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Abstract.  Collective coordinates in a many-particle system are complex 

Fourier components of the local particle density n(x) ≡
∑N

j=1 δ(x− rj), and 

often provide useful physical insights. However, given collective coordinates, 
it is desirable to infer the particle coordinates via inverse transformations. 
In principle, a suciently large set of collective coordinates are equivalent 
to particle coordinates, but the nonlinear relation between collective and 
particle coordinates makes the inversion procedure highly nontrivial. Given a 
‘target’ configuration in one-dimensional (1D) Euclidean space, we investigate 
the minimal set of its collective coordinates that can be uniquely inverted 
into particle coordinates. For this purpose, we treat a finite number M of 
the real and/or the imaginary parts of collective coordinates of the target 
configuration as constraints, and then reconstruct ‘solution’ configurations 
whose collective coordinates satisfy these constraints. Both theoretical and 
numerical investigations reveal that the number of numerically distinct 
solutions depends sensitively on the chosen collective-coordinate constraints 
and target configurations. From detailed analysis, we conclude that collective 
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coordinates at the �N
2
� smallest wavevectors is the minimal set of constraints for 

unique inversion, where �·� represents the ceiling function. This result provides 
useful groundwork to the inverse transform of collective coordinates in higher-
dimensional systems.

Keywords: random/ordered microstructures, structural correlations
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1. Introduction

For N identical point particles at positions of r1, · · · , rN  in a periodic fundamen-

tal cell Ω, the particle distribution can be described by the local particle density 

n(x) ≡
∑N

j=1 δ(x− rj). Equivalently, this function can be represented by the (complex) 
Fourier components at wavevectors k’s, associated with the geometry of Ω, i.e.

ñ(k) ≡
N∑
j=1

e−ik·rj , (1)

called collective coordinates. These quantities are often found to be a natural way to 
describe the distribution of particles, and thereby provide useful insights into many 
physical problems, e.g. excited states of liquid helium [1], conduction electrons in met-
als [2], general theory of simple liquids [3], and quantification of density fluctuations 
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[4, 5]. Furthermore, using functional Fourier transformation, governing equations of 
many-body systems, such as the Fokker–Planck equation, can be expressed in terms of 
collective coordinates [6].

It is often desirable to infer the particle coordinates from given collective coordi-
nates via inverse transformations. Importantly, amplitudes of collective coordinates, 
or equivalently, the structure factor, S(k), have long been used to probe the particle 
distributions, since S(k) can be ascertained from scattering experiments [7]. However, 
unless the particle distribution is a perfect crystal, the structure factor alone cannot 
uniquely determine the particle distribution because it does not contain phase informa-
tion. To solve this problem in x-ray crystallography, additional information is acquired 
from other physical properties, such as the interference pattern with known molecules 
(specific site labeling) [8], anomalous dispersion relations [9, 10], or sequential projec-
tions onto constrained hyperplanes [11]. Such inversion tasks are called the phase-
retrieval problems [11–13] because the tasks are essentially equivalent to retrieving 
the ‘phase’ information contained in collective coordinates, the complete set of which 
are in principle invertible into particle coordinates. Even if the phase information is 
incorporated, however, this inversion task is still highly nontrivial, due to the nonlinear 
relation between collective and particle coordinates.

Given a target point configuration in 1D Euclidean space R, our primary objective 
in this paper is to find the minimal set of its collective coordinates that uniquely deter-
mine particle coordinates aside from exchange of particle indices. This minimal set, 
therefore, uniquely determines collective coordinates at other wavevectors. To carry 
out this search, we treat the number M of the real and/or the imaginary parts of col-
lective coordinates of a target configuration as constraints, and find all configurations, 
called solutions, whose collective coordinates satisfy these constraints. The number of 
constraints M is increased one-by-one until we have a unique solution that is, of course, 
identical to the target pattern.

Previous studies on this inversion task [5, 14–16] focused on some special types 
of constraints on the collective coordinates (defined by equation (1)) for a given set 
of wavevectors, such as the stealthy constraints, where ñ(k) = 0, and amplitude-con-
straints for a prescribed radial function f(r), i.e. |ñ(k)| = f(|k|). This inversion task 
is often carried out via the collective-coordinate optimization technique [15–19] that 
is designed to find ground-state configurations of the potential associated with those 
constraints. Here, it is useful to define a new parameter χ ≡ M/(dN) [15, 17] that 
represents the relative fraction of the number of constrained collective coordinates M 
to the total number of degrees of freedom; see figure 1 for typical arrangements of the 
constraints in d = 1, 2. These studies analytically or numerically showed that when 
the stealthy constraints are imposed for χ < 1/2, the associated ground states, called 
stealthy disordered hyperuniform systems [5, 15–17], are disordered, highly degenerate, 
and statistically isotropic. Importantly, it has been shown that systems derived from 
these special disordered point configurations by decorating the points with particles of 
certain shapes, are endowed with some novel photonic and transport properties [20–
27]; see also [28] and references therein. Under the stealthy constraints with χ � 1/2, 
on the other hand, virtually all configurations are crystalline in the first three spatial 
dimensions [5, 14, 17]. From the uniqueness of the solution at χ = 1/2 in d  =  1 [14] as 
well as the importance of phase information of collective coordinates, one can argue 
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that each constrained collective coordinate ñ(k) removes two degrees of freedom in the 
accessible configurational space. Thus, it is natural to surmise that the minimum value 
of M for the unique inversion would be M  =  d(N-1).

In the present work, we consider more general type of constraints, in which the real 
and/or the imaginary part of each collective coordinate are independently prescribed. 
For simplicity, we focus on 1D systems. For such systems, we show that the minimal 
set of collective-coordinate constraints consists of collective coordinates at the �N/2� 
smallest wavevectors, i.e. M = 2�N/2� rather than N. This result also implies that for 
a collective coordinate at a wavevector k, both its real and imaginary parts must be 
specified. We analytically show this result for small systems of N � 3. However, this 
result is invalid if the target configurations are the integer lattice because one cannot 
determine its center of mass without a collective coordinate at the first Bragg peak. 
In our numerical studies for larger systems, we exclude the pathological case (i.e. the 
integer lattice), and consider two distinct ensembles of target configurations: perturbed 
lattices [29] via uniformly distributed displacements, and Poisson point distribution 
configurations. For each of these target configurations, we find solutions numerically 
via the collective-coordinate optimization technique. Our numerical results show that 
these two types of ensembles occupy qualitatively dierent energy landscapes: those in 
perturbed lattices are relatively simpler than those in Poisson ones.

In section 2, we present basic definitions and background. In section 3, we describe 
the numerical method that we employ to find solutions. In section 4, we theoretically 
and numerically determine the minimal sets of collective coordinates for small systems. 
Larger systems are numerically investigated in section 5. Finally, we provide conclud-
ing remarks in section 6.

2. Basic definitions and background

2.1. General properties of collective coordinates

For a N-particle point configuration within a periodic fundamental cell Ω, collective 
coordinates (1), which are also known as collective density variables, are complex-valued 
quantities that are defined at certain real-valued discrete wavevectors k’s. Here, the 
available wavevectors correspond to the reciprocal lattice vectors of the cell Ω. For 
instance, if Ω is a L1 × · · · × Ld rectangular box, then k’s can be described as follows: 

k = 2π(m1

L1
, · · · , md

Ld
) for (m1, · · · ,md) ∈ Zd. For simplicity, we focus on one-dimensional 

systems in the rest of this paper, and thus use the following short-hand notation:

km = 2πm/L. (2)
At two dierent wavevectors, the collective coordinates are not always independent. 

For instance, the complex conjugate of a collective coordinate by definition is equal to 
its parity inversion, i.e. ñ∗(k) = ñ(−k). Thus, if we constrain such a pair of collective 
coordinates, only one of them is considered independent. For this reason, the relative 
fraction χ of constrained degrees of freedom is defined as not 2M/(dN), but M/(dN); 
see figure 1.

https://doi.org/10.1088/1742-5468/aae84c
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Only certain sets of complex numbers can be collective coordinates of a ‘realizable’ 
point configuration. For example, there are some trivial necessary conditions of realiz-
able collective coordinates, such as |ñ(k)| � N  for any wavevector k, and ñ(0) = N . 
However, it is highly nontrivial to find sucient and necessary conditions of realizable 
collective coordinates. To avoid such realizability problems [30], we take constraints 
from the collective coordinates of a target configuration.

The value of a collective coordinate is independent of the choice of particle permu-
tations: when we invert collective coordinates, the resulting particle coordinates also 
should be equivalent aside from exchange of particle indices.

2.2. Definitions

In the rest of this work, we clearly distinguish a target and a solution configurations by 
using separate notations RN = {R1,R2, · · · ,RN} and rN = {r1, r2, · · · , rN}, respectively. 
The corresponding collective coordinates are denoted by ñT (k) and ñ(k), respectively.

In numerical studies, two types of target configurations at unit number density are 
considered:

-4 -2 0 2 4
k

x
 [2π/L]

-4

-2

0

2

4

k y [
2π

/L
]

-4 -2 0 2 4

Figure 1. Schematics of typical arrangements of collective-coordinate constraints 
in Fourier space for a periodic d-dimensional square fundamental cell of side length 
L. Here, upper and lower panels represent cases for d  =  1 and 2, respectively. 
Constraints are taken from ñ(k)’s at wavevectors between two concentric circles 
centered at the origin: there are 2M wavevectors (black dots) within the blue 
circle, except for 2Nk  +  1 wavevectors inside the red-shaded region. In [5, 14–17], 
a spherical region with Nk  =  0 was considered; see a list of available M values for 
two-dimensional cases in table II in [17]. For our present purposes, the number of 
constraints is denoted by M = 2M because the real and/or the imaginary parts of 
collective coordinates are considered independently.
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 (i)  Perturbed lattices [29, 31], generated from the integer lattice by independently 
displacing each particle via a uniform distribution in [−δ, δ], and

 (ii)  Poisson point distribution configurations.

We note that the perturbed lattices become identical to the Poisson point distribution 
configurations if δ = N/2 under the periodic boundary condition.

We denote M constraints, used in the inversion task, by Ei = 0 for i = 1, 2, · · · ,M . 
Starting from the origin in the Fourier space, we skip the first Nk wavenumbers and 
constrain the collective coordinates at the next �M/2� wavenumbers:

Ei ≡
{
Re [ñT (kNk+m)− ñ(kNk+m)] , i = 2m− 1 (i < M)

Im [ñT (kNk+m)− ñ(kNk+m)] , i = 2m, (i � M) (3)

where �x� is the floor function, m ∈ N, and Re [x] and Im [x] represent the real and the 
imaginary parts of a complex number x, respectively. Thus, if M is an even number, 
both the real and the imaginary parts of collective coordinates at M/2 consecutive 
wavenumbers are constrained. If M is an odd number, we prescribe the last term EM 
via two conditions, each of which is concerning either the real or the imaginary parts 
of a target collective coordinate as follows:

EM =



Re

[
ñT

(
kNk+�M/2�

)
− ñ

(
kNk+�M/2�

)]
, (4)

Im
[
ñT

(
kNk+�M/2�

)
− ñ

(
kNk+�M/2�

)]
, (5)

where �x� is the ceiling function. Table 1 lists some examples of constraints.

3. Numerical method

Given a target configuration RN  of N � 3, we take M constraints from its collective 
coordinates, and numerically find solution configurations rN  via a modified ‘collective-
coordinate optimization technique’ [15–19] that was initially designed to generate dis-
ordered classical point configurations, such as stealthy ground states [5, 15, 32], and 
the perfect-glass model [33]. The detailed procedure is described as follows:

 (i)  Starting from a random initial configuration {r(0)i }Ni=1 of N particles, numerically 

search for an energy-minimizing configuration rN ≡ {ri}Ni=1 for the following 
potential energy,

Φ
(
rN ;RN

)
≡

M∑
l=1

∣∣El

(
rN ;RN

)∣∣2

=

{∑M/2+Nk

l=Nk+1 |ñT (kl)− ñ(kl)|2 , M is even∑�M/2�+Nk

l=Nk+1 |ñT (kl)− ñ(kl)|2 +
∣∣EM

(
rN ;RN

)∣∣2 , M is odd.

 (6)

  The jth component of its gradient is given by

https://doi.org/10.1088/1742-5468/aae84c
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Fj

(
rN ;RN

)
≡ − ∂Φ

∂rj

(
rN ;RN

)

=

{∑M/2+Nk

l=Nk+1 2klIm
[
(ñ(kl)− ñT (kl)) e

ikl rj
]
, M is even∑�M/2�+Nk

l=Nk+1 2klIm
[
(ñ(kl)− ñT (kl)) e

ikl rj
]
− 2EM

∂EM

∂rj
, M is odd,

 (7)

  where El is defined by (3), and for an odd number M, EM is defined by one of two 

conditions (4) and (5). This configuration is called a ‘solution’ if Φ
(
rN ;RN

)
< εE 

for a specified small tolerance εE.

 (ii)  Test if this solution rN  agrees with the target configuration RN  or 
other solutions found previously within another small tolerance εX , i.e. 

maxNi=1{minN
j=1{|ri −Rj|}} < εX. If they agree, then rN  is deemed to be identical 

to one of the previous solutions, and we increase the solution’s count. Otherwise, 
we record rN  as a new solution.

 (iii)  Repeat the steps (i)–(ii) for NI random initial configurations.

 (iv)  Repeat the steps (i)–(iii) for NT dierent target configurations.

Roughly speaking, the potential (6) represents a ‘deviation’ or numerical error of a 
solution configuration from the target configuration in terms of given collective-coordi-
nate constraints. In step (i), we mainly use two dierent optimization algorithms: the 
low-storage BFGS (L-BFGS) algorithm [34, 35] with the MINOP algorithm [15, 36], 
and the steepest descent algorithm [37]. We repeat this inversion task for many distinct 

initial configurations {r(0)i }Ni=1s and target configurations RN s. Unless stated otherwise, 

we use parameters as follows: NI = 1000, NT = 1000, and εX = 10−6.

Table 1. Examples of constraints Ei for corresponding shorthand notations. We 
note that when M is an even number, the real condition (4) and the imaginary 
condition (5) give the identical collective-coordinate constraints.

E1 E2 E3 E4

Nk  =  0 and 
M  =  4

Re [ñT (k1)− ñ(k1)] Im [ñT (k1)− ñ(k1)] Re [ñT (k2)− ñ(k2)] Im [ñT (k2)− ñ(k2)]

Nk  =  1 and 
M  =  4

Re [ñT (k2)− ñ(k2)] Im [ñT (k2)− ñ(k2)] Re [ñT (k3)− ñ(k3)] Im [ñT (k3)− ñ(k3)]

Nk  =  0, 
M  =  3, and 
the real  
condition (4)

Re [ñT (k1)− ñ(k1)] Im [ñT (k1)− ñ(k1)] Re [ñT (k2)− ñ(k2)] ·

Nk  =  0, 
M  =  3, and 
the imaginary 
condition (5)

Re [ñT (k1)− ñ(k1)] Im [ñT (k1)− ñ(k1)] Im [ñT (k2)− ñ(k2)] ·

https://doi.org/10.1088/1742-5468/aae84c
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Figure 2. Illustrations for solutions of the inversion problem for a single-particle 
target configuration. (a) Cases with Nk  =  0 and M  =  2. When ñT (k1) is given as 
constraints (left), both its real and imaginary parts are required for a unique 
solution; see the cross (×) mark in the right panel. Red and blue lines represent 
the real and the imaginary parts of ñ(k1) of a solution, respectively. (b) Cases with 
Nk  =  1 and M  =  2. When ñT (k2) is given, we have two solutions.

For all numerically distinct solutions {rN} of a target configuration RN , the trivial 
solution refers to the one that is identical to the target (rN = RN), while nontrivial 
solutions refer to the others (rN �= RN).

4. Results for N ≤ 3

Here, we theoretically and numerically investigate solutions for small target 
configurations.

4.1. N  =  1

For a single-particle configuration, ñ(k1) = e−i2πr1/L is a one-to-one function from 
r1 ∈ [0,L) onto the unit circle on the complex plane, i.e. {z ∈ C : |z| = 1}. Thus, it is 
straightforward to show that there is a unique solution, given constraints ñT (k1) that 
correspond to the cases of Nk  =  0 and M  =  2. Equivalently, collective coordinates at 
larger wavenumbers can be expressed in terms of ñT (k1), i.e. ñT (km) = ñT (k1)

m. On the 
other hand, cases of Nk  =  0 and M  =  1, i.e. a single constraint of either Re [ñT (k1)] or 
Im [ñT (k1)], give two solutions; see figure 2(a). Thus, we need at least two constraints 
(M  =  2) for the unique inversion of a single-particle configuration.

We note that ñT (k1) is the minimal set of constraints for single-particle systems. 
This is because when m  >  1, ñT (km) is no longer a one-to-one function from r1 ∈ [0,L) 
onto the unit circle on C, and thus cases with Nk  =  m and M  =  2 for m  >  1 give m dis-
tinct solutions; see figure 2(b).

4.2. N  =  2

Using graphical solutions, one can straightforwardly show a single constraint (Nk  =  0 
and M  =  1) gives infinitely many solutions; see one of the solid or dashed lines in 
figure 3. However, figure 3 also immediately shows that the following equation (Nk  =  0 
and M  =  2)

ñT (k1) = e−i2πr1/L + e−i2πr2/L, (8)

https://doi.org/10.1088/1742-5468/aae84c
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yields a unique solution aside from exchange of particle indices, as follows:

e−i2πr1/L =
ñT (k1)

2

(
1± i

√
4

|ñT (k1)|2
− 1

)
 (9)

e−i2πr2/L =
ñT (k1)

2

(
1∓ i

√
4

|ñT (k1)|2
− 1

)
, (10)

if ñT (k1) �= 0, or equivalently, |R1 −R2| �= 0.5L. Otherwise, the periodic image of the 
target configuration becomes the integer lattice, and all of translated lattices are solu-
tions of (8), i.e. there are infinitely many solutions, as shown in figure 3(c).

If the target configuration is the integer lattice, in order to obtain a unique solu-
tion, the collective coordinate at the first Bragg peak (i.e. ñT (k2)) should be addition-
ally specified, which corresponds to the cases with Nk  =  0 and M  =  4. Then, the unique 
solution is

e−i2πr1/L =
1

2

(
ñT (k1)±

√
2ñT (k2)

2 − ñT (k1)
2

)
, (11)

e−i2πr2/L =
1

2

(
ñT (k1)∓

√
2ñT (k2)

2 − ñT (k1)
2

)
. (12)

This is because the collective coordinate at the first Bragg peak provides the center of 
mass of this lattice configuration.

We note that the constraint ñT (k2) alone (i.e. Nk  =  1 and M  =  2) cannot be 
uniquely inverted into particle coordinates. It can be straightforwardly shown 
that there exist at least four distinct solutions, i.e. (r1, r2) = a+ (R1,R2), where 
a/L = (0, 0), (0, 1/2), (1/2, 0), and (1/2, 1/2). By the same analysis, one can identify 
there are at least m2 distinct solutions if only ñT (2πm/L) is given. Therefore, we can 
conclude that for a two-particle configuration that is not the integer lattice, the mini-
mal set of constraints for a unique solution is {ñT (k1)}.

Remarks

 (i)  For a configuration of particle number N  >  1, Fan et al [14] proved that ñ(km) = 0 

for m = 1, · · · , �N
2
� is a sucient and necessary condition for the configuration 

to be the integer lattice or its translations. Thus, if one inverts collective coordi-
nates at the �N/2� smallest wavenumbers of the integer lattice, its solutions are 
inevitably degenerated with a translational degree of freedom; see figure 3(c) for 
example.

4.3. N  =  3

In the previous sections, we show that there is a unique solution in the inversion pro-
cedure with parameters Nk  =  0 and M = �N/2�, unless the target configuration is a 

https://doi.org/10.1088/1742-5468/aae84c
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pathological case (i.e. either the integer lattice or its translations). Otherwise, there 
are infinitely many solutions. It implies that there would be a sudden transition in the 
number of distinct solutions varying with the type of target configurations. For this 
reason and simplicity in analysis, our target configurations are restricted here to per-
turbed lattices that can continuously interpolate between the integer lattice to Poisson 
configurations via the displacement parameter δ; see section 2.2.

For a perturbed lattice, its particle coordinates are described as ri = (i− 1) +Nδi 
for i = 1, · · · ,N . Assuming weak perturbations (i.e. |δi| � 1) for N  =  3, collective- 
coordinate constraints can be approximated up to the second order of displacements; 

Re [ñ(km)] ≈





3− 2(mπ)2(δ1
2 + δ2

2 + δ3
2), m = 3i√

3mπ(δ2 − δ3) + (mπ)2(−2δ1
2 + δ2

2 + δ3
2), m = 3i+ 1

−
√
3mπ(δ2 − δ3) + (mπ)2(−2δ1

2 + δ2
2 + δ3

2), m = 3i+ 2

 (13)

Im [ñ(km)] ≈



2mπ (δ1 + δ2 + δ3) , m = 3i

mπ (2δ1 − δ2 − δ3) +
√
3(mπ)2

(
δ2

2 − δ3
2
)
, m = 3i+ 1

mπ (2δ1 − δ2 − δ3)−
√
3(mπ)2

(
δ2

2 − δ3
2
)
, m = 3i+ 2

, 

(14)

Figure 3. Graphical solutions of (8) for given respective target configurations. 
In each panel, black solid lines and dashed ones represent solutions of the ‘real’ 
and the ‘imaginary’ parts of (8), respectively. Contour plots depict potential 

energy landscape (i.e. log10(Φ
(
r2;R2

)
)) for each target configuration. Solutions 

(intersections of solid and dashed lines) are unique and identical to the target 
configuration (red dots), unless it is the integer lattice (i.e. |R1 −R2| = L/2) 
as shown in (c). Otherwise, there are infinitely many solutions, and one needs 
additional constraint ñT (k2) for unique solutions.
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where i represents non-negative integers.
For parameters Nk  =  0 and M  =  3 with the real condition (4) (or the imaginary one 

(5)), the quadratic approximations (13) and (14) yield at most two distinct solutions 
(A.1): the trivial solution (r3 = R3), and a nontrivial one (r3 �= R3). This prediction is 
consistently observed in numerical results; see figure 4(a). Thus, the set of numerically 
distinct solutions abruptly changes from an uncountably many set into a finite one, as 
δ becomes nonzero. Figure 4(a) also shows that if δ increases, while the maximal num-
ber of numerically distinct solutions remains two, its occurrence decreases regardless of 
constraint conditions (4) and (5).

In numerical studies, it is important to know how results depend on the optim ization 
algorithms and values of parameters, such as εE and εX. For this purpose, we investigate 
the energy distributions of numerical solutions obtained in the parameters of Nk  =  0 and 
M  =  3, and various conditions, as shown in figure 5. From figures 5(a) and (b), we see that 
given a target configuration, both trivial and nontrivial solutions have qualitatively simi-
lar energy profiles, regardless of the real (4) and the imaginary (5) conditions. Figure 5(c) 
demonstrates that the energy profiles of numerical solutions vary with optimization algo-
rithms, but for a given algorithm both trivial and nontrivial solutions still have qualita-
tively similar energy profiles. Thus, a nontrivial solution cannot be eliminated by lowering 
the energy tolerance εE when N  =  M  =  3. In the rest of this paper, we mainly use the 
BFGS and MINOP algorithms because the solutions obtained via these algorithms tend 
to have lower numerical errors than those via the steepest descent method.

For parameters Nk  =  0 and M  =  4, a unique solution can be obtained. This also can 
be deduced from the observation in the cases with Nk  =  0 and M  =  3 that given a target 
configuration, nontrivial solutions, respectively obtained by the real (4) and the imagi-
nary (5) conditions, are numerically distinct; see figure 4(b). Thus, the common solution 
from two conditions (4) and (5) should be identical to the target. The unique solution 
also can be obtained from the quadratic approximations (13) and (14) as follows:

δ1 =
1

12π

[
6Im [2 ñT (k1)− ñT (k2)]

Re [4 ñT (k1)− ñT (k2)]
+ Im [4 ñT (k1) + ñT (k2)]

]
 (15)

δ2 =
1

12π

[
6Im [2 ñT (k1)− ñT (k2)]

Re [4 ñT (k1)− ñT (k2)]
− Re [4 ñT (k1)− ñT (k2)]√

3

]
 (16)

δ3 =
1

12π

[
6Im [2 ñT (k1)− ñT (k2)]

Re [4 ñT (k1)− ñT (k2)]
+

Re [4 ñT (k1)− ñT (k2)]√
3

]
, (17)

and thus the minimal set for three-particle systems is (both real and imaginary parts 
of) collective coordinates at the two smallest wavenumbers.

Remarks

 (i)  For parameters Nk  =  0, M  =  3, and the real condition (4), the quadratic approx-
imations (13) and (14) give two exact solutions (A.1). While one of the solutions 
is the same as the target configuration up to some numerical errors, another solu-
tion cannot precisely predict the nontrivial solution partly because the nontrivial 
one is not a perturbed lattice with small displacements.

 (ii)  For parameters Nk  =  1 and M  =  4, a unique solution is obtained; see (A.3)–(A.5).
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5. Results for N  >  3

Here, we numerically investigate the properties of the inversion procedure from collec-
tive coordinates, such as proper values of the tolerances εE and εX . For this purpose, we 

obtain distributions of energy Φ
(
rN ;RN

)
 for numerically distinct solutions, as we did 

in figure 5. Our results, shown in figures 6 and 7, demonstrate that the energy distribu-
tions sensitively depend on the number of skipped collective-coordinate constraints Nk 
as well as target configurations and the particle number N.
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ns condition (4): BFGS+MINOP

condition (5): BFGS+MINOP
condition (4): Steepest Descent
condition (5): Steepest Descent

Figure 4. Numerical results of the inversion procedure for three-particle perturbed 
lattices in cases with Nk  =  0 and M  =  3. (a) The average number of distinct 
solutions per a target configuration. Two dierent optimization algorithms 
(BFGS  +  MINOP and the steepest descent) and two constraint conditions (the real 
(4) and the imaginary (5) ones) are used for comparison with the energy tolerance 
εE = 10−29. For any target configuration, the number of distinct solutions is at 
most two, but the average can vary with the target configurations. (b) Examples of 
nontrivial solutions for a given target perturbed lattice with various displacements 
δ. Nontrivial solutions by the real (4) or the imaginary (5) conditions, respectively, 
are dierent from each other, and are not translations of the target.

Figure 5. Log–log plots of histograms for energy distributions of numerically 
distinct solutions {r3} of a three-particle target configuration R3 for parameters 
Nk  =  0, M  =  3, and εE = 10−20. Given a target configuration, there are at most 
two distinct solutions; a trivial solution and a nontrivial one. (a) and (b) Results 
from two constraint types (i.e. the real condition (4) and the imaginary condition 
(5)) are compared for two dierent types of target configurations: (a) perturbed 
lattices with δ = 0.1 and (b) Poisson configurations. Here, BFGS+MINOP (B.M.) 
algorithms are used. (c) For Poissonian target configurations, we compare results 
from two dierent optimization algorithms: B.M., and steepest descent (S.D.). 
Here, the real condition (4) is considered.
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At first, we consider the cases with Nk  =  0 (figure 6). When there are even-number 
N of particles, M � N  constraints can give unique solutions for both types of target 
configurations: perturbed lattices and Poisson point distribution configurations. If N is 
an odd number, however, M  =  N constraints no longer ensure unique solutions. When 
perturbed lattices are the target configurations (figures 6(a)–(c)) and M  =  N constraints 

are considered, the energy Φ
(
rN ;RN

)
 always has two global minima, which correspond 

to the trivial solution (rN = RN) and a nontrivial one (rN �= RN), respectively. On the 

other hand, the energy Φ
(
rN ;RN

)
 of a Poissonian target configuration (figures 6(d)–(f)) 

mostly has a single minimum that is identical to the target (rN = RN) but occasionally 
has more than two nontrivial solutions. Given parameters Nk  =  0 and M  =  N  +  1, while 
when the target is a perturbed lattice the inversion procedure gives a unique solution, 
when the target is a Poisson configuration this procedure may give multiple solutions. 
However, since the nontrivial solutions in the latter case have qualitatively dierent 
energy profiles from the trivial solution (see figures 6(d)–(f)), the nontrivial solutions 
can be eliminated by lowering the tolerance εE to a proper level. Thus, when N is an 
odd number, M  =  N  +  1 constraints are required for the unique determination.

Figure 6. Log–log plots of histograms for energy distribution of numerically 
distinct solutions {rN} for odd-number system sizes: N  =  9 (a) and (d), 19 (b) and 
(e), and 29 ((c) and (f )). Using the real condition (4) condition and parameters 
Nk  =  0 and εE = 10−20, two types of target configurations are considered: ((a)–(c)) 
perturbed lattices with δ = 0.1 and (d)–(f) Poisson configurations. When M  =  N, 
while a target perturbed lattice has a single nontrivial solution (rN �= RN), whose 
occurrence rate is similar to that of trivial ones, a Poissonian target mainly has 
the trivial solution but occasionally can have multiple nontrivial solutions. When 
M  =  N  +  1 is an even number, while there is a unique solution for perturbed 
lattices, there can be more than one solution for a Poisson target configuration in 
relatively lower occurrence rates. Even in the latter case, however, the nontrivial 
solutions can be eliminated by lowering the tolerance εE around 10-25.
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When first few collective coordinates are skipped (Nk  >  0), there is no advantage of 
even-number particles, i.e. one cannot determine unique solutions with M  =  N succes-
sive collective-coordinate constraints when N is an even number. Figure 7 shows the 
histograms for energies of numerical solutions obtained in the inversion procedure with 
an odd-number particles and Nk  >  0. In figure 7, we note that for M  =  N constraints 
there can be more than one nontrivial solutions whose energy profiles are similar to 
that of the trivial solutions. However, M  =  N  +  1 constraints allow us to find the trivial 
solutions without any nontrivial one.

In general, as the system size N increases, both trivial and nontrivial solutions tend 
to have higher energies, i.e. larger numerical errors. Moreover, for parameters Nk  =  0 
and M  =  N, although for smaller systems the distribution of trivial and nontrivial solu-
tions have tails in the low-energy regime (figures 6(a) and (d)), for larger systems the 
tails are shifted to the high-energy regime (figures 6(c) and (f)); see also figure 7 for 
cases with Nk  >  0. This observation implies that it becomes less probable to obtain 
numerical solutions, whether they are trivial or not, as the particle number N increases, 
or the energy tolerance εE is lowered.

The average number of numerically distinct solutions, obtained in the inversion 
procedure, is shown in figure 8. This figure clearly demonstrates that for Poissonian 
targets (figures 8(d)–(f)) the two curves (M  =  N and N  +  1) collapse into a single line as 
N increases, and thus minM → N  as N increases. On the other hand, these two curves 
are clearly separated for perturbed lattices (figures 8(a)–(c)), and thus minM is deter-
mined by the cases where perturbed lattices are the target configurations. Figure 9 

Figure 7. Log–log plots of histograms for energy distribution of numerically 
distinct solutions {rN} for Nk  >  0 and odd-number system sizes: N  =  9 (a) and (d), 
19 (b) and (e), and 29 (c) and (f ). Considering perturbed lattices with δ = 0.1 as the 
target configurations, we search solution configurations under the real condition 
(4) and the tolerance εE = 10−20, and via the BFGS  +  MINOP algorithms. We 

note that there is no nontrivial solution with Φ
(
rN ;RN

)
< 10−20 if Nk  >  0 and 

M  =  N  +  1.

https://doi.org/10.1088/1742-5468/aae84c


Inversion problems for Fourier transforms of particle distributions

15https://doi.org/10.1088/1742-5468/aae84c

J. S
tat. M

ech. (2018) 113302

1

2

Perturbed lattices (δ=0.1)

N
k
=0

M=N
M=N+1

Poisson configurations

1

9

T
he

 a
ve

ra
ge

 n
um

be
r 

of
 

 d
is

tin
ct

 s
ol

ut
io

ns

N
k
=1

4 10 20 30 40
N

1
20
40

4 10 20 30 40
N

N
k
=2

(a)

(b)

(c)

(d)

(e)

(f)

Figure 8. Numerical results for the average number of numerically distinct solutions 
per a target configuration of particle number N with various values of Nk. Using 
the real condition (4) and BFGS  +  MINOP algorithms, we consider two types 
of target configurations: (a)–(c) perturbed lattices with δ = 0.1 and the tolerance 
εE = 10−20, and (d)–(f ) Poisson configurations with εE = 10−25. When Nk  =  0, both 
types of target configurations require M  =  N constraints for an even-number N, 
and M  =  N  +  1 is the minimal for an odd-number N: the minimal number of M is 
2�N/2�. If Nk  >  0, for both types of target configurations, the minimal number of 
constraints becomes M  =  N  +  1.
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Figure 9. The minimal number of successive collective-coordinate constraints 
minM as a function of particle number N for various Nk.
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Figure 10. Schematics of some possible ways to select collective-coordinate 
constraints in the two-dimensional Fourier space. Collective coordinates are 
specified at wavevectors inside (a) an annular region of outer radius K and inner 
radius K0 (see figure 1), (b) a rectangular region of width Kx and height Ky, and (c) 
n mutually non-parallel strips whose lengths are Ki, i = 1, · · · ,n. We note that the 
red-shaded region is excluded.
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summarizes the results from analytic investigation into small systems (section 4) and 
numerical studies on larger systems (section 5). One can uniquely determine particle 

coordinates from collective coordinates at the �N
2
� smallest wavenumbers, i.e. param-

eters of Nk  =  0 and M = 2�N
2
�, by properly selecting εE. On the other hand, if Nk  >  0, 

one requires M  =  N  +  1 successive collective-coordinate constraints to uniquely deter-

mine particle coordinates. Therefore, when both cases are considered, the minimal 
set of collective-coordinate constraints are collective coordinates at the �N

2
� smallest 

wavenumbers.

6. Conclusions and discussions

In this work, we have investigated the minimal set of collective-coordinate constraints 
as a function of the particle number N to uniquely determine the progenitor particle 
coordinates in one dimension. We also considered how the minimal collective-coordi-
nate constraints depend on constraint types (the real (4) and imaginary (5) conditions) 
and types of target configurations, i.e. perturbed lattices and Poisson point distribution 
configurations. As shown in figure 9, the minimal set of constraints are collective coor-

dinates at the �N
2
� smallest wavenumbers: it corresponds to the parameters of Nk  =  0 

and M = 2�N/2�. In other words, the removed number of degrees of freedom in the 
solution space will vary with each collective-coordinate constraint, and the real and the 
imaginary parts of a collective coordinate are not completely independent.

For this result to accommodate the pathological case, i.e. the integer lattice, one 
needs to regard all of its translations to be equivalent. As we noted in section 4.2, this 
is because translations of the integer lattice cannot be distinguished in terms of ñT (km) 
for m = 1, · · · , �N/2�, since their collective coordinates are identically zero, except at 
the Bragg peaks, i.e. k = 2π, 4π, · · ·. An additional constraint ñT (kN) ≡ ñT (2π) at the 
first Bragg peak is necessary to remove the translational degree of freedom. However, 
we note that non-Bravais lattices are not pathological cases because their lattice con-
stants are larger than one, and thus their first Bragg peaks should appear within the 
range of |k| � π.

It is useful to compare this conclusion with the result of Fan et al [14]. These 
authors proved that for a one-dimensional system one needs its collective coordinates 

at the �N
2
� smallest wavenumbers as well as the center of mass in order to determine 

all of its collective coordinates; see appendix B for the detailed summary. In the same 
context, our investigation shows that if the center of mass is unknown, one needs collec-

tive coordinates at the �N
2
� smallest wavenumbers. Moreover, when there are an even-

number of particles, the knowledge of the center of mass does not reduce the necessary 
information.

While the present work focused on 1D systems for simplicity, it is useful to discuss 
implications of our results for the inversion problem in higher-dimensional systems. 
Unlike 1D systems, higher-dimensional systems allow many dierent ways to select col-
lective-coordinate constraints; see figure 10. Consider here the case (c) where selected 
wavevectors form n nonparallel strips orienting toward the origin. Based on our present 
results, if the ith strip has a slope si = ni/mi, where ni and mi are integers and coprime, 
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and includes the smallest �N/2� wavevectors, then one can uniquely determine values of 
the coordinates on a line, i.e. mixj + niyj for j = 1, · · · ,N . Thus, by using two perpend-
icular strips that include a total of 2�N/2� collective-coordinate constraints, one can 
‘separately’ determine the x and y coordinates of particle positions. In order to deter-
mine the pairing between the x and y coordinates, one needs collective-coordinate con-
straints along additional strips in the Fourier space, as shown in figure 10(c). Therefore, 
in this scheme at least 3�N/2� collective-coordinate constraints are required.

It is interesting to compare collective coordinates with Fourier components in the 
discrete Fourier transform (DFT). While a Fourier component Xk in the DFT is a linear 

function of a complex sequence {xn}N−1
n=0 , a collective coordinate ñ(km) is a nonlinear 

function of particle coordinates {Rj}Nj=1. In both cases, wavenumbers are restricted to 

be equally spaced due to the periodic boundary conditions in direct spaces. On the 
contrary, the direct spaces are dierent in the two cases in that while the direct spaces 
in the DFT are digitized into N  pixels, those in collective coordinates are continuous. 
If one discretizes the space of a point configuration with N  pixels of width ∆x, the 
configuration can be described by a real-valued sequence {xn}, where xn represents the 
number of particles in the nth pixel. Then, this conversion can be straightforwardly 
written as follows:

Particle  
coordinates: {Ri}Ni=1 ⊂ R ⇒ {xn}N−1

n=0 ⊂ N ∪ {0}
Collective  
coordinates:

ñ(km) =
∑N

i=1 exp(−ikmxi) ⇒ Xm =
∑N−1

j=0 xj exp
[
−i 2πmN∆x

( j∆x)
]
.

Thus, the mth collective coordinate ñ(km) of a point configuration corresponds to 
the mth Fourier component Xm of its digitized version. From this relationship, one 
can surmise that the inverse DFT with the first N /2 collective coordinates will give a 
discretized point configuration with a position precision ∆x. In other words, one needs 
around 107 Fourier components to achieve ∆x ∼ O(10−7), which is a typical error in 
our solution configurations.

In the present work, we focused on the search for the minimal set of constraints, 
rather than computational costs. Our inversion procedure is intuitive and provides 

easy-to-estimate numerical errors in solutions (i.e. energy Φ
(
rN ;RN

)
), but this compu-

tational method is inecient for large systems. For instance, as system size N increases, 
the computation cost grows at least in the order of N2. Furthermore, since this method 
tends to have larger numerical errors in solution configurations as N increases (see 
figures 6 and 7), it becomes more likely to fail to find any solution with a given value of 
the energy tolerance εE. The failure rate becomes especially much higher when a target 
is more complicated. Therefore, for future studies, it would be important to develop 
more ecient computational procedures to invert collective coordinates into particle 
coordinates.
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Appendix A. Approximate solutions of equations (13) and (14)

For parameters Nk  =  0 and M  =  3, and the real condition (4), from (13) and (14), one 
can find two solutions as follows:

δ1 ≈
(−18Im [ñT (k1)]±D)

π(Re [4 ñT (k1)− ñT (k2)]) (Re [4 ñT (k1)− ñT (k2)]− 12)

δ2 ≈ −Re [4 ñT (k1)− ñT (k2)]

12
√
3π

+
6

Re [4 ñT (k1)− ñT (k2)]− 6

(
Im [ñT (k1)]

2π
− δ1

)

δ3 ≈
Re [4 ñT (k1)− ñT (k2)]

12
√
3π

+
6

Re [4 ñT (k1)− ñT (k2)]− 6

(
Im [ñT (k1)]

2π
− δ1

)
,

 (A.1)
where the discriminant D is written as

D ≡ 1

12
√
3
(Re [4 ñT (k1)− ñT (k2)]− 6)

[ (
(Re [4 ñT (k1)− ñT (k2)]− 6)2 − 36

)

×
(
Re [4 ñT (k1)− ñT (k2)]

2 − 36Re [2 ñT (k1) + ñT (k2)]
)
+ 3888Im [ñT (k1)]

2
]1/2

.
 (A.2)

Here, a trivial solution is obtained from (A.1) when a minus sign is taken in δ1. Otherwise, 
(A.1) become a nontrivial solution.

For parameters Nk  =  1 and M  =  4, (13) and (14) give a single solution:

δ2 = −δ1
2
+

Im [ñT (k3)]

12π
+

[√
3πδ1

2 +
1

4
√
3π

(
Re

[
ñT (k2) +

2

9
ñT (k3)

]
− 2

3

)]

 

(A.3)

δ3 = −δ1
2
+

Im [ñT (k3)]

12π
−

[√
3πδ1

2 +
1

4
√
3π

(
Re

[
ñT (k2) +

2

9
ñT (k3)

]
− 2

3

)]
,

 

(A.4)

where δ1 is determined by the following cubic equation:

δ1
3 − Im [ñT (k3)]

6π
δ1

2 − 1

12π2

(
Re

[
ñT (k2) +

2

9
ñT (k3)

]
− 11

3

)
δ1

+
1

72π3

[
Im [ñT (k3)]

(
Re

[
ñT (k2) +

2

9
ñT (k3)

]
− 5

3

)
− 3Im [ñT (k2)]

]
= 0,

 (A.5)
which has a single real root for realizable and nonzero collective-coordinate constraints.

Appendix B. The uniqueness of solutions for the inversion problem

Using the generating function argument [14], one can prove that there is the unique 
configuration to satisfy N prescribed collective coordinates. Let us define a generating 
function as

f(z) ≡
∞∑

m=1

ñ(km)

m
zm, (B.1)

which is well-defined for |z| < 1 because |ñ(km)| is bounded. Using the definition (1) and 
power series expansion of the log function [ln(1− z) =

∑∞
n=1 z

n/n for |z| < 1],

https://doi.org/10.1088/1742-5468/aae84c


Inversion problems for Fourier transforms of particle distributions

19https://doi.org/10.1088/1742-5468/aae84c

J. S
tat. M

ech. (2018) 113302

f(z) =
∞∑
n=1

(
N∑
j=1

e−inxj

)
zn

n
=

N∑
j=1

∞∑
n=1

(ze−ixj)n

n
=

N∑
j=1

− ln
(
1− ze−ixj

)

= − ln

[
N∏
j=1

(1− ze−ixj)

]
.

 

(B.2)

Since the term inside square brackets of logarithm is a polynomial of order N, exp [ f(z)] 
also should be a polynomial of order N.

N∏
j=1

(1− ze−ixj) = exp(− f(z)) = PN exp(− f(z)) = PN exp(−PN f(z))

= PN exp

(
−

N∑
m=1

ñ(km)

m
zm

)
,

 

(B.3)

where PN represents a projection to a degree N polynomial of z.
By substituting (B.3) into (B.2) and doing further analysis, Fan et al [14] derived 

the following identity:

N∑
m=1

ñ(km)

m
zm = − ln


P�N

2
� exp


−

�N/2�∑
m=1

ñ(km)

m
zm


− ωzNP−�N

2
� exp




�N/2�∑
m=1

ñ(−km)

m
z−m




 ,

 (B.4)
where ω ≡ exp

(
−i2π

∑N
n=1 xn

)
, and �x� is the floor function of x. Since ñ(km) = ñ(−km)

∗, 

if collective coordinates at the �N
2
� smallest wavenumbers and the center of mass are 

known, in principle one can determine collective coordinates at other wavenumbers. In 
other words, there is a unique point configuration that satisfy these conditions.
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