFGS algorithm71–73 and then using the 
MINOP algorithm74. Such a combination of the two minimization algorithms maximizes both efficiency and 
precision45. After energy minimization, the norm of the gradient of potential energy is less than 10−13 (in dimen-
sionless units, similarly hereinafter). The simulation box shape is square in 2D and cubic in 3D. Since K and N 
are fixed, we adjust χ by changing the simulation box size. We choose side lengths L =​ 400, 450, 500, 600, and 800 
for χ =​ 1.27, 1.61, 1.99, 2.87, and 5.10, respectively, in 2D and L =​ 104.1, 136.6, and 165.4 for χ =​ 1.27, 2.87, and 
5.10, respectively, in 3D. For a 2D case in which χ =​ 5.10, α =​ 2, and γ =​ 3, we also generated inherent structures 
in a rhombic simulation box with a 60° interior angle and have found no statistically significant difference in the 
resulting pair correlation function, structure factor, and elastic constants, verifying that our results are not sen-
sitive to the shape of the simulation box. For each combination of χ, α, and γ in both 2D and 3D, we generated 
between 10 and 100 inherent structures, depending on the energy minimization speed of the specific case.

To demonstrate that our perfect glasses have positive bulk moduli (B) and shear moduli (G), we have also cal-
culated these elastic moduli of the inherent structures by incurring a small (10−6) strain, minimizing the potential 
energy within the deformed simulation box, and then calculating the stress. The calculated elastic constants are 
then averaged over different directions of strains and stresses and different configurations.

Since perfect glasses are molecular-glass analogs of hard-sphere MRJ packings that are maximally random, we 
are interested in finding the triplet of parameters (χ, α, γ) that produce the most disordered inherent structures 
according to certain order metrics. We have calculated two order metrics: Q6,local and τ. In 2D, Q6 is defined for a 
given particle q, as

∑ θ=Q
N

i1 exp (6 ) ,
(6)p p

r6 pq

where the summation is over all neighbor particles whose Voronoi cells share an edge with particle q’s cell, Np is 
the number of such neighbors, and θr pq

 is the angle between rpq =​ rq −​ rp and a reference direction. In 3D, Q6 is 
defined as
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where the summation is over all neighbor particles whose Voronoi cells share a face with particle q’s cell, Np is the 
number of such neighbors, Ylm is the spherical harmonic function, and θ and φ represent colatitude and longitude 
of rpq. These bond-orientational parameters are the local versions of the ones introduced in ref. 19. In both dimen-
sions, Q6,local is an average of Q6 over all particles in all configurations.

While Q6,local only measures local orientational order, the following translational order metric48:

∫ ∫τ ρ
π ρ

= − = −
∞ ∞

g r d S k dr k[ ( ) 1] 1
(2 )

[ ( ) 1] ,
(8)d0 2

2

0

2

takes into account both short-range order and long-range order by measuring the degree to which the pair sta-
tistics [g2(r) and S(k)] deviate from those of an ideal gas on all length scales. As Eq. (8) shows, τ can be computed 
from either g2(r) or S(k). Parseval’s theorem guarantees that these two approaches yield the same value of τ in the 
infinite-system-size limit. However, they can give slightly different results for our finite-sized systems, and hence 
provide a self-consistency check on its evaluation in a simulation. Although Eq. (8) involves infinite integrations, 
they can be truncated since both g2(r) and S(k) decay and approach 1 rapidly in the r →​ ∞​ or k →​ ∞​ limit. In our 
calculation, the integration is truncated at rcut =​ 200 in 2D and rcut =​ 50 in 3D or kcut =​ 6 in both dimensions. As we 
will show in the SI, τ calculated from both approaches agree well, verifying that our g2(r) and S(k) are consistent 
and our integration truncation is appropriate.

To demonstrate that perfect glasses cannot crystallize, we have also performed molecular-dynamics-based sim-
ulated annealing of the perfect glass potential using the velocity Verlet algorithm57. The temperature is controlled 
by resetting a randomly chosen particle’s velocity to a random velocity, drawn from Boltzmann distribution, every 
10 time steps. The scaled temperature, kBT, starts at 10 in dimensionless units and decreases as prescribed by Eq. 
(6) of ref. 75. In evaluating that equation, we use the relaxation time of the potential energy Φ​ as an estimate of the 
relaxation time of the system and use the scaling parameter in that Eq. (6) vs =​ 0.6. The integration time step Δ​t is 
adjusted continuously so that the change in total energy every 50 time steps is between 0.0025% and 0.01% when 
velocity resetting is switched off. In our simulation Δ​t changed from 0.05 at kBT =​ 10 to 0.18 at kBT =​ 0.23. As kBT 
dropped below about 0.3, the configuration started vibrating around a single inherent structure and we thus ended 
the simulation. The time length of the entire MD simulation is t =​ 3.04 ×​ 106 in dimensionless unit.

Appendix: Perfect-glass potential in the direct space
As we mentioned in the “Perfect Glass Potentials” section, the perfect-glass potential, Eq. (1), can be decomposed 
into a sum of two-, three-, and four-body contributions in the direct space. We present explicit formulas for these 
contributions here. We provide visulizations of these individual two-, three-, and four-body contributions in the 
SI.

The total potential energy for N particles in a fundamental cell under periodic boundary condition is given 
by50
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∑ ∑

Φ = − =

+ + +
< < < < <

< < <

v v

v v v

r k k k r r r r

r r r r r

( ) ( )[ ( ) ( )] ( , , , )

( , , ) ( , ) ,
(9)

N

K l m n p
l m n p

l m n
l m n

l m
l m

k0
0

2
4

3 2 0

 

where

∑= 
 ⋅ ⋅ + ⋅ ⋅

+ ⋅ ⋅ 


< <
v

N
vr r r r k k r k r k r k r

k r k r

( , , , ) 8 ( ) cos( )cos( ) cos( )cos( )

cos( )cos( ) , (10)

l m n p
K

lm np ln mp

lp mn

k
4 2

0

∑= ⋅ ⋅ + ⋅ ⋅

+ ⋅ ⋅
< <

v
N

vr r r k k r k r k r k r

k r k r

( , , ) 8 ( )[ cos( )cos( ) cos( )cos( )

cos( )cos( )], (11)

l m n
K

lm ln lm mn

ln mn

k
3 2

0

∑= ⋅ − + ⋅
< <

v
N

v Nr r k k r k k r( , ) 4 ( )cos( )[1 ( ) cos( )/ ],
(12)

l m
K

lm lm
k

2
0

0

and

∑= − .
< <

v v k k( )[1 ( )]
(13)Kk

0
0

0
2



www.nature.com/scientificreports/

1 1Scientific Reports | 6:36963 | DOI: 10.1038/srep36963

References
1.	 Angell, C. A. Perspective on the glass transition. J. Phys. Chem. Solids 49, 863–871 (1988).
2.	 Chaikin, P. & Lubensky, T. Principles of Condensed Matter Physics (Cambridge University Press, 2000).
3.	 Kauzmann, W. The nature of the glassy state and the behavior of liquids at low temperatures. Chem. Rev. 43, 219–256 (1948).
4.	 Xu, W.-S., Douglas, J. F. & Freed, K. F. Entropy theory of polymer glass-formation in variable spatial dimension. to be published. 

(2016).
5.	 Debenedetti, P. G. & Stillinger, F. H. Supercooled liquids and the glass transition. Nature 410, 259–267 (2001).
6.	 Stillinger, F. H. & Debenedetti, P. G. Glass transition thermodynamics and kinetics. Annu. Rev. Condens. Matter Phys. 4, 263–285 

(2013).
7.	 Ma, E. Tuning order in disorder. Nature Mater. 14, 547–552 (2015).
8.	 Sheng, H., Luo, W., Alamgir, F., Bai, J. & Ma, E. Atomic packing and short-to-medium-range order in metallic glasses. Nature 439, 

419–425 (2006).
9.	 Starr, F. W., Sastry, S., Douglas, J. F. & Glotzer, S. C. What do we learn from the local geometry of glass-forming liquids? Phys. Rev. 

Lett. 89, 125501 (2002).
10.	 Kristensen, W. D. Computer-simulated amorphous structures (i). quenching of a Lennard-Jones model system. J. Non-Cryst. Solids 

21, 303–318 (1976).
11.	 Sciortino, F., Mossa, S., Zaccarelli, E. & Tartaglia, P. Equilibrium cluster phases and low-density arrested disordered states: the role 

of short-range attraction and long-range repulsion. Phys. Rev. Lett. 93, 055701 (2004).
12.	 Dzugutov, M. Glass formation in a simple monatomic liquid with icosahedral inherent local order. Phys. Rev. A 46, R2984 

(1992).
13.	 Kob, W. & Andersen, H. C. Scaling behavior in the β-relaxation regime of a supercooled Lennard-Jones mixture. Phys. Rev. Lett. 73, 

1376 (1994).
14.	 Perera, D. N. & Harrowell, P. Relaxation dynamics and their spatial distribution in a two-dimensional glass-forming mixture. J. 

Chem. Phys. 111, 5441–5454 (1999).
15.	 Shintani, H. & Tanaka, H. Frustration on the way to crystallization in glass. Nature Phys. 2, 200–206 (2006).
16.	 Jonsson, H. & Andersen, H. C. Icosahedral ordering in the Lennard-Jones liquid and glass. Phys. Rev. Lett. 60, 2295 (1988).
17.	 Wales, D. Energy Landscapes: Applications to Clusters, Biomolecules and Glasses. Cambridge Molecular Science (Cambridge 

University Press, 2003).
18.	 Roth, J. & Denton, A. Solid-phase structures of the Dzugutov pair potential. Phys. Rev. E 61, 6845 (2000).
19.	 Steinhardt, P. J., Nelson, D. R. & Ronchetti, M. Bond-orientational order in liquids and glasses. Phys. Rev. B 28, 784 (1983).
20.	 Fernández, J. R. & Harrowell, P. Crystal phases of a glass-forming Lennard-Jones mixture. Phys. Rev. E 67, 011403 (2003).
21.	 Perera, D. N. & Harrowell, P. Stability and structure of a supercooled liquid mixture in two dimensions. Phys. Rev. E 59, 5721 

(1999).
22.	 Uche, O. U., Stillinger, F. H. & Torquato, S. Constraints on collective density variables: Two dimensions. Physical Review E 70, 046122 

(2004).
23.	 Martinez-Veracoechea, F. J., Mladek, B. M., Tkachenko, A. V. & Frenkel, D. Design rule for colloidal crystals of dna-functionalized 

particles. Physical review letters 107, 045902 (2011).
24.	 Smallenburg, F. & Sciortino, F. Liquids more stable than crystals in particles with limited valence and flexible bonds. Nature Physics 

9, 554–558 (2013).
25.	 Torquato, S., Truskett, T. M. & Debenedetti, P. G. Is random close packing of spheres well defined? Phys. Rev. Lett. 84, 2064 

(2000).
26.	 Zachary, C. E., Jiao, Y. & Torquato, S. Hyperuniform long-range correlations are a signature of disordered jammed hard-particle 

packings. Phys. Rev. Lett. 106, 178001 (2011).
27.	 Jiao, Y. & Torquato, S. Maximally random jammed packings of Platonic solids: Hyperuniform long-range correlations and 

isostaticity. Phys. Rev. E 84, 041309 (2011).
28.	 Torquato, S. & Stillinger, F. H. Jammed hard-particle packings: From Kepler to Bernal and beyond. Rev. Mod. Phys. 82, 2633 

(2010).
29.	 Torquato, S., Donev, A. & Stillinger, F. H. Breakdown of elasticity theory for jammed hard-particle packings: conical nonlinear 

constitutive theory. Int. J. Solids Struct. 40, 7143 (2003).
30.	 Torquato, S. & Stillinger, F. H. Local density fluctuations, hyperuniformity, and order metrics. Phys. Rev. E 68, 041113 (2003).
31.	 Donev, A., Stillinger, F. H. & Torquato, S. Unexpected density fluctuations in jammed disordered sphere packings. Phys. Rev. Lett. 

95, 090604 (2005).
32.	 Kurita, R. & Weeks, E. R. Incompressibility of polydisperse random-close-packed colloidal particles. Phys. Rev. E 84, 030401 

(2011).
33.	 Marcotte, É., Stillinger, F. H. & Torquato, S. Nonequilibrium static growing length scales in supercooled liquids on approaching the 

glass transition. J. Chem. Phys. 138, 12A508 (2013).
34.	 Dreyfus, R. et al. Diagnosing hyperuniformity in two-dimensional, disordered, jammed packings of soft spheres. Phys. Rev. E 91, 

012302 (2015).
35.	 Lesanovsky, I. & Garrahan, J. P. Out-of-equilibrium structures in strongly interacting Rydberg gases with dissipation. Phys. Rev. A 

90, 011603 (2014).
36.	 Hexner, D. & Levine, D. Hyperuniformity of critical absorbing states. Phys. Rev. Lett. 114, 110602 (2015).
37.	 Jack, R. L., Thompson, I. R. & Sollich, P. Hyperuniformity and phase separation in biased ensembles of trajectories for diffusive 

systems. Phys. Rev. Lett. 114, 060601 (2015).
38.	 De Rosa, C. et al. Toward hyperuniform disordered plasmonic nanostructures for reproducible surface-enhanced raman 

spectroscopy. Phys. Chem. Chem. Phys. 17, 8061–8069 (2015).
39.	 Degl’Innocenti, R. et al. Thz quantum cascade lasers based on a hyperuniform design. In Proc. SPIE Int. Soc. Opt. Eng. vol. 9370, 1 

(International Society for Optics and Photonics, 2015).
40.	 Xie, R. et al. Hyperuniformity in amorphous silicon based on the measurement of the infinite-wavelength limit of the structure 

factor. Proc. Nat. Acad. Sci. USA 110, 13250–13254 (2013).
41.	 Muller, N., Haberko, J., Marichy, C. & Scheffold, F. Silicon hyperuniform disordered photonic materials with a pronounced gap in 

the shortwave infrared. Adv. Opt. Mater. 2, 115–119 (2014).
42.	 Florescu, M., Torquato, S. & Steinhardt, P. J. Designer disordered materials with large, complete photonic band gaps. Proc. Nat. Acad. 

Sci. USA 106, 20658–20663 (2009).
43.	 Donev, A., Torquato, S., Stillinger, F. H. & Connelly, R. A linear programming algorithm to test for jamming in hard-sphere packings. 

J. Compu. Phys. 197, 139–166 (2004).
44.	 Kapko, V., Zhao, Z., Matyushov, D. V. & Angell, C. A. Ideal glassformers vs ideal glasses: Studies of crystal-free routes to the glassy 

state by potential tuning molecular dynamics, and laboratory calorimetry. J. Chem. Phys. 138, 12A549 (2013).
45.	 Zhang, G., Stillinger, F. H. & Torquato, S. Ground states of stealthy hyperuniform potentials: I. Entropically favored configurations. 

Phys. Rev. E 92, 022119 (2015).
46.	 Chandler, D. Introduction to Modern Statistical Mechanics (Oxford University Press, 1987).
47.	 Sütö, A. Crystalline ground states for classical particles. Phys. Rev. Lett. 95, 265501 (2005).



www.nature.com/scientificreports/

1 2Scientific Reports | 6:36963 | DOI: 10.1038/srep36963

48.	 Torquato, S., Zhang, G. & Stillinger, F. H. Ensemble theory for stealthy hyperuniform disordered ground states. Phys. Rev. X 5, 
021020 (2015).

49.	 Zhang, G., Stillinger, F. H. & Torquato, S. Ground states of stealthy hyperuniform potentials: Ii. Stacked-slider phases. Phys. Rev. E 
92, 022120 (2015).

50.	 Uche, O. U., Torquato, S. & Stillinger, F. H. Collective coordinate control of density distributions. Phys. Rev. E 74, 031104 
(2006).

51.	 Batten, R. D., Stillinger, F. H. & Torquato, S. Classical disordered ground states: Super-ideal gases and stealth and equi-luminous 
materials. J. Appl. Phys. 104, 033504–033504 (2008).

52.	 Zachary, C. E. & Torquato, S. Anomalous local coordination, density fluctuations, and void statistics in disordered hyperuniform 
many-particle ground states. Phys. Rev. E 83, 051133 (2011).

53.	 Mermin, N. D. Crystalline order in two dimensions. Phys. Rev. 176, 250 (1968).
54.	 Kansal, A. R., Truskett, T. M. & Torquato, S. Nonequilibrium hard-disk packings with controlled orientational order. J. Chem. Phys. 

113, 4844–4851 (2000).
55.	 Kansal, A. R., Torquato, S. & Stillinger, F. H. Diversity of order and densities in jammed hard-particle packings. Phys. Rev. E 66, 

041109 (2002).
56.	 Zachary, C. E., Jiao, Y. & Torquato, S. Hyperuniformity, quasi-long-range correlations, and void-space constraints in maximally 

random jammed particle packings. i. polydisperse spheres. Phys. Rev. E 83, 051308 (2011).
57.	 Frenkel, D. & Smit, B. Understanding Molecular Simulation: From Algorithms to Applications (Academic Press, 1996).
58.	 Ferlat, G., Seitsonen, A. P., Lazzeri, M. & Mauri, F. Hidden polymorphs drive vitrification in B2O3. Nat. Mater. 11, 925 (2012).
59.	 Gerold, V. & Kern, J. The determination of atomic interaction energies in solid solutions from short range order coefficients-an 

inverse monte carlo method. In Atomic Transport and Defects in Metals by Neutron Scattering, 17–21 (Springer, 1986).
60.	 Thorpe, M. F. Continuous deformations in random networks. J. Non-Cryst. Solids 57, 355 (1983).
61.	 Micoulaut, M. Concepts and applications of rigidity in non-crystalline solids: a review on new developments and directions. Adv. 

Phys. X 1:2, 147 (2016).
62.	 Hansen, J. & McDonald, I. Theory of Simple Liquids (Elsevier Science, 1990). URL https://books.google.com/books?id=​

1lOtRVQMYuIC.
63.	 Torquato, S., Scardicchio, A. & Zachary, C. E. Point processes in arbitrary dimension from fermionic gases, random matrix theory, 

and number theory. J. Stat. Mech. Theor. Exp. 2008, P11019 (2008).
64.	 Hess, B., León, S., Van Der Vegt, N. & Kremer, K. Long time atomistic polymer trajectories from coarse grained simulations: 

bisphenol-a polycarbonate. Soft Matter 2, 409–414 (2006).
65.	 Eilhard, J. et al. Spatial correlations in polycarbonates: Neutron scattering and simulation. The Journal of chemical physics 110, 

1819–1830 (1999).
66.	 Bolhuis, P., Louis, A. & Hansen, J. Many-body interactions and correlations in coarse-grained descriptions of polymer solutions. 

Phys. Rev. E 64, 021801 (2001).
67.	 Dijkstra, M. & van Roij, R. Entropic wetting and many-body induced layering in a model colloid-polymer mixture. Phys. Rev. Lett. 

89, 208303 (2002).
68.	 Watzlawek, M., Likos, C. N. & Löwen, H. Phase diagram of star polymer solutions. Phys. Rev. Lett. 82, 5289 (1999).
69.	 Di Leonardo, R., Angelani, L., Parisi, G. & Ruocco, G. Off-equilibrium effective temperature in monatomic lennard-jones glass. Phys. 

Rev. Lett. 84, 6054 (2000).
70.	 Angelani, L., Di Leonardo, R., Ruocco, G., Scala, A. & Sciortino, F. Quasisaddles as relevant points of the potential energy surface in 

the dynamics of supercooled liquids. The Journal of chemical physics 116, 10297–10306 (2002).
71.	 Nocedal, J. Updating quasi-newton matrices with limited storage. Math. Comp. 35, 773–782 (1980).
72.	 Liu, D. C. & Nocedal, J. On the limited memory BFGS method for large scale optimization. Math. Programming 45, 503–528 

(1989).
73.	 Johnson, S. G. The nlopt nonlinear-optimization package. Http://ab-initio.mit.edu/nlopt.
74.	 Dennis, J. & Mei, H. Two new unconstrained optimization algorithms which use function and gradient values. J. Optim. Theory Appl. 

28, 453–482 (1979).
75.	 Nourani, Y. & Andresen, B. A comparison of simulated annealing cooling strategies. J. Phys. A 31, 8373 (1998).

Acknowledgements
We thank Steven Atkinson for his careful reading of the manuscript. This work was supported by the National 
Science Foundation under Grant No. DMS-1211087.

Author Contributions
S.T. conceived the research, devised the methods, G. Z. performed the simulations, G. Z., F. S. and S. T. performed 
analysis, and G. Z., F. S. and S. T. wrote the paper.

Additional Information
Supplementary information accompanies this paper at http://www.nature.com/srep
Competing financial interests: The authors declare no competing financial interests.
How to cite this article: Zhang, G. et al. The Perfect Glass Paradigm: Disordered Hyperuniform Glasses Down 
to Absolute Zero. Sci. Rep. 6, 36963; doi: 10.1038/srep36963 (2016).
Publisher's note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

This work is licensed under a Creative Commons Attribution 4.0 International License. The images 
or other third party material in this article are included in the article’s Creative Commons license, 

unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, 
users will need to obtain permission from the license holder to reproduce the material. To view a copy of this 
license, visit http://creativecommons.org/licenses/by/4.0/
 
© The Author(s) 2016

https://books.google.com/books?id=1lOtRVQMYuIC
https://books.google.com/books?id=1lOtRVQMYuIC
Http://ab-initio.mit.edu/nlopt
http://www.nature.com/srep
http://creativecommons.org/licenses/by/4.0/

	The Perfect Glass Paradigm: Disordered Hyperuniform Glasses Down to Absolute Zero

	Perfect Glass Potentials

	Results

	Perfect-Glass Inherent Structures. 
	Pair Statistics. 
	Bulk and Shear Moduli. 
	Characterizing the Degree of Disorder. 

	Simulated Annealing. 

	Conclusions and Discussion

	Methods

	Appendix: Perfect-glass potential in the direct space

	Acknowledgements
	Author Contributions
	﻿Figure 1﻿﻿.﻿﻿ ﻿ Schematic illustration of the so-called Kauzmann paradox.
	﻿Figure 2﻿﻿.﻿﻿ ﻿ Schematic constant-pressure phase diagrams.
	﻿Figure 3﻿﻿.﻿﻿ ﻿ Snapshots of perfect glasses with N = 2500 with perfect-glass potential with parameters χ = 5.
	﻿Figure 4﻿﻿.﻿﻿ ﻿ Pair correlation functions (left) and structure factors (right) of the perfect glasses in 2D for α = 2.
	﻿Figure 5﻿﻿.﻿﻿ ﻿ Bulk modulus B (left) and shear modulus G (right) versus the exponent α for the inherent structures in 2D (top) and 3D (bottom) for γ = 3 and selected values of χ.
	﻿Figure 6﻿﻿.﻿﻿ ﻿ Order metrics Q6,local (left) and τ (right) versus the exponent α for the inherent structures in 2D (top) and 3D (bottom) for γ = 3 and selected values of χ.
	﻿Figure 7﻿﻿.﻿﻿ ﻿ Translational order metric τ versus Q6,local for all previously used χ’s and α’s in 2D and 3D for γ = 3.



 
    
       
          application/pdf
          
             
                The Perfect Glass Paradigm: Disordered Hyperuniform Glasses Down to Absolute Zero
            
         
          
             
                srep ,  (2016). doi:10.1038/srep36963
            
         
          
             
                G. Zhang
                F. H. Stillinger
                S. Torquato
            
         
          doi:10.1038/srep36963
          
             
                Nature Publishing Group
            
         
          
             
                © 2016 Nature Publishing Group
            
         
      
       
          
      
       
          © 2016 The Author(s)
          10.1038/srep36963
          2045-2322
          
          Nature Publishing Group
          
             
                permissions@nature.com
            
         
          
             
                http://dx.doi.org/10.1038/srep36963
            
         
      
       
          
          
          
             
                doi:10.1038/srep36963
            
         
          
             
                srep ,  (2016). doi:10.1038/srep36963
            
         
          
          
      
       
       
          True
      
   




