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~he ch~rge moment :xpansion for potentials of mean force acting between the ions of an electrolyte is 
revIewed In ~ for?I applIcable to surface ph~se~. A~ integral equation is in this manner derived for approxi­
mate determInatIOn of the average charge dlstnbutlOn near a planar electrode. The solution of the linearized 
e;:Iuation is constructed for an electrolyte consisting of charged hard spheres suspended in a dielectric con­
tInu~m. For very diI~te solutions, the predictions of the linearized Poisson-Boltzmann equation are verified; 
~t ~Igher concentratIOns, the average space charge in the neighborhood of the electrode tends to alternate 
In sl~n as a result of local lattic~like ion. arrangement imposed effectively by short range ion repulsions. 
PredIcted values of the r potentIal relatIve to those of the linear Poisson-Boltzmann theory are reported. 

I. INTRODUCTION 

THE understanding of the molecular basis of the 
diffuse, or Gouy, double layer provides insight into 

a number of phenomena of interest to electrochemists. 
In particular, it is possible to analyze the several 
electrokinetic phenomena (e.g., electrophoretic mi­
gration velocities and streaming potentials) to predict 
the stability of lyophobic colloids toward added salt, 
and to interpret the capacitance of metal electrodes in 
contact with electrolytic solutions. Theoretical deter­
mination of average ion distributions in diffuse double 
layers typically has employed, in the past, the Poisson­
Boltzmann equation as adapted to the surface region. 
Recent developments for the planar interface are con­
cerned either with solution of the Poisson-Boltzmann 
equation retaining nonlinear terms,I-3 or, assuming this 
equation as a basis, with introduction of complicating 
ad hoc physical models to account for such electrolyte 
parameters as ion size and degree of hydration. 4-6 

Although such extensions are interesting and perhaps 
intuitively appealing, it is nevertheless true that the 
Poisson-Boltzmann equation can give at best only an 
approximate description of the molecular situation. The 
linear terms in the average electrostatic potential (with 
the Poisson-Boltzmann equation in expanded form) are 
alone consistent with a rigorous integrability condition 
satisfied by the excess electrostatic free energy.7 

The viewpoint adopted in the following analysis 
involves determination of local ion densities in the 
double layer region from the well-developed funda­
mental theory of molecular distribution fimctions. 

* Based upon part of a doctoral thesis submitted by Frank 
Stillinger, Jr. to the Graduate School Faculty at Yale University. 
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2 B. Breyer and F. Gutmann, J. Chern. Phys. 21, 1323 (1953). 
3 J. R. Macdonald and M. K. Brachman, J. Chern. Phys. 22, 

1314 (1954). 

Specifically, a moment expansion in increasing orders 
of charge for a particular ion is derived for the potential 
of mean force acting in a set of particles (including the 
chosen ion). This is the diffuse double layer version of a 
similar treatment of bulk electrolytes which has been 
carried to some length by Kirkwood and Poirier.8 An 
alternative approach to our present problem would 
introduce a conditionally convergent Mayer cluster 
expansion appropriate to the interfacial region; in 
order to obtain finite results for the ionic distribution 
functions, it would be necessary, as is well known, to 
select certain sets of clusters for partial summation.9 

By way of illustrating the profound effect that finite 
ion size can have upon the average charge distribution 
in the double layer, our distribution function technique 
is formulated in approximate fashion to deal extensively 
with an idealized electrolyte. The electrolyte is regarded 
as consisting of charged rigid spheres suspended in a 
dielectric continuum, and a planar, uniformly charged 
electrode produces the double layer in this model fluid. 
It is in fact then possible to establish that both the 
ion-exclusion volumes and the electrostatic charges are 
instrumental in determining even the qualitative fea­
tures of the distributions of ions. For sufficiently large 
dilutions, the usual linear Poisson-Boltzmann result is 
obtained, but as the electrolyte concentration is allowed 
to increase, the short-range ion-ion repulsions tend to 
set up a local lattice like structure with alternating 
layers of positive and negative charge. Numerical 
computations for the reduced r potential clearly reflect 
the ionic ordering at distances further from the elec­
trode than would be predicted by the linear Poisson­
Boltzmann theory. 

n. MOMENT EXPANSION 

The molecular system to be discussed consists of a 
large set of N particles of species 1· • ·TT, some of which 
are electrostatically charged (ions). These particles 
will be enclosed within a volume v. The surface of this 

4 Freise, Z. Elektrochem. 56, 822 (1952). 
/; R. Schliigl, Z. Physik 202, 379 (1954). 8 J. G. Kirkwood and J. C. Poirier, J. Phys. Chern. 58, 591 
6 J. J. Bikerman, Phil. Mag. 33, 384 (1942). (1954). 
7 R. H. Fowler and E. A. Guggenheim, Statistical Thermody- 9 In this connection, see F. P. Buff and F. H. Stillinger, Jr., 

namics (The MacMillan Company, New York, 1956), p. 387. J. Chern. Phys. 25, 312 (1956). 
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THEORY OF THE DIFFUSE DOUBLE LAYER 1283 

volume may be regarded as a mathematical surface of 
discontinuity in the sense that it may be crossed by 
none of the particles. It might, for example, be repre­
sented by an infinitely steep and high potential barrier. 
It is necessary to have a certain portion of the con­
taining surface (such as one face of a rectangular solid 
volume 'lI) correspond to a charged electrode, which 
induces the Gouy double layer by creating an appro­
priate external force field. 

Each of the N particles comprising our electrolyte 
is therefore subject to forces arising either from the 
charged electrode or from the other fluid particles. The 
total potential of interaction accordingly is split into 
single-particle, and particle-pair contributions, attrib­
utable to these two sources, respectively, 

N N 
VN (1 .. ·N) = L:V,,/I) (i) + L: Va iaF) (ij) , 

i=l i<i=1 

(1) 

Here, (Xi and (Xj denote the species of particles i andj. 
Each of the singlet and pair potentials, furthermore, 
may be separated into parts of electrostatic (e), and 
short-range (s) character. 

Va/I) (i) = Va/l,s) (i) +~iVai(1,e) (i), 

V,,;a/2) (ij) = V,,;ap·8) (ij) +~i~jVaia/2,.) (ij) , (2) 

We have, for the sake of convenience, introduced 
charging parameters ~i for each of the particles in the 
ionic fluid, such that the charge on i will be ~ie ( -e is 
the electronic charge). For neutral solvent species, ~i 
will of course vanish. 

Specifically, the electrostatic interactions V(I,e) and 
V(2,e) will be written (including a dielectric constant 
appropriate to the fluid medium) 

V"y,e) (i) = V(I,e) (Xi) = - (211"O"e/D)x.+ A, (3) 

V",,,/2,e) (ij) = V(2.e) (rij) =e2/Drij. (4) 

The singlet and pair electrostatic interactions therefore 
are species independent. The potential V(l,e) has been 
chosen as that for a uniformly charged (0" esu/cm2) 

planar electrode, with distance Xi measured normal to 
its surface and directed inward toward the solution. 
The value of the additive constant A depends upon 
the choice of a zero of potential energy; its magnitude 
can in no way affect the ionic distributions. 

The probability of observing a set of n particles 
such as 1··· n (the first particle is species (x, "', the 
nth particle is species 11) in a given set of positions 
rl' , . rn in the system, is conveniently expressed in 
terms of a molecular correlation function g" ... v (n) (1· •• n). 
gin) is normalized to unity when each member of the 
set 1··· n is far both from other members of the set, 
and from the double layer region. gin) may be written 
as a phase space integral of the normalized canonical 
distribution, over the configurations of the remaining 

N - n particles, correct to terms of order N-l, 

g" .... (n) (1 .•. n) =exp[ -/3fV" ... /n) (1·· ·n)] 

vn {··1 exp[ -(:WN(t .. ·N) ]d'lln+l" ·dVN 

{ .. 1 exp[ -/3VN(1 .. ·N)]d'/lt· .. dvN 

/3= (kT)-t, (5) 

where Win) is the potential of mean force for the n 
particle set. 

When each of t· .. n is microscopically far from the 
double layer region, gin) assumes a value g(n,b) typical 
only of the bulk structure of the electrolytic fluid, and 
hence completely independent of the nature (shape, 
charge distribution) of the surface of the system. In 
particular, the pair correlation function g(2,b) depends 
only on the radial distance r separating a pair of 
particles. 

The quantities of dominant interest for the double 
layer development are the singlet distributions, gail) (r). 
In the interior of the fluid they are unity, but devia­
tions occur near the electrode on account of non­
vanishing average force acting on a single particle 
there. For a position r within the Gouy double layer, 
the mean electrostatic charge density pel may be 
expressed trivially in terms of the several g" (1) , 

Pel ( r ) tc"~,,ega (1) ( r) . (6) 
a=1 

c" is the bulk concentration of the (Xth species, and does 
not differ significantly from the reciprocal volume per 
(X particle computed for the entire system volume 'lI. 
This charge density Pel vanishes when r is within the 
bulk fluid; here, then, one has a bulk electroneutrality 
condition 

(7) 

If our system includes the uniformly charged planar 
electrode giving rise to the potential (3), a second 
electroneutrality condition may be formulated. The 
average charge residing in the double layer must 
precisely neutralize the charge density 0" 

-0"= /"pel(x)dX. (8) 

The limits of integration on X, the normal distance to 
the electrode, must span the region over which excess 
space charge attributable to the ionic fluid is sensibly 
different from zero. These limits will be, respectively, 
just within the electrode (l), and well inside the elec­
trolyte bulk (u). 

The distribution of charge both on the electrode 
and induced within the electrolyte as the diffuse double 
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layer produces an average electric field. On account of 
the complete and exact shielding of the electrode charge, 
as illustrated by condition (8), this mean field will be 
nonzero only within the Gouy layer. By integration, 
the field defines an average potential if;(r) at a point r 
in the double layer relative to the bulk liquid. The 
value of if;(r) for the present situation (planar, uni­
formly charged electrode) will depend only on the 
coordinate x. Simple electrostatics suffices to provide 
the result 

if;(x) = (41f/D) {(X-y)pel(Y)dY. (9) 

Once again the upper integration limit u on y must be 
sufficiently large that Pel is substantially zero. The 
value of if; at the electrode surface defines the S po­
tential. 

The correlation function definitions (5) may be 
manipulated to yield finally a power series expansion of 
each Wen) in the charging parameter ~j for one of the set 
1· .. n (we shall choose ~l)' In order to do so, first 
rewrite the total potential V N in the form, 

VN (1" ·N; ~l) 

=~l[V(l,.) (1) + :t~jV(2'.) (lj ) + Vl,N-n(2'.)J 

N 

Vl,N_n(2,.)= L: ~kV(2'·)(lk), (10) 
k=n+l 

which specifically emphasizes the dependence of this 
quantity on the charge of particle 1. If (10) is inserted 
in (5), the correlation functions may be transformed to 

g" ... .'n) (1 •. ·n; ~l) =exp{ -!3lV" ... .'n) (1 .. ·n; ~l =0) 

n 

-!3~l[V(l,·)(I) + L:~y(2,.) (lj) Jl 
j=2 

(exp{ -!3~lVl,N_n(2,.)} )~I=O(n) 
X (11) 

(exp{ -!3~l[V(l,') (1) + Vl,N_l(2,·)JI )h=O(O)' 

The angular brackets denote averages in a canonical 
ensemble in which particle 1 has been discharged (i.e., 
~l =0), 

(j )~I=o(f) 

(12) 

The process of removing, as in Eq. (12), the elec­
trostatic charge from a single ion in an electrolyte has 
no physically operational meaning. From the stand­
point of the correlation functions g(n), it is often con-

venient to regard a discharged ion as corresponding 
qualitatively to a noble gas atom (isoelectronic with 
the original ion) dissolved in the electrolyte. Since a 
discharged ion can interact with the electrode and other 
ions only through the short-range functions vel,s) (rl) 
and V(2,,) (r12) , the correlation functions ga(l) (rl; ~l =0) 
and gaIP)(rl, r2; ~1=0) can differ significantly from 
unity only when Xl and r12 are small enough to bring 
these potentials into play. This behavior contrasts 
sharply with the correlations acting between fully 
charged ions, which extend over many molecular 
diameters on account of the long-range nature of 
electrostatic forces. 

By taking logarithms in (11), and expanding the 
averaged exponential functions, the nth order potential 
of mean force becomes expressed as a contribution 
remaining when ion 1 is discharged, plus correction 
terms, which may be exhibited as the desired power 
series, 

n 

= Wa ... /n) (1·· ·n; ~l =0) +~l[V(l,e) (1) + L:~iV(2,.) (lj) J 
i=2 

= Wa .... (n) (1 .• ·n; ~l =0) +~l[V(l,e) (1) + :t~iV(2,e) (lj) J 
i=2 

00 (-13),-1 
+ L: I [A.(1· .. n) -A,J~l'. (13) 

8=1 S. 

M. and M, are moments of the electrostatic interactions 
involving particle 1 

M,= ([Vl ,N_n(2,e)J')h=o(nJ, 

M.= ([Vl ,N_l(2,.)+ V(l,e) (1) J' )~I=O(O)' (14) 

and are related to the cumulants A., "A. by the relationslo 

• (S-I) M.= L: -1 ArM,_r, 
. r=l r 

- · (S-I)_ -
M. = f r-l ArM._r, 

Mo=Mo=1. (15) 

On solving for the cumulants, one easily finds: 

Al=Ml , 

A2=M2- (Ml ) 2, 

&=Ma-3M~1+2(Ml)a, 

14=M4-4MaMl-3(M2)2+12M2(Ml)2_6(Ml) 4; (16) 

10 H. Cramer, Mathematical Methods of Statistics (Princeton 
University Press, Princeton, New Jersey, 1946), p. 185. 
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THEORY OF THE DIFFUSE DOUBLE LAYER 1285 

precisely the same relations (16) hold for the barred 
quantities. 

The power series (13) allows one, at least in prin­
ciple, to compute each nth order potential of mean 
force in ascending orders of ionic charge. In practice, 
the integral equations arising in this task require 
knowledge of higher order W's, and so in this sense are 
coupled to each other in complicated fashion. The 
following section proposes a scheme for circumventing 
some of these difficulties. 

III. APPROXIMATE DOUBLE-LAYER IONIC 
DISTRIBUTIONS 

Having outlined the general moment method for 
ionic correlations, we now proceed to apply these ideas 
specifically to the diffuse double layer region"t The 
terms of increasing ~l order in the complete expansion 
(13) rapidly become more and more complicated to 
evaluate, even for the single-particle distributions. We 
shall adopt the viewpoint, for the present, that reten­
tion of only those terms linear in ~l will yield a suffi­
ciently accurate description of the double layer.H In 
the interests of concreteness, furthermore, the electro­
lyte (chosen to be a single component salt solution) 
will be described as consisting of uniformly charged, 
spherically symmetric particles which are suspended in 
a dielectric continuum. The ions (anions and cations 
may have different short-range forces) can penetrate 
neither one another extensively on account of strong 
core repulsions, nor can they penetrate the planar 
electrode appreciably. The latter will act essentially as a 
rigid charged "wall," and for convenience the co­
ordinate system may be chosen to locate it near X=0.12 

It is a fairly simple matter to include the molecular 
nature of the solvent medium in the following develop­
ment if these latter particles interact with central 
forces. However, the results of this generalization differ 
only slightly from those to be obtained with the 
dielectric continuum, and hence do not seem to merit 
the extra notational complication. Attention, then, will 
be focused only on particles of ionic nature, and since 
we wish to consider only a single electrolyte, the 
relevant charge parameters ~l can assume only two 
values, ~+ (cations) and ~_ (anions). 

In the linear ~l approximation, the singlet potentials 
of mean force are written 

II Reference to Eqs. (13) shows immediately that this_approxima­
tion is_equivalent to replacing the moments M. and M. by (M,)' 
and (M,)'. 

12 The exact position of the electrode is not critical; we wish 
only to imply here that for x decreasing through zero, the short­
range electrode potential VO.s) (x) becomes rapidly very large 
(strong repulsion). 

As anticipated earlier, the additive constant A has no 
effect on these expressions for the Wa(l); it cancels in 
the combination 

One may immediately make certain simplifying 
observations concerning relations (17). Because of the 
symmetry of our problem about the electrode normal 
direction, the singlet mean-force potentials Wa(l) will 
depend only. on the Xl coordinate, as do V(l.e) and 
V(l •• ). In addition, the second of the two average value 
quantities in (17) is just a constant, independent of rl. 
In view of the fact that the electrostatic potential 
V(l.e) is a simple linear function of Xl, a considerable 
reduction in complexity is achieved by performing a 
twofold Xl differentiation on both members of (17) 

(19) 

CPa is a reduced electrostatic single-particle average 
potential for the species a, 

The quantities cpa therefore carry the long-range elec­
trostatic correlation of the diffuse double layer. 

By utilizing the definitions (5), the averaged po­
tential remaining in Eq. (19) may be expressed in terms 
of the singlet and pair correlation functions for the 
discharged particle 1 

(21) 

The integration in this last expression is over all con­
figurations r2 of a second ion inside the containing 
volume v. 

When Xl is sufficiently large, the ga(l)(rl; 0) do not 
differ sensibly from unity, and the pair correlations 
gall(2) (rl, r2; 0) may be replaced by the product of a 
bulk pair correlation, and the long-range singlet 
correlation for charged ion 2, 

This replacement is the analog, for the double-layer 
theory, of the superposition approximation used ex­
tensively in the molecular theory of bulk liquids. For 
the present purposes, it should be noted we find it 
necessary to use (22) only for large Xl, rather than over 
the entire range of values for this variable. 
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In view of the reduction (22), one is led to the 
integrodifferential equation, valid if Xl is not too small, 

d2cpa(XI) /JXI2= (e/Z,ru) [d21 (Xl) /dXI2J, 

I(X1) = f (dr2/r12)[c+~+ga+(2,b)(rI2; O)g+(!) (X2) 
• 

+C~_ga_(2.b)(rI2; O)g_(l) (X2)]. (23) 

Three contributions to I(XI) may be distinguished: 

I(XI) =I1(X1)+I2(XI)+Ia(XI), 

II (:r1) = f(dr2/r12) {C+~+ga+(2.b)(rI2; 0) 
• 

X [g+(l) (X2) -1 + (211"ue~+/DkT)cp+(X2) ] 
+C~_ga_(2,b) (r12; 0) 

X [g_(l) (X2) -1 + (211"ue~_/DkT)cp_(X2) Jl, 

12(x\) = f (dr2/r12) [c+~+ga+ (2,b) (r12; 0) 
v 

Ia(xI) = - (211"ue/DfoT) f (dr 2/rI2) 
• 

X[C+~+2ga+(2.b) (rI2; 0)cf>+(X2) 

+L~_2ga_ (2,b) (r12; O)cp_ (X2)]. (24) 

The square-bracketed quantities in II represent the 
nonlinear (in the CPa) portions of the singlet correlations 
in the double layer, as well as the nonelectrostatic 
(~2=0) correlation; these differ significantly from zero 
only in the immediate vicinity of the electrode. When 
Xl is large, therefore, the only contribution to the 
integral II occurs when rl2 is large, so that each 
ga/J(2.b) (r12; 0) is essentially just unity. As a result, 
then, II (Xl) represents (for Xl large) the potential 
energy of a uniform and somewhat diffuse sheet 
of charge density p*( r2), 

p*(rz) =c+~+[g+ (I) C«2) -1 + (211"ue~+/DkT)cp+(X2) J 
+L~_[g_(l) (X2) -1 + (211"ue~_/DkT)cp_(X2)]. (25) 

This amounts to concluding that II (Xl) is asymp­
totically a linear function of Xl similar to (3). 

Since the pair correlations ga/J(Z,b) (r12; 0) settle down 
rapidly to unity, the integrand of I 2(X1) differs from 
zero only when particle 2 is near 1. As a result, again 
valid for large Xl, the r2 integration may be extended 
over all space. It is established therefore that 12(XI) is 
asymptotically constant. 

On account of the double Xl differentiation in Eq. 
(23), only Ia(XI) will survive in the large Xl limit. 
After performing the requisite differentiations, and 
carrying out integrations parallel to the electrode 
surface, the cpa are found asymptotically to satisfy 

linear homogeneous integrodifferential equations 

d2CPa (Xl) / dxl = t 1'''' [K+ 2 ka+ (XI- X2) cP+ ( X2) 

+K_2ka_(Xl-X2)CP_(X2) JdX2, 

ka/J(XI-X2) = (d/dxl) ga/J(2,b) (XI- X2; 0), 

Ka2 =47rc" (~ae) 2/ DkT. (26) 

In the large Xl region, (26) is entirely independent of the 
lower X2 integration limit, since the ka/J decay rapidly to 
zero. The origin has been chosen as this lower limit, 
since it has been made roughly to coincide with the 
electrode surface. The pair correlation functions 
ga/J(2.b) have been defined in (26) as odd functions of 
theil" distance variable, so that the kernels ka(J are even. 
The well-known Debye-Hiickel parameter K, ap­
propriate to our electrolytic fluid, is related to K+ and 
Lby 

(27) 

Since Eqs. (26) were derived under the supposition 
that Xl was not small, the CPa can be given exactly 
over the entire range 0:::; Xl < 00 by adding suitable 
inhomogeneous functions ha to (26), 

d2cf>a(Xl) /dX1
2=ha(XI) +t t" [K+2ka+(XI- X2) cf>+ (X2) 

o 

+ L 2ka_(XI-X2)cp-(X2) JdX2. (28) 

The ha are essentially designed to correct for the fact 
that the local density of (3 ions, in the environment of a 
discharged a ion at rl near the electrode, is not pre­
cisely given by the expression 

It is of course necessary only that each ha differ from 
zero near Xl =0, since outside this small region (26) 
and (28) are identical. These inhomogeneous functions 
contain contributions arising through short-range 
force electrode interface correlations, through devia­
tions from superposability of the actual pair function 
gai2) near the electrode [ in terms of the approximation 
ga/J(2.b) (rI2) gael) (XI)g/J(I) (X2)], and finally through the 
nonlinear CPa terms neglected in the integral II (Xl) . 

It is rather instructive to examine the form of Eqs. 
(28) under a simplifying assumption regarding the 
bulk correlations ga/J(2.b) (r12; 0). In particular, suppose 
that each pair of ions, one of which is discharged, will 
be correlated only to the extent of exhibiting a sphere 
of exclusion, or impenetrability, of radius a (the same 
for all pairs). Accordingly, 

=1 (30) 

Since the derivative of this unit step is a Dirac delta 
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function, the kernels all have the common form 

ka{J(x) =o(x+a)+o(x-a). (31) 

Now when xI>a, the integral in (28) is trivial, and 
leads to a differential-difference equation satisfied 
by CPa, 

d2CPa(XI) /dXI2=ha(XI) +!l 142[cp+(XI+a) +cp+(XI- a)] 

+ K-2[cp-(XI+ a) +cp-(xl-a)]l. (32) 

If the ionic diameter a is allowed now to vanish, cP+ and 
cP_ satisfy the same second-order differential equation 
for Xl sufficiently large. Since the difference cP+ - cP_ 
tends to zero as Xl increases, both cp+ and cp_ must 
asymptotically be equal to exp( - KXI) times a common 
constant. These rather naive assumptions therefore 
lead to the exponential decay solutions characteristic 
of the Poisson-Boltzmann theory. It will become ap­
parent in the following section that retention of a 
finite ion size, even by means of the rather crude 
postulate (30), gives rise to solutions CPa, and hence 
singlet correlations, which are qualitatively different 
from this monotonic decay function. 

The pair of linear coupled Eqs. (28) may be formally 
solved by standard integral transform methods. It 
is desirable for this purpose to ex.tend the definition of 
cp",(XI) to negative Xl, as the solution of (28) for these 
values of the variable; we set ha(XI) identically equal to 
zero on the negative axis. The functions cp",(XI) may 
now be separated into two parts, CPa(n) (Xl) and cp",(p) (Xl), 
which are the negative axis, and positive axis parts of 
CP"" respectively, 

CPa(XI) =cp",(n) (Xl) +CPa(p) (Xl), 

CPa(p) (Xl) =0 

cp",(n) (Xl) =0 

As a consequence, (28) is equivalent to 

(d2/ dX12) [CPa (n) (Xl) +CP'" (p) (Xl) ] 

(33) 

In Fourier transform space, the integral equations 
(34) become a pair of simultaneous linear algebraic 
equations whose solution is elementary: 

<I>+(p)(z) 

- H+(z) - z2<1>+ (n) (z) !K-2K+ _(z) 
=l/D(z) 

-H_(z) _z2<1>_(n)(z) Z2+!K_2K __ (z) 

Z2+!K+2K+ +(z) -H+(z) _z2<1>+(n)(z) 
=l/D(z) ; (35) 

!K+2K_ +(z) -H_(z) -z2<p_(n)(z) 

(36) 

j +CD 

= _CD exp(izx) [cp"'(I') (x) , h",(x) , ka{J(x)]dx, 

a,I1=+, -, J.L=n, p. 

The inversion integrals are 

where the results (35) are to be inserted for <I>",(p)(z). 
The contour of integration for (37), when Xl is positive, 
may be closed along the infinite, lower half-plane 
semicircle; subsequently, cp",(XI) may be evaluated in 
terms of the poles Zj of the transform <l>a(p)(Z), lying 
below the real axis 

CPa(XI) = fAj,a exp( -iZjXI). (38) 
i~l 

The multiplicative constants Aj,a are related in the 
usual way to the residues at these poles 

Aj,a=i lim [(z-Zj) <I>",(p)(z)]. (39) 
z-:'?z j 

These constants must naturally be such to make cP+ and 
cP_ real functions of the real variable Xl. 

Computation of the Aj,a by (39) clearly requires 
knowledge of <l>a(n) (z). This transform must have the 
property of making the inversion integral (37) vanish 
identically for every negative Xl. In practical cases, 
this condition may be met in either of two ways. 
If only a finite number m of terms in the entire series 
(38) would suffice to provide an adequate description 
of the double layer structure, each of the two integrals 
(37) could be equated to zero for m distinct negative 
values of Xl, to provide a sufficient number of conditions 
for unique determination of the coefficients. Alter­
natively, (37) may be cast in the role of a pair of 
coupled integral equations on the negative axis for 
complete determination of the CPa(n) (Xl) ; these solutions 
in tum would provide the entire set of Aj,a through 
(35) and (39).13 

It should be remarked that the poles Zj may in 
general arise either as roots of the denominator D(z), or 
as poles of the Ka{J(z) or H",(z) occurring in the de­
terminental numerators of (35). Since cp",(n) (Xl) decays 
rapidly to zero with decreasing Xl on the negative axis, 
the transforms <l>a(n) (z) cannot have poles in the lower­
half z plane; therefore, these two functions are effective 
only in determining the exact values of the multi­
plicative constants Aj,a, rather than in providing z/s 

13 The use of these) integral equations actually corresponds to 
allowing m to increas(to infinity. 
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for the solution (38). Furthermore, it should be noted 
at this juncture that since the h",(XI) decay rapidly to 
zero on the positive axis, the set of Zj contributed as 
poles of the H",(z) lie well below the real axis; the 
corresponding terms in </>",(XI) therefore themselves 
decay very rapidly with increasing Xl. 

If all of the kernels k",(J (Xl) as well as the inhomo­
geneous functions h",(XI) were zero for all Xl greater 
than some fixed positive constant, then the transforms 
K",(J and H", would be analytic in the entire Z plane. As a 
result, each Zj would necessarily be a root, 

(40) 

The series expressions (38) for </>+ and </>_ under these 
circumstances would differ only insofar as the exact 
numerical values of the coefficients A j ,,,, are concerned, 
since the same exponential functions must appear for 
both anions and cations. 

IV. SIMPLIFIED RIGID-SPHERE MODEL 

To clarify the way in which the formalism of the 
preceding sections leads to predictions concerning the 
detailed nature of the double layer, we are now in a 
position to deduce the properties of a simple, though 
informative, model. We choose to investigate that 
system of equal-sized rigid spherical ions which led to 
the differential-difference Eqs. (32). For the sake of 
simplicity also, we shall wish to disregard the effect of 
the inhomogeneous functions h",(XI); it has already 
been noted in this connection that such an assumption 
can have no effect on the asymptotic (large Xl) equa­
tions determining the ionic distributions. The non­
electrostatic effect of the planar electrode may be taken 
as that of a completely impenetrable "wall." By 
locating the surface of this wall at Xl = - a/2 (a distance 
from the origin equal to the ion radii), the single 
particle potentials V",(l,s) are just 

V",(l,s) (Xl) =+00 XI:::; 0, 

=0 (41) 

On account of the pair correlations (30) being 
identical for any species pair, we have already empha­
sized that the kernels k",(J are identical, as indicated by 
Eq. (31), As a result of the foregoing idealizations, one 
has to deal with only a single homogeneous integro­
differential equation, 

tP</>(XI) /dX12= !K2['" k(XI-X2) </>(X2) dX2, 
o 

k",{J(x) =k(x). (42) 

The unpretentious double-layer picture described by 
the solution of (42) is probably a reasonable approxi­
mation to the actual physical state of affairs if the 
density of ion spheres is not too near the close-packed 
density; i.e" 

(43) 

The inversion integral for the solution to (42) may 
now be written down with the help of Eqs. (35)-(37) 

1+ooZ2 exp ( - iXIZ) q,(n) (z) 
</>(XI) = - (1/211") 2+ 2 () dz (XI>O) 

_00 Z K cos az 

= tAj exp( -izjx). 
i=l 

(44) 

In accordance with previous remarks, the Zj are pre­
cisely the roots of the transcendental equation 

Z2+ K2 cos(az) =0. (45) 

Consequently, the constants Aj may be displayed as 

Aj = 
2zj- K2a sin (azj) . 

(46) 

For small values of the dimensionless parameter Ka, 
the transcendental Eq. (45) has two roots ±Zl, which 
may be expanded about Ka = 0 

YI = Ka[1 +t(Ka)2+-H(w) 4+h52(Ka) 6+ " ,]. (47) 

The leading term in the series (44) corresponding to the 
root +Zl produces a </>(XI) of the form 

( 48) 

in the limit of zero electrolyte concentration. It is in 
this manner that the predictions of the linear Poisson­
Boltzmann equation of the Debye-Hiickel electrolyte 
theory are verified, even for finite ion sizes. It is pos­
sible to show that this result is in no way dependent 
upon the special form of the short-range ion-ion forces 
chosen for our simple model. 

There is a second pair of pure imaginary roots ±Z2 
which, again for w sufficiently small, may be repre­
sented by a.n asymptotic series 

Y2 = log [2/(Ka)2]+2 log log[2/(Ka) 2]+ , ". (49) 

It is evident that in dilute solutions, the Z2 contribution 
to </>(XI) damps to zero extremely fast. 

The remaining roots of (45) in the small Ka region 
are all complex, and occur in quadruples 

(50) 

Numerical analysis shows that as Ka increases from 
zero, the roots Zl and Z2 move toward each other on the 
negative imaginary axis. They finally merge at Ka= 1.03, 
and thereupon move away from the imaginary axis as 
complex conjugates. The values of the roots nearest 
the origin z=o are exhibited in Table I for selected 
values of Ka. 

Even if only the first two terms in the complete 
sum (44) corresponding to Zl and Z2 are retained as an 
approximation to the actual statistical state, it is clear 
that the ion size, or excluded volume, is capable of 
exerting a profound influence upon the charge density 
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in the double layer. Although for small Ka, in this two­
term approximation, cP is a sum of damped exponentials, 

CP(Xl) =Al exp[ -Yl(xl/a) ]+A2 exp[ -Y2(xl/a)], (51) 

this sum becomes a damped sinusoid when Ka> 1.03, 
and Yl and Y2 are complex conjugates. On account of the 
resultant sign changes in cP, the average double-layer 
charge density likewise alternates in sign. This be­
havior denotes, in an average sense, that planar layers 
of anions and cations are held against, and parallel to, 
the electrode surface. This local structure is somewhat 
similar to the situation in ionic crystals where also 
alternate planes of positive and negative ions are 
encountered. 

A detailed study of even the two roots Zl and Z2 

alone therefore provides insight into the transition from 
very dilute solutions, where the distribution of ions 
may be deduced from consideration of electrostatic 
forces alone, to concentrated solutions in which short­
range forces are important. These latter begin to cause 
interference between the ions at moderate density, 
and to relieve this situation, the ions must begin to 
settle into locally ordered arrangements, the extreme 
case of which would be the long-range regularity of the 
ionic crystal. Only for very low electrolyte concentra­
tions, therefore, is it reasonable to neglect exclusion 
volumes in deducing double layer structures. 

The special kernel (31) gives the functional Eq. (42) 
for CP(Xl) three distinct forms in three different intervals 

d2cp(xl)/dx12=0 Xl< -a, 

=!K2cp(xl+a) -a<xI <a, 

=!K2[cp(xl-a) +cp(xI+a)] xI>a. (52) 

In the first of these intervals, cP obviously must be the 
linear function 

Xl<-a, (53) 

with the constants Bl and Bo having values to provide 
a smooth fit onto cp(XI) for xl>-a. Repeated use of 
(52) shows that 4> has simple discontinuities in its 
second derivative at - a and +a, in its fourth derivative 
at ° and 2a, and in the 2nth derivative (n>2) at na. 
This series of discontinuities propagated down the Xl 
axis arises solely by use of singular short-range ion 
interactions, and has no fundamental physical basis .. 
It is of course possible to eliminate them by using 
differentiable functions Va (I,8) and Va (2,8). 

A single restriction to which the constants Ai must 
conform is provided by the double layer electro­
nentrality condition (8). One might attempt further to 
determine the Ai for the present model by substitution 
into the integrodifferential equation (42), or equiva­
lently, into the relations (52). When xl>a, no in­
formation is provided since each member of the sum 
(44) separately satisfies the condition imposed. How­
ever, the set of admissible values Ai is restricted by 
insisting that (44) satisfy (42) or (52) in the interval 

TABLE I. Roots of the transcendental equationyl- (Ka)2 cosh y=O 
near y=O in the complex plane; Yi=ai+ifJj. 

Ka a1 {31 a2 {32 aa, a4 {33, -(34 

0.100 0.100 0 9.88 0 11.11 14.42 
0.500 0.536 0 5.48 0 7.70 14.75 
0.900 1.22 0 3.28 0 6.48 14.89 
1.00 1.62 0 2.56 0 6.26 14.90 
1.03 2.07 0 2.07 0 6.19 14.91 
1.06 2.03 0.45 2.03 -0.45 6.14 14.93 
1.15 1.92 0.89 1.92 -0.89 5.97 14.95 
1.50 1.53 1.62 1.53 -1.62 5.43 15.02 
2.00 1.06 2.08 1.06 -2.08 4.84 15.07 

-a<XI <a. Demanding that cp(XI) be a solution for this 
entire finite interval provides sufficient constraint to fix 
all the Ai' This finite interval procedure has a distinct 
advantage over the more general integral equation 
subsidiary problem of Sec. III, in which case the 
function CPa(n) would have to be determined over the 
entire negative axis, Xl < 0,14 

For the purposes of numerical computation, the two 
term representation (51) of cp(Xl) discussed previously, 
will suffice. Since the terms to be neglected correspond 
to z/s with large negative imaginary parts, the pre­
dicted ion distributions will be in error only very near 
the electrode. 

If the electrode surface charge is not too large, the 
double-layer electroneutrality condition adapted to the 
present example may be linearized with respect to cP to 
yield 

(54) 

The corresponding linearized result for the r potential, 
as expressed in (9) for x=O, becomes 

r(u) = (27rK2U/D) ~ooXICP(XI)dxI' (55) 

The second condition on Al and A2 in (51) to be 
utilized simultaneously with condition (54) results 
from the demand that the second of Eqs. (52) be 
satisfied at Xl =0, 

d2cp(XI =0) /dX12 =tK2cp(XI =a) ; (56) 

this is precisely the center of the interval over which the 
second form in (52) is valid. 

When the two term approximation (51) is inserted in 
each of (54) and (56), there is obtained a pair of inde­
pendent linear equations in Al and A 2• One thus 
readily finds 

Al=[2a/(Ka)2]YIY2[ expY2 ], 
Y2 expY2-YI expYI 

A2=[2a/(Ka)2]YIY2[ expYl ]. (57) 
Y2 expY2 - Yl expYl 

14 Such simplification was inherent in the rigid-sphere model by 
using step-function pair correlations. 

 This article is copyrighted as indicated in the abstract. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

128.112.66.66 On: Fri, 22 Nov 2013 07:06:09



1290 :F. H. STILLINGER, JR. AND J. G. KIRKWOOD 

1.2,--.....,..--,---,---,...--.---,.--,---,.----,---, 

1.0 r---__ 

0.8 

o 

-0.2 

-0.4 l---L_....L_..L-L--L----L_....L_..L---1.L---L_.....l 
o 0.2 0.4 0.6 0.6 f.O f.2 1.4 1.6 1.8 2.0 

I<.a 

FIG. 1. Computed values of the r potential ratio (solid line), 
with the limiting parabolic behavior (dotted line) shown ex­
plicitly. 

The results (57) reduce to 

A 1 =2/K, (58) 

as w approaches zero, to yield the correct Debye­
Huckel result anticipated earlier: 

cf>o(Xl) = (2/K) exp(-Kxl). (59) 

The t potential predicted on the basis of (59) follows 
from (55) 

(60) 

a well-known result. 
The t potential for finite Ka may be exhibited in the 

following reduced form: 

t(u)/ro(u) = (Ka/Yl) [1- (Y1/y2)2 eXP(YI-Y2)]. (61) 
_ 1- (Yt!Y2) exp(YI-Y2) 

Reference to the asymptotes (47) and (49) for Yl and 
Y2 show that the lowest order deviation (in Ka) from 
to is in the direction of decreasing r potential. In 
particular, 

(62) 

As noted earlier, Yl and Y2 have a common value 
when Ka= 1.03. At this point, both Al and A2 diverge, 
but cp in fact remains finite 

Ka=1.03. (63) 

Likewise, the r potential ratio as written in (61) is 
indeterminate, but may be properly evaluated as a 
limiting value as Ka approaches 1.03 from either side. 

When Ka> 1.03, the complex conjugates Yl =a+if3 
and Y2=a-if3 yield the ratio, 

r(u) /ro(u) = Ka/ (a2+f32) [(a
Lf3? sinf3+2af3 cosf3J.(64) 

a smf3+f3 cosf3 

The r potential ratio has been computed on the 
basis of Eqs. (61) and (64) using the tabulated Yl and 
Y2 values. The results are shown in Fig. 1. The low Ka 
behavior is a parabolic decrease from unity in accord 
with (62). The ratio then decreases at an even more 
rapid rate, finally changing sign near Ka = 1.46.16 Since 
to is always positive, therefore, we find that at a certain 
finite concentration, the r potential due to the diffuse 
Guoy layer (and, therefore, the Gouy layer reciprocal 
capacitance) becomes precisely zero. It is of interest 
to observe in addition that there is no break in the r 
potential curve at the singular value Ka= 1.03, although 
the nature of the mean charge density, Pel, changes 
rapidly there. 

1& In water, at room temperature, this corresponds to about 0.8 
moles/liter for a uniunivalent electrolyte with a equal to 5XlO-s 
em. 
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