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ABSTRACT: Experimental observation of coexisting isotropic
chiral liquids for a single molecular substance has motivated
creation of a simple lattice model to investigate phase transitions
in such systems. Specifically, this model permits the
simultaneous existence of two distinct types of critical points,
the familiar liquid−vapor case, and a case involving spontaneous
chiral symmetry breaking within the fluid system. The molecular
interactions involved may extend beyond nearest neighbor
lattice cells. The mean field approximation has been invoked to
attain explicit results, which include a description of the singular
situation for which the two critical points undergo confluence in
the temperature−density plane. In particular, this confluence
enhances the chiral symmetry breaking phenomenon, leading to
a modified critical exponent.

I. INTRODUCTION

Critical phenomena exhibited by thermally equilibrated many-
body systems have continued to generate widespread interest in
both the experimental and the theoretical communities. One of
the more unusual circumstances among the liquid-state
observations involves the appearance of a pair of critical points
(solution consolute points) at upper and lower temperature
limits of isobaric closed-loop coexistence curves.1,2 The size and
shape of these equilibrium coexistence curves, and therefore the
proximity of the critical points, can be manipulated by varying
the applied pressure and the overall chemical composition of
the system. In principle, such conditions might exist that could
bring the pair of critical points arbitrarily close, and thus to
converge to a “double critical point”.
Recent experimental observations have led to the possibility

of an analogous, but qualitatively distinct, pair of fluid-state
critical points exhibited by single component molecular systems
in thermal equilibrium. Specifically, examples have been
identified of coexisting isotropic chiral liquids that become
visibly distinguishable under polarized light, with clearly
identifiable contact interfaces.3,4 Although not yet directly
observed, it is reasonable to assume that a set of flexible
molecular substances could be identified that under proper
equilibrium conditions would present both a conventional
liquid−vapor critical point, as well as a chiral-symmetry-
breaking critical point.
A three-dimensional continuum flexible tetramer model has

recently been introduced and analyzed by molecular dynamics
simulation, specifically to illustrate the phenomenon of
spontaneous chiral symmetry breaking.5 The intramolecular
interactions assigned to each tetramer create a pair of mirror-
image stable structures for the isolated molecules, between
which relatively high energy transition states permit chiral
inversions to occur, given sufficient excitation energy. The

model also includes a simplified intermolecular pair interaction
with parameter control that allows spanning both enantiopure
(equal chirality) and racemic (opposite chirality) preferences.
With the former choice, lowering the temperature isochorically
in the simulations produced a continuous phase transition
critical point from a single racemic fluid phase to coexistence of
immiscible isotropic chiral fluids. The presence in the model
also of overall short-range attraction between tetramers
regardless of their chirality certainly leads as well to the
possibility of a conventional racemic-liquid, racemic-vapor
critical point, at an appropriate temperature-density state.
To produce a stripped-down statistical model exhibiting a

pair of critical points analogous to those expected for the
detailed tetramer model, a conceptually simple lattice version
has been created. Its description appears in the following
section II. Section III introduces a mean field approximation to
produce at least a qualitatively valid view of the chiral-
symmetry-breaking phase change exhibited by that lattice
model, which is then detailed in section IV. Section V applies
that mean field approximation to description of the liquid−
vapor phase transition and its own critical point. The nature of
the possible confluence of these two critical points forms the
subject of section VI, leading up to the final section VII that
contains concluding remarks.

II. LATTICE MODEL

The present investigation will focus on a three-dimensional
Bravais lattice arrangement of M equivalent cells, subject to
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periodic boundary conditions. Each cell may be empty or,
alternatively, may contain at most a single particle. Because this
lattice model is intended as a coarse-grained version of the
chiral tetramer model,5 the instantaneous status of each cell i (1
≤ i ≤ M) will be identified by a discrete occupancy variable νi,
whose three distinct values are assigned as follows:

ν = − ‐

=

= + ‐

1 (left handed chiral occupant),

0 (empty cell),

1 (right handed chiral occupant)

i

(1)

The overall numbers of left-handed (N−) and of right-
handed (N+) enantiomers therefore are
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so that the overall particle count on the lattice is

∑ ν= + =+ −
=

N N N
i

M

i
1

2

(3)

The drastic configurational simplification produced by trans-
forming to the lattice model eliminates the possibility of
realistically describing crystallization transitions that arise in the
foregoing more detailed tetramer model.5

A potential energy function Φ(ν1,ν2,...,νM) is assigned to each
cell occupancy pattern. This must be invariant to overall mirror
inversion symmetry, thus requiring

ν ν ν ν ν νΦ = Φ − − −( , ,..., ) ( , ,..., )M M1 2 1 2 (4)

The pairwise-additive intermolecular potentials contained in
the prior tetramer model5 are a feature to be transcribed
qualitatively into the present coarse-grained lattice description.
That requirement can be implemented by accepting the
following Φ format:

∑ ∑ν ν ν ν ν φ ννφΦ = +
= =

−

r r( , ,..., ) [ ( ) ( )]M
i

M

j

i

i j J ij i j K ij1 2
2 1

1
2 2

(5)

where rij stands for the scalar distance between the centers of
cells i and j. Here the role of particle pair interaction function
φJ is to be primarily negative, so as to provide an overall
attraction between the particles, regardless of their chirality. By
contrast, φK is present to distinguish between the chiralities of
the two particles involved; if this function is primarily positive it
favors opposite chiralities (racemic preference), but if it is
primarily negative, it favors equal chiralities (enantiopure
preference). To conform to the foregoing tetramer model, it
will be assumed that the spatial variations of φJ and φK are no
longer-ranged than rij

−6.
The three distinct values of the cell occupancy variables νi

can be interpreted as defining a spin-1 Ising model.
Consequently, this description places the present model in
close relation to the “tricritical Ising model” that was
introduced to explain the low temperature phase behavior of
He3−He4 mixtures.6 However, that earlier spin-1 Ising model
only involved nearest-neighbor interactions, in contrast to the
possibly longer range contributions contained in eq 5. It is also

important to note that the intrinsic chirality inversion described
by spin sign change, eqs 1 and 4, does not have a
correspondingly precise binary symmetry for the helium
isotope mixtures. This inequivalence indicates that critical
point confluence in the present lattice model does not
necessarily imply the appearance of the same type of confluence
for observable phase behavior of helium mixtures.
A principle objective is evaluation of a canonical partition

function for a fixedM, and a fixed total number of particles N ≤
M. Each particle present can spontaneously undergo chiral
inversion, so N+ (and thus N−) can vary between obvious
extreme limits. The relevant configurational part of the classical
canonical partition function at absolute temperature T can be
expressed as follows:

∑ω ν ν= −Φ

≡ −

ν
Z M N T k T

F M N T k T

( , , ) exp[ ( ,..., )/ ]

exp[ ( , , )/ ]

N
M N

M
{ }

( , )

1 B

B

i

(6)

where F is the corresponding configurational Helmholtz free
energy, ω is the cell volume, and kB is Boltzmann’s constant.
The summation covers all occupancy configurations subject to
the fixed-M and fixed-N constraints.

III. MEAN FIELD DESCRIPTION
As already indicated, the lattice model description presented in
the preceding section II amounts to a special case of a three-
dimensional spin-1 Ising model. To extract useful information
straightforwardly from its configurational partition function eq
6, it is necessary to impose a basic simplifying approximation.
For present purposes the mean field approach suffices. This
presumes that each particle interacts via φJ and φK with its local
environment that is assumed to be compositionally equivalent
to the system-wide macroscopic densities of left-handed and
right-handed particles. That approximation implicitly supposes
that the overall system at fixed M and N is occupied by a single
homogeneous phase, a presumption that needs to be revisited
later. Such a mean field assumption causes the canonical
configurational partition function eq 6 to undergo a drastic
simplification to the following form in the large-system limit:

∑ω≈ !
− ! ! !

× − + −

= + −

+ −

+

Z M N T
M

M N N N
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2 2
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Here the mean-field coupling parameters J and K are
determined by the relations

∑
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In a situation where J < 0 and K = 0 the system would exhibit
a single critical point, involving liquid−vapor separation. The
contrasting situation where J = 0 and K < 0 would also generate
a single critical point, but instead involving separation of
opposite chirality phases of equal number densities. Of course,
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the objective of the present analysis is to describe the
simultaneous presence of both critical point types.
For the purpose of algebraic clarity, let intensive variable −1

≤ x ≤ +1 measure a configuration’s deviation from racemic
symmetry:

= +

= −
+

−

N x N

N x N

(1 ) /2

(1 ) /2 (9)

The configurational free energy emerging from eq 7, in the
large-system limit of interest, is dominated by the maximum
term (or terms) of the summand. Using Stirling’s formula for
factorials, this immediately produces the following expression
for the negative of the configurational free energy per particle:

⏟

ω

−

≈ + − − −

+ − + − + +

− − − −

⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟

⎪

⎪

⎪

⎪

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎛
⎝⎜

⎞
⎠⎟

⎧⎨
⎩

⎛
⎝⎜

⎞
⎠⎟

⎫⎬
⎭

F M N T Nk T
M
N

M
N

M
N

M
N

JN
Mk T

x x

x x
KN

Mk T
x

( , , )/

ln ln 1 ln 1

ln 2
2

1
2

max (1 ) ln(1 )

(1 ) ln(1 )

x

B

B

B

2

(10)

The maxima with respect to x (i.e., free energy minima) can
be located by setting the x derivative of this last expression
equal to zero (while verifying that the corresponding second
derivative is negative). This leads to the following determining
formula satisfied by the extremal x values:
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= −
⎡
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⎞
⎠⎟

⎤
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x
1
1

exp
2

B (11)

where ρ = N/M is the particle number density on a per-cell
basis.
It should be mentioned once again that the applicability of

eqs 10 and 11 rely on the assumption that the system consists
of a single homogeneous phase. As will be detailed below, this
will be the case if the occupation density ρ is sufficiently large.

IV. CHIRAL SYMMETRY BREAKING TRANSITION
When K ≥ 0, the only (real) solution to eq 11 is x = 0, the
expected racemic state at all temperatures. Changing the sign of
K, however, leads to the appearance of chiral symmetry
breaking within the homogeneous racemic fluid, provided that
|K| is substantially larger than |J|, and that the temperature is
sufficiently low. Figure 1 presents the corresponding numerical
results from eq 11 for x versus the dimensionless parameter
Kρ/kBT. As this parameter declines below −1, the free energy
minimum at x = 0 continuously transforms into a maximum
that immediately becomes surrounded by a symmetric pair of
free energy minima. These latter are the indicators of the
spontaneous chiral symmetry breaking transition whose critical
point temperature T± in the mean field approximation
therefore occurs at

ρ= −±k T KB (12)

where particle coverage density ρ = N/M refers to a single
homogeneous phase occupying the entire macroscopic system.
The initial appearance of broken chiral symmetry that occurs
upon lowering the temperature below T± can be illustrated by
setting

ρ ε= − −K k T/ 1B (13)

where ε ≥ 0. Then by carrying out x expansions to fourth order
for both the left and right members of eq 11, one finds that the
leading-order extent of chiral symmetry breaking is described
by

ε ε= ± +x O(3 ) ( )1/2 3/2 (14)

a behavior graphically evident in Figure 1.

V. LIQUID−VAPOR TRANSITION
The next step involves assuming that coupling constant J is
negative, while for the coverage fraction ρ = N/M and
temperature T ranges to be considered now, the other coupling
constant K is sufficiently weak by comparison that spontaneous
chiral symmetry breaking has not yet occurred. In other words,
for this section the dominant term in the configurational
partition function will remain at x = 0 (N+ = N− = N/2).
Therefore, eq 10 simplifies to produce the following relevant
expression:

ω− ≈ + − − −

− −⎜ ⎟
⎛
⎝
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⎝⎜
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F k T N M M M N M N

N
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Mk T

/ ln ln ( ) ln( )
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2 2

B
2

B (15)

To locate any liquid−vapor critical point exhibited by cooling
the racemic fluid, it is necessary to examine the equilibrium
pressure equation of state as the lattice coverage fraction varies.
The pressure p can be extracted from F by an isothermal
volume derivative:

ω

= − ∂
∂

≈ − ∂
∂

⎜ ⎟
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⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

p
F
V

F
M

1
N T

N T

,

, (16)

where the lattice model volume measure ωM can be treated as
a continuous variable for the macroscopic system size regime of
interest. Consequently, eq 15 leads to the following simple
expression:

ω ρ ρ= − − +p k T Jln(1 ) /2B
2

(17)

where ρ = N/M continues to represent the particle number
density on a per-cell basis.

Figure 1. Numerical values of chirality intensity variable x vs the
coupling parameter Kρ/kBT, determined by eq 11.
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The existence of a liquid−vapor critical point and its
associated phase separation rest upon the stated condition J <
0. Their locations within the mean field approximation can be
obtained by plotting the family of pressure vs volume curves, or
more specifically the pω vs 1/ρ curves. The critical point is the
location of the highest-temperature occurrence of a vanishing
slope of these curves for 0 < ρ < 1, to be determined by

ω
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ρ
ω
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ρ
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=
∂
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= −
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−

− −
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[ ]

T T
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2
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B
(18)

From the zeroes of the second factor in the last expression, that
condition implies

ρ = ± + k T J(1/2){1 [1 (4 / )] }B
1/2

(19)

so that locating the liquid−vapor critical point temperature Tlv
requires the two solutions to coincide, i.e.

ρ

= −

≡ =

k T J

N M

/4

( / ) 1/2

lv

lv lv

B

(20)

This single critical point location in the T, ρ plane for fixed J
contrasts qualitatively with the continuous chiral-symmetry-
breaking critical point set T±(ρ) for fixed K < 0 described
earlier by eq 12.
If the temperature were to decline below Tlv, for which one

can then write (η > 0)

η= − +k T J4 / 1B (21)

then the split pair of densities, at which the vanishing
derivatives via eq 18 formally occur, locate the spinodal curves
generated by the mean field approximation:

ρ η= ±(1/2)[1 ]sp
1/2

(22)

However, more direct relevance for the present investigation
involves the prediction of the temperature dependence of the
liquid−vapor equilibrium coexistence densities ρl and ρv. These
can be extracted from the pω vs 1/ρ family of curves by using
the Maxwell equal-areas construction,7 which assures equality
of chemical potential for the two coexisting racemic fluids. The
leading-order results for small η only require locally
approximating the curve shapes through cubic order in 1/ρ,
with the result

ρ ρ η η= ± + O, (1/2)[1 (3 ) ] ( )vl
1/2

(23)

Figure 2 provides a schematic isochoric (ρ = 1/2) scenario of
the liquid−vapor critical region, showing as well a separate
lower-temperature, higher-density critical point for the chiral
symmetry breaking phenomenon. The curves appearing in the
three-dimensional space of absolute temperature T, density ρ,
and chiral asymmetry x, represent the properties of the
individual homogeneous phases, portions of which can
simultaneously be present. Under the isochoric constraint ρ =
1/2 for appearance of the liquid−vapor critical point, the
thermodynamic equilibrium states that have been subject to the
phase transitions would involve coexistence of macroscopic
quantities of those homogeneous phases in relative amounts
conforming to the overall isochoric constraint. In this
connection it is worth noting that three distinct fluid−fluid

interfaces will appear, each with its own characteristic
temperature-dependent surface tension. These are associated
respectively with (a) the liquid−vapor coexistence for the
racemic fluids just below their critical point at Tlv, (b) the
contact interface between the coexisting opposite-chirality
isotropic liquids for T < T± as determined by the applicable
ρl(T), and (c) the chiral-liquid, racemic-vapor interface at
coexistence, also for T < T±.
It should be mentioned that the existence of the chirality-

emergence phase transition would be accompanied by a change
in the temperature dependence of the vapor pressure, which in
principal would influence the T < T± shape of the racemic
vapor phase curve that is present in Figure 2. In the low
temperature limit, that racemic vapor phase approaches ρ = 0,
while the chiral liquids in that temperature limit approach ρ =
1, x = ±1.

VI. CRITICAL POINT CONFLUENCE
Increasing the magnitude of an initially small negative coupling
constant K while holding J < 0 fixed obviously causes T± to drift
upward toward Tlv. By comparing eqs 12 and 20, one sees that
these critical temperatures become coincident at density ρ = 1/
2 when those negative coupling constants J and K obey

=K J/2 (24)

This of course constitutes confluence (cfl) of the two
otherwise distinct critical points to produce a single
qualitatively novel critical feature for J, K < 0 located at

ρ

= − = −

=

k T J K/4 /2

1/2
B cfl

cfl (25)

Note that this critical point confluence situation would cause
three distinct fluid phases to emerge continuously from the
single critical point as the high-temperature ρ = 1/2 racemic
fluid is cooled isochorically through that temperature point.
Figure 3 schematically illustrates these coexisting phases
(racemic vapor, and two opposite-chirality isotropic liquids)
emanating from the common critical point. As a result of this
critical point confluence, now only two distinct interfaces and
their corresponding surface tensions are present: (a) the

Figure 2. Isochoric scenario indicating both a high temperature
liquid−vapor critical point at Tlv, and a lower temperature, higher
density, chiral-symmetry- breaking critical point at T±. The curves
shown in this T, ρ, x space represent the intensive properties of the
homogeneous phases that would appear simultaneously under the
coexistence conditions enforced by the system’s overall isochoric
constraint, ρ = 1/2.
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racemic-vapor, chiral liquid coexistence contact and (b)
coexistence contact of the two isotropic opposite-chirality
liquids.
A basic issue is whether the critical point confluence

qualitatively affects the shapes of the coexistence curves just
below that critical point. Note that condition (24) leads to a
simplified version of the free energy expression, eq 10:
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from which a trivially modified version of eq 11 arises:
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In eq 26 the maximum-producing chiral symmetry breaking
parameter x will deviate from zero provided that ε > 0, where
now

ε ρ

ρ

= − −

= + Δ
− Δ

−
⎡
⎣⎢

⎤
⎦⎥

J k T

k J T

( /2 ) 1

1 2
1 (4 / )

1
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B (28)

showing explicitly how the extended definition of this quantity
from eq 13 depends on the density and temperature deviations
from the location of the confluent critical point:

ρ ρ ρ= + Δ

= + ΔT T T
cfl

cfl (29)

The configurational free energy now takes the following
form:

ω

ε ε θ ε

− ≈ + − − −

− + + +

F k T N M M M N M N

N N N N

/ ln ln ( ) ln( )

ln( /2) (1 ) (3 /4) ( )
B

2

(30)

where the specific version shown for the last term is its leading-
order contribution in ε, which is sufficient to establish the
system’s behavior just below the confluent critical point. The
Heaviside unit step function θ has been incorporated to ensure
that this last term contributes to F only when ε > 0.
The system pressure can again be obtained from F by a

volume derivative, and the Maxwell equal-areas construction7

can again be used to guarantee that the coexisting phases below
the confluent critical point possess the same chemical potential.
For states with ε < 0, the previous pressure eq 17 still applies.
However, the additional contribution for ε > 0, the last term in
eq 30, provides additional cohesive stabilization for the chiral
liquid, thus reducing its pressure. This depression naturally
influences the Maxwell construction, causing at a fixed ΔT < 0 a
wider separation between the densities of coexisting racemic
vapor and chiral liquid. However, this effect arises just from a
fractionally small increase in liquid binding, compared to that
already present at the confluent critical point. Therefore, the
same mean-field-predicted coexistence density exponent 1/2, as
appeared in eq 23, still applies for the system’s behavior just
below the confluent critical point.
However, a qualitatively different outcome emerges from the

critical behavior of the extent of chiral symmetry breaking. This
arises in connection with the density variation of T± indicated
earlier, eq 12. As a result of the confluence, the chiral symmetry
breaking phenomenon is not subject to a fixed number density
ρ, but to the liquid density rising by an amount proportional to
|ΔT|1/2 as T declines. Consequently, the applicable parameter x
exhibits the following leading-order temperature dependence:

ε

ρ

≅ ±

∝ ± Δ

∝ ± |Δ |

= ±|Δ |

x

T

T

(3 )

( )

( )

1/2

1/2

1/2 1/2

1/4 (31)

This reduction of the chiral symmetry breaking critical
exponent by a factor of 2 constitutes a distinctive characteristic
of critical point confluence for the two different types of particle
segregations driven by the negative interaction parameters J and
K.

VII. CONCLUDING REMARKS
Having discussed the effects at the half-filled density ρ = 1/2 of
raising the chiral-symmetry-breaking critical point temperature
T± from substantially below Tlv until these two coincide, it is
natural to inquire whether continuation at the same overall
system density 1/2 can yield a nontrivial situation where again
two critical points appear with T± > Tlv. A straightforward
analysis indicates that upon isochoric cooling, an initially high-
temperature chiral liquid at this density 1/2 would not exhibit a
liquid−vapor critical point. Instead, cooling the chiral liquid
phase would cause its pressure to decline until it equaled an
equilibrium vapor pressure, at which point a first-order
vaporization transition would occur. In other words, when
|2K| > |J|, the high temperature chirality occurrence pre-empts
appearance of a conventional liquid−vapor critical point.
Although the mean-field approximation for the present three-

dimensional model should be expected to yield qualitatively

Figure 3. Isochoric (ρ = 1/2) emergence pattern of three coexisting
homogeneous fluid phases, indicating their intensive properties in the
T, ρ, x space when the negative coupling parameters J and K are
chosen to cause confluence of the critical points, eqs 24 and 25.
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reasonable results, it obviously would be desirable to compare
those results with the corresponding predictions of more
sophisticated approaches. Specifically, it would be useful to
apply Monte Carlo numerical simulations of the lattice model
to test the accuracy of the various predictions offered in the
previous sections IV−VI above. One important aspect of such a
comparison would be to establish numerically the effects of
varying the spatial ranges of the pair interaction functions φJ
and φK.
The extensive history of work devoted to critical exponents8

has revealed the imprecision of the mean field predictions in
three-dimensional cases involving finite range pair interactions.
Specifically, the square-root results for coexistence curve shapes
in eqs 14 and 23 above are expected to be reduced to
approximately 5/16. The renormalization group formalism9,10

certainly deserves to be applied here, and the unusual critical
point confluence exponent estimated to be 1/4 in eq 31 would
be a novel case for analysis by the renormalization group
approach.
Although not directly the object of this study, it was pointed

out above that several cases of interfacial tension arise in the
present model for contact between coexisting fluid phases.
Determining the temperature dependence (∝|ΔT|μ) of those
fluid pairs emerging directly from a single or a confluent critical
point would be a sensible objective for future research. In
particular, it would certainly be informative to compare
exponent μ results for the present model to the critical
exponent extracted from experimental measurements on
conventional fluids in the neighborhood of their conventional
liquid−vapor critical points:11

μ ≅ ≅1.26 5/4 (32)

An inevitable final comment is that sustained experimental
effort might well be expended to broaden the range of known
flexible molecular substances that exhibit coexisting isotropic
chiral liquids. This would enhance the likelihood of
encountering experimentally the kind of critical point
confluence that the present simple spin-1 Ising model has
been constructed to illuminate.
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