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Disordered hyperuniform many-particle systems have attracted considerable recent attention, since
they behave like crystals in the manner in which they suppress large-scale density fluctuations, and
yet also resemble statistically isotropic liquids and glasses with no Bragg peaks. One important class
of such systems is the classical ground states of “stealthy potentials.” The degree of order of such
ground states depends on a tuning parameter χ. Previous studies have shown that these ground-state
point configurations can be counterintuitively disordered, infinitely degenerate, and endowed with
novel physical properties (e.g., negative thermal expansion behavior). In this paper, we focus on
the disordered regime (0 < χ < 1/2) in which there is no long-range order and control the degree of
short-range order. We map these stealthy disordered hyperuniform point configurations to two-phase
media by circumscribing each point with a possibly overlapping sphere of a common radius a: the
“particle” and “void” phases are taken to be the space interior and exterior to the spheres, respectively.
The hyperuniformity of such two-phase media depends on the sphere sizes: While it was previously
analytically proven that the resulting two-phase media maintain hyperuniformity if spheres do not
overlap, here we show numerically that they lose hyperuniformity whenever the spheres overlap.
We study certain transport properties of these systems, including the effective diffusion coefficient
of point particles diffusing in the void phase as well as static and time-dependent characteristics
associated with diffusion-controlled reactions. Besides these effective transport properties, we also
investigate several related structural properties, including pore-size functions, quantizer error, an
order metric, and percolation thresholds. We show that these transport, geometrical, and topological
properties of our two-phase media derived from decorated stealthy ground states are distinctly dif-
ferent from those of equilibrium hard-sphere systems and spatially uncorrelated overlapping spheres.
As the extent of short-range order increases, stealthy disordered two-phase media can attain nearly
maximal effective diffusion coefficients over a broad range of volume fractions while also maintain-
ing isotropy, and therefore may have practical applications in situations where ease of transport is
desirable. We also show that the percolation threshold and the order metric are positively correlated
with each other, while both of them are negatively correlated with the quantizer error. In the highly
disordered regime (χ→ 0), stealthy point-particle configurations are weakly perturbed ideal gases.
Nevertheless, reactants of diffusion-controlled reactions decay much faster in our two-phase media
than in equilibrium hard-sphere systems of similar degrees of order, and hence indicate that the for-
mation of large holes is strongly suppressed in the former systems. Published by AIP Publishing.
[http://dx.doi.org/10.1063/1.4972862]

I. INTRODUCTION

A hyperuniform many-particle system is one in which
the structure factor approaches zero in the infinite-wavelength
limit.1 In such systems, density fluctuations (measured by the
variance of number of particles inside a spherical window) are
anomalously suppressed at very large length scales, a “hid-
den” order that imposes strong global structural constraints.1,2

All structurally perfect crystals and quasicrystals are hype-
runiform,1,3 but typical disordered many-particle systems,
including gases, liquids, and glasses, are not. Disordered
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hyperuniform many-particle systems are exotic states of
amorphous matter that have attracted considerable recent
attention.1–24 Materials that are simultaneously disordered and
hyperuniform can be regarded to be exotic states of matter that
lie between a crystal and a liquid; they behave more like crys-
tals in the manner in which they suppress large-scale density
fluctuations, and yet they also resemble typical statistically
isotropic liquids and glasses with no Bragg peaks.18

An important class of disordered hyperuniform many-
particle systems is comprised of the classical ground states
of “stealthy potentials,”18–21 which are bounded, long-range,
pairwise additive potentials designed in the Fourier space.
These classical ground states are of particular fundamental
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interest because they can be degenerate and noncrystalline.
A nonnegative parameter inversely proportional to the num-
ber density, χ, controls the degree of order of such ground
states. For χ < 0.5, the ground states are overwhelmingly
highly degenerate and disordered. As χ increases above 0.5,
long-range translational and rotational order begins to emerge
and eventually the system crystallizes. We have previously
studied these disordered ground states and computed their
pair correlation functions,18–20,25,26 structure factors,18–20,25,26

Voronoi cell volume distribution,19,20 and particle-exclusion
probabilities.18

Some initial studies have demonstrated that stealthy hype-
runiform systems are endowed with novel thermodynamic
and physical properties. For example, their low-temperature
excited states are characterized by a negative thermal expan-
sion behavior.22 It has also been shown that dielectric networks
derived from stealthy disordered hyperuniform point configu-
rations possess complete photonic band gaps comparable in
size to those of a photonic crystal, while at the same time
maintain statistical isotropy, enabling waveguide geometries
not possible with photonic crystals as well as high-density dis-
ordered transparent materials.17,27–29 However, the determi-
nation of physical/chemical properties of stealthy disordered
hyperuniform materials is generally an unexplored area of
research.

In this paper, we investigate steady-state and time-
dependent diffusion properties of certain decorations of
stealthy disordered hyperuniform ground-state point config-
urations in two and three dimensions. In particular, we derive
two-phase heterogeneous media from point configurations by
decorating the point configurations with spheres (circles);
specifically, all points are circumscribed by spheres of radius
a that generally may overlap with one another. By varying
the radius, the fraction of space occupied by the spheres will
vary. We study the effective transport properties of these dis-
ordered two-phase systems, including the effective diffusion
coefficient,30 and static and time-dependent characteristics of
diffusion-controlled reactions at the interfaces between the two
continuous phases, the trapping rate (or its inverse, the mean
survival time) and the principal (largest) relaxation time.31,32

Quantifying the effective diffusion coefficient is of importance
not only because it has direct applications (e.g., diffusion of
fuel and oxygen in a fuel cell,33 diffusion tensor magnetic
resonance imaging,34,35 regulation and metabolism of normal
organs,36,37 and drug release from porous matrices38) but also
because its determination translates immediately into equiva-
lent results for the effective thermal and electric conductivity,
the effective dielectric constant, and the effective magnetic
permeability for reasons of mathematical analogy,30 and is
therefore related to a host of applications. Diffusion-controlled
reactions arise in widely different processes, such as heteroge-
neous catalysis,39 gas sensor operation,40 cell metabolism,41

crystal growth,42 and nuclear magnetic resonance (NMR).43–45

These transport properties are related to several statistical,
geometrical, and topological characteristics, which we there-
fore also study. These include the pore-size functions (the dis-
tribution of the distance from a randomly chosen location in the
void phase to the closest phase boundary),46 the quantizer error
(a moment of the pore-size function, which is related to the

principal relaxation time),32,46 the order metric τ (a measure
of the translational order of point configurations),18 and the
percolation threshold or the critical radius (the radius of the
spheres at which a specific phase becomes connected) of each
phase.47–50

We compare the aforementioned physical and geometri-
cal properties of our two-phase system derived from decorated
stealthy ground states, as a function of the tuning parameter
χ, with those of two other two-phase media: (1) equilibrium
disordered (fluid) hard-sphere systems and (2) decorated Pois-
son point processes (ideal-gas configurations). The former has
short-range order that is tunable by its volume fraction but
no long-range order. The latter has neither short-range order
nor long-range order. Through comparison, we find that some
of these quantities are dramatically affected by the degree of
long-range order, while other quantities are much more sensi-
tive to the degree of short-range order. Because many of these
quantities depend on the density, we re-scale all systems to
unit number density to ensure a fair comparison.

Among our major findings, we show that these trans-
port, geometrical, and topological properties of our two-phase
media are generally distinctly different from those of equi-
librium hard-sphere systems and spatially uncorrelated over-
lapping spheres. At high χ values, the stealthy disordered
two-phase media can attain nearly the maximal effective dif-
fusion coefficient, while also maintaining isotropy. This novel
property could have practical implications, e.g., optimal and
isotropic drug release from designed nanoparticles. Stealthy
ground states tend to ideal gases configurationally in the
χ → 0 limit.18 Nevertheless, we find that even in the low-χ
regime, our two-phase media have much lower principal relax-
ation times than that of equilibrium hard-sphere systems of
similar degrees of order, indicating that the formation of large
holes in the stealthy systems is strongly suppressed. Lastly, we
also find that the aforementioned geometrical and topological
quantities are strongly correlated with each other.

The rest of the paper is organized as follows: In Sec. II, we
give precise definitions of the stealthy potential and the afore-
mentioned transport, geometrical and topological quantities.
In Sec. III, we present our numerical method to calculate them.
We present our results in Sec. IV and conclusions in Sec. V.

II. MATHEMATICAL DEFINITIONS AND BACKGROUND
A. Preliminaries

This paper studies properties of point-particle systems as
well as two-phase heterogeneous media derived from certain
decorations of these point configurations. A point-particle sys-
tem consists of N point particles with a certain probability
density function P(rN ), where rN ≡ r1, r2, . . ., rN are the parti-
cle positions, in a simulation box of volume vF under periodic
boundary conditions in d-dimensional Euclidean space Rd ,
where d is 2 or 3. The number density is defined as ρ = N/vF .
The “Poisson point process” (also called “ideal gas”) is pro-
duced by the probability density function P(rN ) = v−N

F that
does not depend on particle positions rN . The equilibrium
hard-sphere point process of radius a is another point process
with P(rN ) equal to a positive constant if the distance between
every pair of points is larger than 2a and zero otherwise.
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A realization of a two-phase medium can be mathemati-
cally described as a partition of a domain of space V ∈Rd with
volume V into two separate regions, V1 and V2. It is character-
ized by an indicator function, I(x), where x is any position in
the two-phase medium. The indicator function I(x) is one if
x ∈ V1 and zero if x ∈ V2. The volume fraction of phase 1
is given by φ1 = 〈I(x)〉, where 〈· · ·〉 denotes an ensemble
average and that of the other phase is given by φ2 = 1−φ1. Let
∂V be the interface between V1 and V2, the specific surface,
i.e., the total area of ∂V divided by V, is given by

s = 〈|∇I(x)|〉. (1)

The two-phase media that we consider here are derived
from point configurations by decorating the point configura-
tions with spheres (circles); specifically, each point is circum-
scribed by a sphere of radius a that generally may overlap
with one another. Therefore, it is composed of a void region
(phase 1) and a particle region (phase 2). When such a mapping
is applied to a Poisson point process, the decorated sys-
tem is also called “fully penetrable spheres”50 or “spatially
uncorrelated spheres.”48

B. Stealthy potentials and their entropically favored
ground states

Consider point processes that are obtained from the
canonical ensemble probability distribution function defined
by

P(rN ) = exp[−βΦ(rN )]/Z , (2)

whereΦ(rN ) is an interaction potential, β is the inverse temper-
ature, and Z = ∫ exp[−βΦ(rN )]drN is the partition function.
Of particular interest in this paper is the “stealthy” interaction
potential

Φ(rN ) =
1

2vF

∑
0<k<K

|ñ(k)|2 + Φ0

=
∑
i<j

1
vF

∑
0<k<K

exp(ik · rij), (3)

where the sum is over all reciprocal lattice vector k’s of the sim-
ulation box such that 0 < |k| ≤ K , ñ(k)=

∑N
j=1 exp(−ik · rj),

Φ0 = [N(N − 1) −
∑

0<k<K

N]/2vF

is a constant independent of the particle positions rN , and the
second equal sign in Eq. (3) can be proved by Parseval’s the-
orem. Such a potential is interesting not only because it is a
pairwise additive potential [as the right side of Eq. (3) shows]
but also because it allows one to directly tune the structure
factor

S(k) = |ñ(k)|2/N . (4)

The ground state (i.e., β → +∞ or zero-temperature state)
of this potential is obtained by constraining S(k) = 0 for all
0 < |k| ≤ K .18,19

Let M be half the number of k points in the summation
of Eq. (3);51 the parameter

χ =
M

d(N − 1)
(5)

determines the degree to which the ground states are con-
strained and therefore the degeneracy and disorder of the

ground states.19 For χ < 0.5, the ground states are typically
disordered and uncountably infinitely degenerate.18,20 There-
fore, there are multiple ways to assign different weights (i.e.,
probabilities) to different sets of ground states. One way of
particular interest is the zero-temperature (β → +∞) limit of
Eq. (2). Ground states drawn from such a distribution are called
“entropically favored ground states.”18,20 It is interesting to
note that in the χ → 0 and a → 0 limits, both entropically
favored ground states of stealthy potentials and equilibrium
hard-sphere point processes tend to Poisson point process geo-
metrically. In the rest of the paper, this fact will be frequently
used to test our simulation results since many properties of the
Poisson point process have been studied previously.

C. Transport properties

This paper studies the following steady-state and time-
dependent diffusion properties in phase 1 (the void phase) of
decorated entropically favored ground states of stealthy poten-
tials, and compare them with that of decorated Poisson point
process and equilibrium disordered (fluid) hard-sphere system
at unit number density.

1. Effective diffusion coefficient

Consider the steady-state diffusion problem of some
species with concentration field c(x) in a two-phase medium
in which phase 1 is the space in which diffusion occurs and
phase 2 is “obstacles” that the diffusing species cannot enter.
In phase 1, the flux of the species, J(x), is predicted by Fick’s
first law,

J(x) = D∇c(x), x ∈ V1, (6)

where D is a diffusion coefficient which we set to unity for
simplicity. However, Eq. (6) is valid only in phase 1 and has
to be paired with the following Neumann boundary condition:

n · J = 0, on ∂V, (7)

where n is the normal vector of the surface. We see that
the inclusion of such obstacles adds a complicated boundary
condition and makes the overall diffusion problem difficult.
Nevertheless, on a length scale much larger than the character-
istic length of the obstacles, the system can be homogenized30

and characterized by an “effective” diffusion coefficient, De,
defined by the average Fick’s first law,

〈J(x)〉 = De〈∇c(x)〉, for any x, (8)

where angular brackets denote ensemble averages.
The effective diffusion coefficient of an isotropic two-

phase medium must satisfy the Hashin-Shtrikman (HS) upper
bound.52 For our case, where phase 1 has a unit diffusion coeffi-
cient and phase 2 cannot be entered, this bound in d dimensions
is given by

De ≤
d − 1

d − 1 + φ2
. (9)

This bound is optimal because it is realizable by certain
model microstructures, including the “coated-sphere model”
described in Ref. 53, and is therefore the best possible bound
for isotropic systems given volume-fraction information only.
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2. Diffusion-controlled reactions

Consider the problem of diffusion and reaction among
absorbing “traps” in the random medium. Let phase 1 be the
region in which diffusion occurs and phase 2 be the trap region,
the diffusion process in phase 1 is governed by the same Fick’s
first law but with time dependency

J(x, t) = D∇c(x, t), in V1. (10)

This equation, combined with the conservation of the diffusing
species inside phase 1, ∇ · J = ∂c

∂t , yields Fick’s second law,

∂c(x, t)
∂t

= D4c(x, t), in V1. (11)

If phase 2 are absorbing “traps” (rather than impenetra-
ble obstacles as in the aforementioned effective diffusion
problem), the boundary condition has to be changed. In
the diffusion-controlled limit, i.e., when the reaction rate
at the interface is infinite, we have the following boundary
condition:32

c(x, t) = 0, on ∂V. (12)

If we also set the initial concentration to be uniform outside of
traps

c(x, 0) = c0, in V1, (13)

then we have the survival problem. The “survival probability,”
p(t) is equal to the fraction of reactant not yet absorbed at time
t,30,32

p(t) =
∫Rd c(x, t) dx

∫Rd c(x, 0) dx
. (14)

The mean survival time of the reactant is the zeroth moment
of p(t),54

Tmean =

∫ ∞
0

p(t)dt. (15)

The survival probability can be decomposed as a sum of
exponential functions

p(t) =
∞∑

n=1

In exp(−t/Tn), (16)

where In are coefficients and Tn are relaxation times. The
largest relaxation time is called “principal relaxation time” and
by convention denoted T1. These quantities can be measured
directly by NMR experiments; since in the NMR experiment
of fluid-saturated porous media, proton magnetization decays
mainly on the phase boundary.43–45

It is worth noting that although the above problems involve
differential equations, De, p(t), and Tmean can actually be
calculated much more efficiently by simulating Brownian
motions using the so-called “first-passage time” technique (see
Sec. III D for details). The effective diffusion coefficient can
be found from the ratio of the mean square displacement of
such Brownian particles and the time spent. The survival prob-
ability p(t) is equal to the probability that a Brownian particle
has never reached any trap at time t. The mean survival time,
Tmean, can be calculated by integrating p(t) but can also be cal-
culated, more easily, by finding the average time needed for
a particle to reach a trap the first time. It is also worth noting
that while the effective diffusion coefficient is identically zero

as long as the void phase is not percolating, Tmean and T1 are
both positive until the spheres cover the entire space.30

D. Geometrical and topological properties

This paper also studies the following geometrical and
topological properties that are intimately related to the afore-
mentioned diffusion characteristics.

1. Hyperuniformity and stealthiness in many-particle
systems and two-phase media

As we have explained earlier, a hyperuniform many-
particle system is one in which the structure factor, Eq. (4),
approaches zero in the k → 0 limit. The name “hyperuniform”
refers to an anomalous suppression of density fluctuations:
Consider random placements of a spherical observation win-
dow of radius R in a d-dimensional many-particle system.
The number of points contained in such a window, N(R), is
a random variable. For a uniform but not hyperuniform many-
particle system (e.g., ideal gas without a gravity field), σ2

N (R)
for large R scales as Rd . For a hyperuniform system, σ2

N (R)
for large R grows more slowly than Rd . It has been proved
that the above-mentioned two conditions of hyperuniformity,
limk→0S(k) = 0 and σ2

N (R) for large R grows more slowly
than Rd , are mathematically equivalent.1

A similar definition exists for two-phase media.2 One can
compute the volume fraction of either phase inside a spherical
observation window of radius R and find its variance. For large
R, this variance scales as R�d for typical (non-hyperuniform)
random two-phase media and decreases faster than R�d for
hyperuniform two-phase media. An equivalent condition for
hyperuniformity is that limk→0 χ̃V (k) = 0, where

χV (k) =
1
vF
|J(k)|2 (17)

is called the “spectral density” and J(k) is the Fourier
transform of I(x) − φ1.55

Stealthy hyperuniform many-particle systems or two-
phase media are subsets of hyperuniform many-particle sys-
tems or two-phase media in which S(k) or χV (k) is zero for a
range of k vectors around the origin, i.e.,

S(k) = 0 or χV (k) = 0 for 0 ≤ |k| ≤ K , (18)

where K is some positive number. For the many-particle sys-
tems mentioned in this paper, the ground state of “stealthy”
potentials is stealthy and hyperuniform while equilibrium
hard-sphere systems and Poisson point process are neither
stealthy nor hyperuniform.

2. Packing and packing fraction

When we decorate a point-particle configuration by
replacing points with spheres of radius a, the whole collec-
tion of spheres is considered a “sphere packing” if each pair of
point particles is separated by a distance of at least 2a (i.e., if
the spheres do not overlap). The fraction of space occupied by
the union of spheres, φ2, is called the packing fraction φp. Of
particular interest in this paper is the maximum packing radius
amax

p , which is half the minimum separation distance between
two particles, and maximum packing fraction φmax

p , which is
the volume fraction of phase 2 when a = amax

p .



244109-5 Zhang, Stillinger, and Torquato J. Chem. Phys. 145, 244109 (2016)

Why should we study the maximum packing fraction?
One important reason is that when we decorate a point con-
figuration and map it into a two-phase medium, if spheres
do not overlap, then the spectral density χ̃V (k) of the two-
phase medium is proportional to the structure factor S(k) of
the underlying point configuration,56

χ̃V (k) =
φ2

v1(a)

(
2πa
|k|

)d

J2
d/2(|k|a)S(k) (a ≤ amax

p ), (19)

where v1(a) is the volume of a d-dimensional sphere of radius
a and Jd /2(x) is the Bessel function of order d/2. Therefore, a
decorated stealthy point configuration is a stealthy two-phase
medium if φ2 < φmax

p . When φ2 > φmax
p , however, Eq. (19)

no longer holds and we will see in Sec. IV A that decorated
systems are generally no longer stealthy or hyperuniform.

3. Nearest-neighbor and pore-size functions

Given a point-particle system, the void-exclusion proba-
bility EV (r) is the probability that a spherical cavity of radius r,
centered at a random location, is empty of particles. A related
quantity is HV (r) = −[∂EV (r)]/(∂r), the probability density
function of the distance to the nearest particle from a randomly
chosen location. A different interpretation of EV is that if each
point particle is replaced with a sphere of radius a, then EV (a)
is the volume fraction of the space outside of the spheres, i.e.,

EV (a) = φ1 = 1 − φ2. (20)

Since HV is the negative derivative of EV , HV (a) is the specific
surface s.30

Another quantity related to EV (r) is the scaled dimension-
less quantizer error G. For a point configuration with positions
r1, r2, . . ., a quantizer is a device that takes as an input a posi-
tion x inRd and outputs the nearest point ri of the configuration
to x. Assuming x is uniformly distributed, one can define a
mean square error, which can be obtained from EV (r) via the
relation46

G = 2ρ
2
d

d

∫ ∞
0

rEV (r)dr. (21)

Finally, two more related quantities can be defined for two-
phase media. The pore-size cumulative distribution function,
F(δ), is defined as the fraction of pore space (i.e., space covered
by phase 1) which has a pore radius larger than δ. The function
F(δ) of our decorated system is trivially related to EV (r) of the
underlying point-particle system,

F(δ) =
EV (δ + a)

EV (a)
. (22)

Moreover, the associated pore-size probability density func-
tion is given by P(δ) = −[∂F(δ)]/(∂δ). This pore-size function
at the origin is related to the specific surface, s, by

P(δ = 0) =
s
φ1

. (23)

It is interesting to note that the moments of F(δ) are related
to the mean survival time and principal relaxation time via the
following rigorous lower bounds:32

Tmean ≥
1
D

(∫ ∞
0

F(δ)dδ

)2

(24)

and

T1 ≥
2
D

∫ ∞
0

δF(δ)dδ. (25)

We see that G is proportional to the first moment of F(δ) in the
a→ 0 limit and is therefore related to the principal relaxation
time.

4. Order metric τ

We will be studying the above properties for systems of
varying degrees of order. Therefore, it is desirable to have
a way to quantify such orders. Moreover, since the underly-
ing point-configurations which we study include both stealthy
ground states, which have long-range order, and equilibrium
liquid hard-sphere systems, which have short-range order, we
desire an order metric that reflects short-range order and long-
range order equally well. A suitable choice is the order metric
τ, introduced in Ref. 18 and defined as

τ =
1

Dd

∫ ∞
0

[g2(r) − 1]2dr =
1

(2π)dDd

∫ ∞
0

[S(k) − 1]2dk,

(26)
where D is some characteristic length scale, g2(r) is the pair
correlation function,57 S(k) is the angular average of S(k), and
the second equal sign can be proved by Parseval’s theorem. In
this paper, we simply let D = 1 because we always rescale the
configuration to make the number density unity.

5. Percolation threshold and critical radius

Since the effective diffusion coefficient is trivially zero
when the void phase is topologically disconnected, it is impor-
tant to quantify when the phases are connected. To do this, we
will be considering the percolation properties of the systems.
As we specified earlier, we map point configurations into two-
phase media by replacing each point with a sphere of radius a.
For phase 2, the critical or percolation radius, a2c, is the mini-
mum a such that a connected part of phase 2 becomes infinite
in size. The percolation volume fraction, φ2c, is the fraction of
space occupied by the union of spheres of radius a2c.

We can define similar percolation characteristics of the
void phase.58,59 The percolation radius of the void phase,
a1c, is defined as the maximum a such that there is still an
infinite-sized connected part of phase 1. The percolation vol-
ume fraction, φ1c, is the volume fraction of phase 1 at radius
a1c. In two dimensions, it is very rare to have both phases per-
colating simultaneously (see Ref. 60 for such a rare example).
In our case, a1c = a2c and φ1c = 1 − φ2c. In three dimen-
sions, however, both phases can simultaneously percolate, i.e.,
the two-phase system is bicontinuous. Indeed, this is the case
for our 3D systems and hence we must compute a1c and a2c

separately.

III. SIMULATION DETAILS
A. Generating entropically favored stealthy
ground states

We generate entropically favored ground states of stealthy
potentials using the same protocol as our previous work.20

This protocol involves performing molecular dynamics (MD)
simulations at a very low temperature (β = 5 × 105 in 2D
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and β = 1 × 106 in 3D in dimensionless units), taking snap-
shots periodically, and performing a local energy minimization
starting from each snapshot. Because the MD temperature
is sufficiently low, the snapshots before energy minimiza-
tion are already very close to ground states. Therefore, the
ground states produced by the subsequent energy minimiza-
tion closely follow the canonical distribution in the zero-
temperature limit. We generate 20 000 configurations per χ
value, same as Ref. 20. The only two differences between this
work and our previous work20 are (1) system sizes are different
(see Appendix A for our choice of system sizes and the justifi-
cation), and (2) each configuration is rescaled to unit number
density (in order to ensure a fair comparison).

B. Generating equilibrium disordered
hard-sphere systems

We also generate equilibrium disordered hard-sphere sys-
tems via standard Monte Carlo techniques in order to compare
their statistics with entropically favored stealthy ground states’
statistics. Depending on the packing fraction φ, an equilibrium
hard-sphere system can be disordered (liquid-like) or crys-
talline. Disordered equilibrium hard-sphere system exists for
0 < φ < 0.69 in 2D and 0 < φ < 0.49 in 3D.30 Therefore, the
packing fraction we used include φ = 0.05, 0.1, 0.15, 0.2,
0.25, 0.3, 0.35, 0.4, 0.45, 0.5, 0.55, 0.6, 0.65, and 0.68 in 2D
and φ = 0.05, 0.1, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4, 0.45, and 0.48
in 3D. For each φ in each dimension, we generate equilibrium
hard-sphere systems with N = 100, 300, and 500 particles. In
each case, the system was first equilibrated with 3×106N trial
moves. After that, we sample a configuration every 300N trial
moves until we obtain 20 000 configurations. Similar to the
stealthy ground states, we keep the number density ρ= 1.
Therefore, we adjust sphere radius to attain a desired packing
fraction.

C. Calculating survival probability, mean survival time,
and principal relaxation time

Because the method we used to calculate the effective
diffusion coefficient is an extension of the method to calculate
survival probability and mean survival time, we will explain
the latter method first. The survival probability p(t) and mean
survival time Tmean can be calculated by simulating particles
undergoing Brownian motions.

The Brownian motion can be simulated very efficiently
using the first-passage-time technique.61 The key idea of this
technique is that for a Brownian particle at a particular location,
let R be the distance between it and the closest phase bound-
ary. Construct a sphere centered at the particle with radius R
(which is called a first-passage-time sphere). Let tR be the time
needed for the particle to reach the surface of such a sphere
for the first time, the distribution of tR can be calculated ana-
lytically. In 3D, the cumulative distribution function (CDF) of
tR is61

F(tR) = 1 + 2
∞∑

m=1

(−1)m exp

(
−

Dm2π2tR
R2

)
. (27)

In 2D, Ref. 61 did not provide the distribution of tR. Here we
find the following explicit 2D expression for tR:

F(tR) = 1 − 2
∞∑

m=1

exp(−Dw2
mtR/R2)

wmJ1(wm)
, (28)

where Jn(x) is the Bessel function of order n and wn is the
nth root of J0(x). The mean of tR, in any dimension, is simply
R2/2dD.

Therefore, the Brownian motion inside the first-passage-
time sphere does not need to be simulated in detail. One simply
moves the particle to a random location on the surface of
such a sphere, and increase the time by a certain amount
as detailed below. When calculating the mean survival time
Tmean, the time increment can simply be R2/2dD, the mean
of tR. When calculating p(t), however, the time increment has
to be a random number drawn from the distributions given in
Eq. (27) or (28). The process of finding R, moving the par-
ticle, and increasing the time is repeated until the Brownian
particle gets very close (10�5a) to a trap, at which time the
Brownian particle is deemed trapped. In our implementation,
Eqs. (27) and (28) are pre-computed and tabulated to accel-
erate the simulation. For each configuration, we simulate 10
Brownian trajectories to calculate Tmean and 1000 trajecto-
ries to calculate p(t). When calculating p(t), each trajectory is
additionally sampled 100 times, with different random time
increments drawn from distributions (27) and (28).

After calculating p(t), we calculate the principal relax-
ation time T1 by fitting p(t) in the range 10−5 < p(t) < 10−3

to the asymptotic equation,

ln[p(t)] ≈ c + t/T1, (29)

where c and T1 are fitting parameters.

D. Calculating effective diffusion coefficient

The effective diffusion coefficient De can also be calcu-
lated using first-passage-time techniques.62–64 In this case,
however, the Brownian particle cannot be deemed trapped
when it is sufficiently close to the phase boundary because
phase 2 is now non-absorbing obstacles rather than absorb-
ing traps. Instead, we construct a first-passage-time sphere of
radiusR = 10−2, find a random place on the surface of the first-
passage-time sphere that is outside of the obstacle phase, and
move the Brownian particle to that random place. Although
this first-passage-time sphere contains two phases, the mean
time taken for the Brownian particle to reach such a surface
could still be computed analytically and was given in Ref. 63,

tR =
R2(1 + v2/v1)

2d
, (30)

where v2/v1 is the volume of the obstacle phase divided by the
volume of the conducting phase inside the first-passage-time
sphere and can be found analytically.

The process of constructing a first-passage-time sphere
and moving the point particle is repeated to form a Brown-
ian trajectory. In the infinite-time limit, the effective diffusion
coefficient is given by63

De = lim
t→∞

〈|R(t)|2〉
2dt

, (31)
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where 〈|R(t)|2〉 is the mean-squared displacement of a Brow-
nian particle at time t. In practice, in a finite-time simulation,
one should only consider the time regime in which the mean
square displacement is strongly linear in time, since for suf-
ficiently early times the mean square displacement is either
ballistic or grows faster than linear in time.64 We find De by
fitting 〈|R(t)|2〉 versus t and extracting the slope of the line
after some sufficiently large dimensionless time. We define
the unit of time to be

t∗ =
1

ρ2/dD
, (32)

and set both ρ and D to be unity. The point in time in which
〈|R(t)|2〉 first becomes a strongly linear function occurs when
the Brownian particle sufficiently samples the two-phase sys-
tem such that it can be viewed effectively as the Brownian
motion in a homogeneous medium. For the microstructures
that we considered here, we find that the linear regime occurs in
the dimensionless time interval 40 < t < 100, i.e., we determine
De from the linear relationship

〈|R(t)|2〉 = (2dDe)t + c, 40 < t < 100. (33)

To get a sense of the possible behaviors of the mean square
displacements as a function of time, we show examples in
Fig. 1 at several values of a for a three-dimensional system at
χ = 0.1333 . . . and indicate the linear fit in each case. This fit-
ting procedure works especially well near percolation, which
is the most difficult regime to simulate. For this particular sys-
tem, the void phase stops percolating at an obstacle radius
a1c = 0.80. Figure 1 shows that for a = 0.7 < a1c, 〈|R(t)|2〉
is linear with t. For a = 0.8 = a1c, only a fraction of con-
figurations still have a percolating void phase, and our fitting
procedure was able to distinguish the initial uprise in 〈|R(t)|2〉
(contributions mainly from Brownian particles moving inside
a “cage,” i.e., a disconnected part of the void phase) from
the steady increase in 〈|R(t)|2〉 (contributions from Brownian
particles that are in a percolating part of the void phase). For
a = 0.9 > a1c, all Brownian particles are caged, and the fit
has a virtually zero slope (and therefore produces a virtually
zero De).

We simulate 1 Brownian trajectory per configuration to
calculate De. In Fig. 2, we compare the computed De with
the distribution of the void-phase percolation threshold and
find that De becomes zero right after all configurations stop
percolating. The fact that our measured De diminishes to zero
at the percolation threshold indicates that our choice of the
fitting range in Eq. (33) is appropriate.

E. Calculating percolation thresholds

Generally speaking, the precise calculation of the percola-
tion threshold of disordered systems requires very large system
sizes. For example, to accurately determine the percolation
threshold of 3D fully penetrable spheres, Ref. 48 employed
systems of up to N = 7 × 108 particles. The whole system is
divided into smaller cubes and the content particles in each
cube are generated only when such a cube is being probed.

Unfortunately, our protocol of low-temperature MD and a
subsequent energy minimization does not allow us to save time
by only generating required parts of the configuration. More-
over, in order to accurately follow the canonical-ensemble

FIG. 1. The mean square displacement of Brownian particles, averaged over
20 000 configurations, 〈 |R(t) |2〉, versus time, t, for a three-dimensional system
at χ = 0.1333 . . . with obstacle radii a = 0.7 (top), 0.8 (middle), and 0.9
(bottom). For this particular system, the percolation threshold of the void
phase is a1c = 0.80, and hence De must vanish for larger values of a.

distribution at zero-temperature limit, the MD temperature has
to be so low such that many (7.5×107) time steps are required
to produce a sufficiently long trajectory. The requirement of

FIG. 2. Comparing the calculated effective diffusion coefficient, De, with the
probability density function (PDF) of the void-phase percolation threshold,
p(a1c), for three dimensions, χ = 0.1333. The calculated De becomes zero
when the void phase stops percolating.
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a very large number of time steps forces us to further sacri-
fice system size. As a result, our system is limited to several
hundred particles. Therefore, accurate determination of the
percolation threshold is extremely challenging. Thus we exper-
imented with two advanced algorithms to minimize finite-size
effect in order to obtain relatively accurate results. We will
first explain how to use these two methods to determine the
percolation threshold for the particle phase and then describe
the generalizations to the void phase.

One of them, which we call “P1 maximum method,” is
described in Ref. 65. Starting from a random particle in a con-
figuration, one randomly chooses two of its periodic images
in two different directions. The quantity P1 (denoted as R(1)

∞
in Ref. 65) is defined as the probability that this particle is
connected to one of the chosen periodic images but not the
other. At the percolation threshold, P1 attains its maximum.
Therefore, one can numerically find P1 as a function of sphere
radius a and find its maximum in order to find the percola-
tion threshold. In our implementation, we calculate P1(a) for
various a’s starting from a = 0, with increment δa = 0.001,
until P1(a) develops a peak and then returns to zero. We then
select all data points such that P1(a) > 0.9 · Pmax

1 , where Pmax
1

is the maximum of P1(a), and perform a quadratic fit of the
selected data points. The maximum of the fitted function gives
the percolation radius a2c.

Reference 65 measures the percolation radii a2c using sev-
eral different system sizes and then extrapolates to the infinite-
system-size limit. However, when we perform the same fitting
procedure using different system sizes, we did not find a clear
trend: In each dimension, for some χ values larger systems
produce larger a2c while for other χ values larger systems pro-
duce smaller a2c. Moreover, the extrapolated a2c, as a function
of χ, is not as smooth as the un-extrapolated one. We there-
fore conclude that random noise is probably more important
than the finite-size effect in this case and extrapolation is not
proper. Thus, we will simply use a2c of our largest system as
an estimate of the infinite-system-size a2c.

After finding the percolation radius a2c, we determine
the percolation volume fraction φ2c. One could have simply
read this quantity from a plot of the quantity EV (r), since
φ2c = 1 − EV (a2c). However, we decide to use a somewhat
more accurate method: we divide the whole simulation box
into 12 000× 12 000 pixels (in 2D) or 1200× 1200× 1200
voxels (in 3D) and find out if the center of each pixel or voxel
is inside any sphere of radius ac. We then count the number of
pixels or voxels that are centered inside spheres to find out the
volume fraction. From our experience, this procedure gives us
a four-significant-figures precision in φc.

The other method we employed, which we call “M2 inter-
section method,” is introduced in Ref. 66. At a given radius a,
define smax to be the size of the largest cluster, M2 (denoted as
R2 in Ref. 66) is defined as

M2 =
〈s2

max〉 − 〈smax〉2

〈smax〉2
, (34)

where 〈· · · 〉 denotes an ensemble average. As Ref. 66 shows, at
the percolation threshold, M2 is the same for different system
sizes. Therefore, one can compute M2 as a function of a and
find the intersection of M2(a) for different system sizes to find

a2c. Following Ref. 66, we use three different N’s for each χ
value, and perform an extrapolation to find a2c in the infinite-N
limit. After that, we use the same procedure discussed in the
previous paragraph to calculate φ2c from a2c.

We have used both methods to calculate the percola-
tion volume fraction φ2c of decorated stealthy ground states
at various χ’s in 2D and 3D. They are presented in Fig. 3.
Figure 3 also presents φ2c for decorated Poisson point
processes obtained from Refs. 48 and 49, which are
φ2c = 0.676 339 in 2D and φ2c = 0.289 573 in 3D. These
results can be used as benchmarks since Poisson point pro-
cesses are geometrically equivalent to entropically favored
stealthy ground states at χ = 0. We see that in 2D, while
both methods give results that approaches the Poisson value
very well in the χ → 0 limit, the P1 maximum method pro-
duces much smoother results. In 3D, however, although both
methods produce relatively smooth results, only results from
the M2 intersection method approaches the Poisson value very
well in the χ → 0 limit. Therefore, we decide to choose the
P1 maximum method in 2D and the M2 intersection method in
3D for the rest of the paper. It is interesting to note that to our
knowledge, the P1 maximum method has been demonstrated
to work well in 2D65 but not in 3D, while the M2 intersection
method has been demonstrated to work well in 3D66 but not in
2D. It is possible that these two methods are just more suited
to their respective dimensions.

Besides the percolation threshold of the spheres, we also
study the percolation threshold of the void phase. In two
dimensions, the percolation radius of the void phase, a1c, is
equal to the percolation radius of the spheres, a2c. In three
dimensions, however, a1c has to be calculated separately. We
compute a1c in three dimensions by performing a Voronoi

FIG. 3. Particle-phase percolation volume fraction φ2c of entropically
favored stealthy ground states at different χ’s in 2D (top) and 3D (bottom).
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FIG. 4. Void-phase percolation volume fraction φ1c of entropically favored
stealthy ground states at different χ’s in 3D.

tessellation of each configuration and then computing M2 of
the Voronoi vertices. As in the particle-phase case, the inter-
section of M2(a) at different system sizes gives a1c. Similar
to the particle-phase case, a1c can then be converted to φ1c by
digitization, the result of which is presented in Fig. 4. Similar
to the particle-phase case, we compare φ1c for our systems
with that for the decorated Poisson point processes obtained
from Ref. 59, φ1c = 0.0317. Combining the φ2c and φ1c

results, we see that as χ increases from 0 to 0.46, the φ2 range
for bicontinuity moves upwards, from 0.290 < φ2 < 0.997 to
0.494 < φ2 < 0.998, respectively.

F. Calculating EV (r), G, and τ

The quantities EV (r) and G are calculated by first comput-
ing HV (r). For each configuration of N point particles, 100N
random locations in 2D or 10N random locations in 3D are
generated in the simulation box. For each location, the dis-
tance from it to its nearest particle is found. These distances are
then binned to yield HV (r). We then integrate HV (r) using the
trapezoidal rule to find EV (r). The quantizer errorG is obtained
by another integration of rEV (r), using the trapezoidal rule, as
Eq. (21) shows. The numerically obtained HV (r) always has
compact support, and thus the above-mentioned integrations
do not need to be truncated.

The order metric τ can be computed from either g2(r)
or S(k), as Eq. (26) shows. We have tried both approaches.
The real-space integration in Eq. (26) is truncated at half the
simulation box side length and the reciprocal space integration
in Eq. (26) is truncated at 6K, where K is the cutoff of the
stealthy potential (as detailed in Sec. II B).

IV. RESULTS

We present visualizations of our two-phase systems
derived from decorated stealthy ground states in Figs. 5–7. In
three dimensions, we present separate figures for the particle
phase and the void phase for clarity. In the rest of the section,
we present the above-mentioned properties of our two-phase
systems and compare them with the decorated Poisson point
process and hard-sphere point process.

A. Packing fraction and stealthiness

We present the maximum packing fraction of decorated
stealthy ground states, φmax

p , in Fig. 8. In each dimension, as

FIG. 5. Decorated stealthy ground states in two dimensions at χ = 0.05 (top)
and χ = 0.48 (bottom) at a = 0.5. The void phase is marked green.

χ increases, φmax
p remains to be zero for χ up to about 0.3 and

then starts to increase. This indicates that for χ ≤ 0.3, parti-
cles in entropically favored stealthy ground states can become
arbitrarily close to each other. As χ becomes higher, parti-
cles develop an effective hard core that is impenetrable. The
development of such a hard core was also observed in Ref. 19.

When we decorate a stealthy ground state and map it into
a two-phase medium, if φ2 ≤ φmax

p , then Eq. (19) ensures
that the resulting two-phase medium is also stealthy. How-
ever, if φ2 > φ

max
p , will the resulting two-phase medium also

be stealthy or hyperuniform? To answer this question, we dec-
orated a two-dimensional stealthy ground state of N = 111
particles at χ = 0.45 with several different sphere radii a, dig-
itized the resulting two-phase medium into 10 000 × 10 000
pixels, and calculated the spectral density χ̃V (k) using Eq. (17).
The result is presented in Fig. 9. For this particular system, the
maximum packing radius is amax

p = 0.407. We see that for
a < amax

p , χ̃V (k) is zero for k < 4.7. For a > amax
p , however,

χ̃V (k) is positive and does not tend to zero as k → 0. Therefore,
a decorated stealthy ground state is generally neither stealthy
nor hyperuniform if φ2 > φ

max
p .

B. Effective diffusion coefficient

We present the calculated effective diffusion coefficient
for our two-phase systems derived from decorated stealthy
ground states in Fig. 10. It is interesting to note that in two
dimensions, the curves of De(a) cross over each other for dif-
ferent values of χ: while for smaller a higher χ produces a
higher De, for larger a higher χ produces a smaller De. An
explanation for such a phenomenon will be presented in the
next paragraph.

It is also useful to plot De versus the particle-phase volume
fraction, φ2, by mapping a to φ2 using Eq. (20). We present
such plots in Fig. 11. These plots show that higher χ val-
ues (more ordered arrangements of the obstacle phase) always
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FIG. 6. Decorated stealthy ground states in three dimensions at χ = 0.02 (top)
and χ = 0.4598 . . . (bottom) at a = 0.5. Each sphere is randomly assigned to
one of the four colors in order to improve visual clarity.

produce higher De at the same volume fraction, which is con-
sistent with our intuition: a more ordered arrangement of the
obstacles leaves more space between them and produces a
higher De. So why did we see the opposite relationship between
χ and De in Fig. 10, except for smaller a in 2D? It turns out
that a lower χ induces more overlap between the spherical
obstacles and thus results in a lower φ2. This in turn produces
a higher De.

With De plotted versus φ2, it is interesting to compare our
result with the HS upper bound given in Eq. (9). We make such
a comparison in Fig. 11. Our result is consistent with the upper
bound for any χ and φ2 except for small fluctuations, but the
bound is sharp only for smaller φ2.

If it is desired to find structures that maximize De, then any
one of the degenerate structures that achieves the HS bound
is optimal. We see that our two-phase systems derived from
decorated stealthy ground states at very high χ’s are very close
to being optimal for φ2 up to 0.4-0.5. In two dimensions, this φ2

range coincides with φmax
p at high χ’s. Since decorated stealthy

ground states lose stealthiness as φ2 increases beyond φmax
p , our

results suggest that a loss of stealthiness causes De to stop being

FIG. 7. Void phase in decorated stealthy ground states in three dimensions at
χ = 0.02 (top) and χ = 0.4598 . . . (bottom), at the void-phase percolation
threshold a1c = 0.8970 (top) or 0.6992 (bottom).

optimal. In three dimensions, however, De is less sensitive
to structures. Thus, although decorated stealthy ground states
(at high χ’s) stop being a packing at around φ2 = 0.2, De

does not deviate from the optimal value until about φ2 = 0.5.

FIG. 8. Maximum packing fraction φmax
p , averaged over all configurations,

of decorated stealthy ground states in two and three dimensions as a function
of χ.
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FIG. 9. Spectral density χ̃V (k) of a two-phase medium obtained from dec-
orating a two-dimensional stealthy ground state with N = 111 particles at
χ = 0.45 with several different sphere radii a.

Our observation that De is less sensitive to structures in 3D
than in 2D is consistent with the trends indicated in Ref. 67,
which found that in the infinite-d limit, De is given exactly
by the arithmetic average of the diffusion coefficients of the
two phases (weighted by their volume fraction), independent
of the structure.

In Fig. 11 we also present De of decorated lattice struc-
tures (i.e., periodic arrays of spherical inclusions). Since these
lattice structures are stealthy with even higher χ values, unsur-
prisingly, their De sticks with the HS upper bound for an even
larger φ2 range.

Lastly, we would like to mention a difference between
the support of De as a function of φ2 in 2D versus 3D. While
De for our two-phase systems in 2D diminishes to zero at
φ2 ≈ 0.8, in 3D De does not vanish until φ2 ≈ 0.97. This

FIG. 10. The effective diffusion coefficient, De, for our two-phase systems
derived from decorated stealthy ground states in two (top) and three (bottom)
dimensions as a function of sphere radius a. The number density ρ is fixed to
be unity.

FIG. 11. The effective diffusion coefficient, De, for our two-phase systems
derived from decorated stealthy ground states in two (top) and three (bottom)
dimensions as a function of particle-phase volume fraction φ2. The number
density ρ is fixed to be unity. The optimal Hashin-Shtrikman (HS) upper
bound, De for triangular lattice and face-centered cubic (FCC) lattice, and De
for equilibrium hard disks and spheres are also plotted.

difference emerges from the difference in the topological (con-
nectedness) characteristics of the void phase between these
dimensions.

C. Survival probability and mean survival time

We have computed the mean survival time, Tmean, of a
diffusing reactant with a unit diffusion coefficient, in our two-
phase systems derived from decorated stealthy ground states.
These results are summarized in Fig. 12. For comparison,
the same quantity for equilibrium disordered hard-sphere sys-
tems is also included. Clearly, increasing order (increasing χ
for stealthy ground states or increasing φ2 for hard spheres)
suppresses Tmean. However, there is a crossover between the
curves for stealthy ground states and that for equilibrium dis-
ordered hard spheres. This crossover is expected because as φ2

increases, an equilibrium hard-sphere system becomes more
ordered, and therefore comparable to a stealthy two-phase
medium with a higher χ. In Fig. 13, we plot Tmean versus
χ for φ2 = 0.2 and 0.5. We see that in 2D, Tmean is somewhat
more sensitive to χ than in 3D.

In Fig. 14 we present the survival probability, p(t),
at φ1 = 0.5, for our two-phase systems derived from dec-
orated stealthy ground states and equilibrium disordered
hard spheres. The same crossover phenomenon also appears
here, suggesting that the long-range order possessed by
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FIG. 12. The mean survival time, Tmean, as a function of particle-phase vol-
ume fraction φ2, for our two-phase systems derived from decorated stealthy
ground states in 2D (top) and 3D (bottom). The same quantity for the equi-
librium disordered hard-sphere system is also included for comparison. The
number density ρ is fixed to be unity.

stealthy ground states suppresses p(t) at large t more effi-
ciently, while the short-range order possessed by equilib-
rium disordered hard spheres suppresses p(t) at small t more
efficiently.

In Fig. 15 we present the principal relaxation time T1

for our two-phase systems derived from decorated stealthy
ground states. It turns out that T1 is much more sensitive
to χ in 2D than in 3D. More interestingly, one can com-
pare T1 of stealthy ground states and equilibrium disordered
hard disks at the same order metric τ. We present such
a comparison in Fig. 16. In two dimensions, one can see
that at φ2 = 0.2, T1 of equilibrium disordered hard disks
is much higher than that of our two-phase systems derived
from decorated stealthy ground states with similar τ’s. As

FIG. 13. The mean survival time Tmean for our two-phase systems derived
from decorated stealthy ground states in two and three dimensions at phase 2
volume fraction φ2 = 0.2 and 0.5. The number density ρ is fixed to be unity.

FIG. 14. The survival probability p(t) for our two-phase systems derived from
decorated stealthy ground states in 2D (top) and 3D (bottom) at phase 2 volume
fraction φ2 = 0.2. The same quantity for the equilibrium disordered hard-
sphere system is also included for comparison. The number density ρ is fixed
to be unity.

we explained earlier, T1 is related to the pore-size distri-
bution. Therefore, our results suggest that hyperuniformity
suppresses the formation of large holes, even in the very disor-
dered regime. As φ2 increases to 0.5, however, the difference
between the two systems diminishes. Our finite-sized simula-
tion results suggest that at this value of φ2, even equilibrium
hard-sphere systems suppress the formation of large holes very
well.68

D. Geometrical and topological properties

The percolation volume fraction for both phases in 2D and
3D was already presented in Figs. 3 and 4. The void-exclusion
probability EV (r), quantizer error G, and order metric τ are
presented in Figs. 17–19. We see that in each dimension, as χ

FIG. 15. Principal relaxation time T1 for our two-phase systems derived from
decorated stealthy ground states in two and three dimensions at phase 2 volume
fraction φ2 = 0.2 and 0.5. The number density ρ is fixed to be unity.
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FIG. 16. Principal relaxation time T1 for our two-phase systems derived from
decorated stealthy ground states and equilibrium disordered hard spheres in
2D (top) and 3D (bottom) at volume fraction φ2 = 0.2 and 0.5. The number
density ρ is fixed to be unity.

increases, φc increases, EV (r) at any r decreases, G decreases,
and τ increases.

The order metric τ can be computed from either g2(r)
or S(k) as shown in Fig. 19. In 2D, the results from these

FIG. 17. Void-exclusion probability EV(r) of entropically favored stealthy
ground states in two (top) and three (bottom) dimensions at unit number
density.

FIG. 18. Quantizer error G of entropically favored stealthy ground states in
two and three dimensions at unit number density.

two approaches have good consistency. However, in 3D, τ
computed from g2(r) is often slightly lower than τ com-
puted from S(k). We discovered that this is because g2(r)
is still oscillating around 1 at half the simulation box side
length, where the integration in Eq. (26) has to be cut off.
Therefore, such a cutoff should make τ computed from
g2(r) too low. We thus use τ computed from S(k) in the
rest of the paper. It is seen that τ is very sensitive at
detecting the rise in short-range and long-range order as χ
increases.

E. Correlations between geometrical properties,
and comparison with equilibrium disordered
hard-sphere systems

In Fig. 20, we explore the correlation between G, τ, and
φc, and compare that for entropically favored stealthy ground
states with that for equilibrium disordered hard-sphere sys-
tems. It is interesting to note that these two systems behave
very differently. At the same τ, stealthy systems give lower
values of G, indicating G is more sensitive to long-range
order than to short-range order. At the same τ or G, stealthy
systems give higher values of φ2c, indicating that φ2c is
even more sensitive to long-range order than to short-range
order.

FIG. 19. Order metric τ of entropically favored stealthy ground states
in two and three dimensions at unit number density, calculated from
pair correlation function g2(r) and structure factor S(k). We also
include an analytical approximation for τ, given in Ref. 18, which is
τ = 2dχ.
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FIG. 20. Correlations between quantizer error G, order metric τ, and perco-
lation volume fraction φc at unit number density.

V. CONCLUSIONS AND DISCUSSION

In this work, we decorated stealthy disordered hyperuni-
form point configurations of different degrees of order with
spheres of various radii, and computed several transport and
structural properties of these decorated systems. The trans-
port properties that we studied include the effective diffusion
coefficient De, mean survival time Tmean, survival probability
p(t), and principal relaxation time T1. The structural properties
examined include hyperuniformity and stealthiness, maximum
packing fraction φmax

p , the void-exclusion probability EV , the
order metric τ, and the percolation thresholds φ1c and φ2c.
We showed that the order metric τ is an exquisite detector
of both short- and long-range translational order. While all
geometrical and topological quantities are strongly correlated
(positive correlation between φ2c and τ, and negative corre-
lation between G and the former two quantities), the relation
between the physical quantities are more complex: While De

increases as χ increases or as φ2 decreases, Tmean and T1

increases as χ decreases or as φ2 decreases. Therefore, there
is no simple relationship between De and Tmean or T1. Another
reason why there is no such relationship is because if phase 1
ceases to percolate, then De becomes zero but Tmean and T1

are still positive.30

Besides finding correlations between geometrical and
topological properties, we find that in the highly disordered
(χ� 1) regime, T1 of our two-phase systems derived from
decorated stealthy ground states is much lower than that
of the equilibrium hard-sphere system. Together with the
void-exclusion probability, low T1 suggests that the forma-
tion of large holes is strongly suppressed, even though the
configuration appears completely disordered.

In the higher order (χ ≈ 0.5) regime, De of our disordered
isotropic two-phase systems derived from decorated stealthy
ground states is very close to the Hashin-Shtrikman upper
bound for 0 ≤ φ2 < φmax

p , where φmax
p is the maximum packing

fraction. Since such decorated systems maintain stealthiness if
and only if φ2 < φ

max
p , our results suggest a connection between

stealthiness and the ability to have a nearly optimal (maxi-
mal) De. The fact that stealthy disordered two-phase media
have nearly optimal De could have practical implications, e.g.,
optimal and isotropic drug release from designed nanopar-
ticles. Although nearly optimal De can also be achieved by
lattice structures (i.e., periodic arrays of inclusions), the lat-
ter is always anisotropic. Thus, if one desires isotropic two-
phase media with highest possible De at a specific volume
fraction, disordered stealthy two-phase media could be the
best choice.

Disordered stealthy ground states are uncountably
infinitely degenerate.20 The maximum packing fraction φmax

p
varies among configurations. In the future, it would be inter-
esting to design algorithms that sample stealthy ground states
with a bias toward configurations with higher φmax

p val-
ues. With such an algorithm, one would be able to design
isotropic two-phase media with nearly optimal De with very
high φ2.

Lastly, we would like to mention that although here we
only study the diffusion problem of point Brownian particles,
the diffusion problem of finite-sized Brownian particles has
also been of interest.69 It is noteworthy that our results can be
trivially extended to the latter case. The diffusion of Brownian
particles of radius b among obstacles of radius a is equivalent
to the diffusion of point Brownian particles among obstacles
of radius a + b. This mapping was previously exploited to
quantify the diffusion of finite-sized spheres in various models
of porous media.70

Interestingly, one can relate the transport properties com-
puted here (De, Tmean, and T1) to different physical proper-
ties of the same systems via cross-property relations, includ-
ing those that relate them to the elastic moduli,71,72 as well as
fluid permeability.73,74 In future work, we will carry out such
analyses.
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TABLE I. Our choice of parameter χ’s and the corresponding three different
numbers of particles, N1, N2, and N3 in 2D.

χ N1 N2 N3

0.05 151 451 751
0.1 106 301 496
0.15 101 311 501
0.2 106 301 511
0.3 101 301 511
0.35 121 301 481
0.4 106 271 511
0.45 111 311 471
0.465 101 301 501
0.48 126 326 476

APPENDIX A: SYSTEM SIZES

As discussed in Sec. III A, it is nontrivial to choose the
system size N and parameter χ, especially because one of our
protocols to calculate the percolation threshold requires three
different N’s for each χ. We enumerated all possible choices
of N’s and χ’s for N < 1000 and picked up some χ values that
allow at least three different choices of N’s. Our choice of N
and χ in 2D and 3D is listed in Tables I and II. It is desirable
to consider values of χ higher than 0.4133. . . in 3D, but our
enumeration did not find such a χ value that satisfies the above
condition. Therefore, we chose three more N’s that allow χ to
be very close to 0.4598 but make χ differ in the fifth decimal

TABLE II. Our choice of parameter χ’s and the corresponding three different
numbers of particles, N1, N2, and N3 in 3D. The “*” mark indicates that χ
values differ starting from the fifth decimal place between the three choices
of N.

χ N1 N2 N3

0.02 151 351 651
0.0555. . . 127 259 421
0.0833. . . 109 281 497
0.1333. . . 176 311 476
0.1666. . . 135 321 459
0.2083. . . 113 257 425
0.2333. . . 101 161 431
0.2777. . . 121 319 475
0.3333. . . 101 302 480
0.3690. . . 113 309 477
0.4133. . . 101 276 426
0.4598. . .* 167 383 520

place. See the caption of Table II for details. Except for the
percolation threshold calculation, we only use the largest N
for each χ and d.

APPENDIX B: PROPERTIES OF STEALTHY POINT
CONFIGURATIONS AND DECORATED SYSTEMS

In this section, we tabulate all of the physical and geomet-
rical properties of stealthy point configurations and decorated
systems that we study in this paper (Tables III and IV).

TABLE III. Principal relaxation time T1 at φ = 0.2 and φ = 0.5, order metric τ, quantizer error G, void-phase
and particle-phase percolation volume fraction φ1c and φ2c, and void-phase and particle-phase percolation radius
a1c and a2c for different parameter χ’s in 2D.

χ T1 (φ = 0.2) T1 (φ = 0.5) τ G φ1c = 1 − φ2c a1c = a2c

0.05 0.2753 0.1858 0.193 0.1364 0.3041 0.5840
0.1 0.1964 0.1214 0.393 0.1229 0.2904 0.5692
0.15 0.1554 0.0886 0.588 0.1134 0.2790 0.5564
0.2 0.1291 0.0704 0.787 0.106 0.2693 0.5448
0.3 0.1015 0.0502 1.241 0.096 0.2597 0.5238
0.35 0.0842 0.0408 1.488 0.0903 0.2498 0.5117
0.4 0.0710 0.0331 2.459 0.0863 0.2316 0.5071
0.45 0.0657 0.0282 4.248 0.0845 0.2139 0.5083
0.465 0.0645 0.0274 4.443 0.0844 0.2129 0.5082
0.48 0.0635 0.0272 4.839 0.0842 0.2095 0.5090

TABLE IV. Same as above, except for 3D.

χ T1 (φ = 0.2) T1 (φ = 0.5) τ G φ2c φ1c a2c a1c

0.02 0.1572 0.0938 0.107 0.1111 0.3182 0.0299 0.4483 0.8970
0.0555 0.1221 0.0647 0.336 0.1050 0.3384 0.0261 0.4536 0.8572
0.0833 0.1061 0.0551 0.518 0.1015 0.3536 0.0242 0.4583 0.8351
0.1333 0.0911 0.0433 0.835 0.0967 0.3832 0.0225 0.4672 0.8019
0.1666 0.0826 0.0387 1.040 0.0942 0.3884 0.0205 0.4664 0.7878
0.2083 0.0779 0.0342 1.231 0.0917 0.405 0.0196 0.4702 0.7700
0.2333 0.0722 0.0317 1.420 0.0902 0.4185 0.0181 0.4739 0.7623
0.2777 0.0668 0.0289 1.745 0.0881 0.4300 0.0192 0.4753 0.7446
0.3333 0.0612 0.0254 2.258 0.0858 0.4525 0.0199 0.4804 0.7253
0.369 0.0593 0.0236 2.740 0.0849 0.4591 0.0198 0.4814 0.7166
0.4133 0.0561 0.0213 3.575 0.0839 0.4764 0.0194 0.4864 0.7082
0.4598 0.0537 0.0202 4.704 0.0823 0.4939 0.0201 0.4917 0.6992
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