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Antifreeze proteins (AFPs) are a diverse class of proteins that
depress the kinetically observable freezing point of water. AFPs
have been of scientific interest for decades, but the lack of an
accurate model for predicting AFP activity has hindered the logical
design of novel antifreeze systems. To address this, we perform
molecular dynamics simulation for a collection of well-studied
AFPs. By analyzing both the dynamic behavior of water near the
protein surface and the geometric structure of the protein, we
introduce a method that automatically detects the ice binding
face of AFPs. From these data, we construct a simple neural net-
work that is capable of quantitatively predicting experimentally
observed thermal hysteresis from a trio of relevant physical vari-
ables. The model’s accuracy is tested against data for 17 known
AFPs and 5 non-AFP controls.
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Antifreeze proteins (AFPs) have been identified from a vari-
ety of sources, including fish, insects, bacteria, plants, and

fungi (1). The antifreeze activity of these proteins is charac-
terized by the difference between the nonequilibrium melting
and freezing points, referred to as thermal hysteresis (∆T ) (2).
∆T values span a wide range from <1 K for most alanine-rich
α-helical AFPs in fish (3, 4) to more than 6 K in hyperactive
threonine-rich β-helical proteins found in insects (5). At lower
concentrations (<0.5 g/L), hyperactive AFPs greatly outperform
more traditional antifreeze agents, making them of potential
interest for use in medicine, agriculture, food processing, and
surface protection (6).

The most widely accepted theory for the origin of ∆T was put
forward by Raymond and DeVries (7) in 1977. They postulated
that AFPs first bind irreversibly to the surface of a nascent ice
crystal. The ice surface is then forced to adopt an increased cur-
vature as a cap grows between the bound AFPs. This increased
surface curvature then depresses the freezing point through the
Gibbs–Thomson (Kelvin) effect (8, 9):

∆T =αp

(
γslTmν

∆Hm

)
cos θ/d . [1]

Here, αp is a geometric constant (two for cylindrical ice cap,
four for spherical), γsl is the ice–liquid surface tension, Tm is
the bulk freezing point, ν is the molar volume of ice, ∆Hm is the
molar latent heat of fusion, θ is the ice cap contact angle, and
d is distance between adsorbed AFPs. This theory has recently
been supported via molecular simulation work by Naullage
et al. (9), who accurately calculated ∆T from θ and d for a
model system. Additionally, Kuiper et al. (10) confirmed that
the binding of an AFP to the ice front is nearly irreversible in
microsecond-long simulations, agreeing with earlier experimen-
tal evidence (11).

However, how does the AFP first recognize and bind to a
small quantity of solid water in a vast reservoir of liquid water?
Nutt and Smith (12) suggested that AFPs accomplish this feat by
preorganizing a “quasi ice-like layer” of water on the ice bind-
ing surface (IBS) of the protein. This layer can then be easily

incorporated into the growing ice crystal, binding the protein
to the solid–liquid interface (12). Recent work by Hudait et al.
(13) has shown that water near the IBS is not truly ice like,
since its structural order is much lower than ice, but simula-
tions do show that water near the IBS displays exceptionally
slower hydrogen bond reorientation dynamics compared with
other protein surfaces (14). The presence of slow hydrogen bond
dynamics near the IBS was also confirmed experimentally by
Meister et al. (15).

Despite a growing body of literature on the topic of AFPs,
there has been little progress in successfully engineering new
AFPs. Many studies have shown that single mutations often
lead to decreased antifreeze activity, with the best-performing
mutants often showing little to no advantage over the natu-
rally occurring protein (16–19). In contrast, Marshall et al. (20)
showed that the antifreeze activity of a commonly studied AFP,
isolated from the spruce budworm beetle, could be enhanced by
the addition of coils already found in the AFP. While encour-
aging, this technique relies on copying an existing structure, and
therefore is not a viable route for designing improved antifreeze
functionality. Similar efforts have been made by linking two
AFPs together, but on a per mass basis, this showed very little
improvement (21).

Development of nonbiological thermal hysteresis molecules
has been similarly challenging. Synthetic polymers, while often
good ice recrystallization inhibition agents, possess a ∆T less
than 1 K at relevant concentrations (22). Thermal hysteresis has
also recently been observed with a red synthetic dye, Safranin,
but its activity was found to be considerably smaller than the best
naturally occurring AFPs (23).

Given the growing use of computation in materials design, the
availability of a quantitative method for predicting AFP activ-
ity in silico would clearly be of interest. Since ice nucleation and
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Fig. 1. Experimental thermal hysteresis (∆T) as a function of mass con-
centration for 17 selected AFPs collected from the literature. Proteins are
referred to by their PDB ID codes: 2PY2 from ref. 25; 3UYU from ref. 26;
3VN3 and 5B5H from ref. 18; 1Y04, 1WFA, 1HG7, and 3P4G from ref. 27;
3ULT from ref. 28; 3WP9 from ref. 29; 6BG8 from ref. 30; 1L0S from ref. 31;
2PNE from ref. 32; 1EZG from ref. 20; 4NU2 from ref. 33; 4DT5 from ref. 5;
and 1M8N from ref. 34. Solid lines are fits to the data. Inset shows the full
dataset in log–log representation.

freezing occur on time scales much too long for efficient simula-
tion of molecular models of water, this task must be done in an
indirect way. More than 15 y ago, Graether et al. (17) attempted
to predict the antifreeze activity resulting from single mutations
using a neural network (NN) approach. While the strategy was
sound, their analysis was limited to the static properties of a sin-
gle protein, yielding results that were not particularly accurate.
A more general approach was undertaken by Doxey et al. (24),
who managed to successfully separate AFP structures from non-

AFP structures using the fraction of ordered surface carbons,
but their method was only intended for classification and actu-
ally “scored” rather low-activity AFPs much higher than hyper-
active AFPs.

To address this lack of an accurate and transferable method
for predicting AFP activity in silico, we use molecular dynam-
ics simulations to analyze the geometric properties of AFPs and
the dynamics of the surrounding water. From these data, we
construct both a linear model (LM) and an NN, and we demon-
strate that the NN is able to accurately predict the activity of a
wide variety of AFPs. Our results identify key parameters nec-
essary for antifreeze activity and should be of use in designing
antifreeze materials.

Results and Discussion
Experimental Data. For this study, we attempt to include all avail-
able nonmutant AFPs that have both a structure deposited in
the Protein Data Bank (PDB) (www.rcsb.org) and a published
thermal hysteresis curve as a function of concentration. We also
avoid any multisubunit or linked AFPs. As a result, we selected
17 proteins with a spectrum of antifreeze activities along with 3
non-AFPs containing exposed planar faces and 2 homologs (pro-
teins with similar structure to AFPs but no known antifreeze
activity) to be used as a control. The AFPs come from a wide
variety of organisms (fish, insects, plants, bacteria, and fungi)
and cover all basic classes of AFP (e.g., types I–III and hyper-
active) (22).

To avoid confusion with different isoforms, we reference the
proteins by their PDB ID codes. Experimental data for ∆T were
collected from the literature and are shown in Fig. 1. We plot ∆T
as a function of mass concentration to ensure equal treatment
between AFPs of different sizes.

Assuming a square lattice of adsorbed AFPs, Raymond and
DeVries (7) suggested that the data could be fit with a function
of the form

∆T =αC 1/2, [2]

where α is a constant and C is the bulk concentration of AFP.
While this form is acceptable for low-activity AFPs, it fits the
data rather poorly for hyperactive AFPs. The same is true for
the kinetic pinning model suggested by Sander and Tkachenko

Table 1. Data for all 22 proteins used in this work

PDB ID code Source Mp (kDa) N NB H (nm) D (nm) Rg (nm) A (nm2) LB (ps) LN (ps) LM ∆TC (K) NN ∆TC (K) Exp. ∆TC (K)

3CM4* Non-AFP 7.50 60 8.00± 0.00 1.79± 0.16 1.84± 0.41 1.08± 0.01 2.05± 0.66 97.6± 5.55 98.1± 1.82 −0.08± 0.22 0.06± 0.12 0.00
3WHD† Non-AFP 18.3 137 8.57± 0.53 3.03± 0.18 1.28± 0.21 1.48± 0.01 2.63± 0.35 111.± 6.08 112.± 2.42 −0.02± 0.13 0.00± 0.00 0.00
1AKI Non-AFP 14.3 129 8.43± 0.53 2.82± 0.05 2.36± 0.29 1.42± 0.01 2.68± 0.25 103.± 4.17 98.8± 1.52 0.30± 0.13 0.11± 0.06 0.00
1UBQ Non-AFP 8.58 76 9.43± 1.51 2.01± 0.06 2.07± 0.45 1.17± 0.01 2.53± 0.65 117.± 5.89 108.± 2.76 0.27± 0.21 −0.00± 0.00 0.00
3Q6L Non-AFP 16.9 131 9.57± 1.81 2.73± 0.34 2.17± 0.84 1.42± 0.00 2.98± 0.86 117.± 2.61 126.± 4.85 −0.25± 0.42 0.04± 0.02 0.00
2PY2 Fish 15.5 127 9.67± 1.63 2.70± 0.14 2.16± 0.27 1.36± 0.00 3.68± 0.86 125.± 9.94 122.± 2.40 0.49± 0.60 0.05± 0.10 0.03
3UYU Fungus 25.2 231 9.14± 0.90 4.44± 0.70 2.28± 0.40 1.73± 0.01 2.62± 0.48 122.± 2.40 122.± 2.07 −0.08± 0.23 0.07± 0.03 0.08
3VN3 Fungus 22.5 222 12.4± 4.50 3.26± 0.45 1.60± 0.91 1.69± 0.00 2.82± 1.58 135.± 5.79 125.± 1.78 0.28± 0.69 0.34± 0.07 0.08
1WFA Fish 3.24 37 12.7± 1.50 0.65± 0.13 1.05± 0.32 1.66± 0.01 3.23± 0.44 125.± 6.67 115.± 3.04 0.58± 0.29 0.09± 0.13 0.10
1Y04 Fish 3.09 35 11.7± 2.07 0.79± 0.23 1.05± 0.17 1.56± 0.04 3.14± 0.52 126.± 8.88 105.± 3.60 0.98± 0.42 0.32± 0.36 0.16
3ULT Plant 27.6 114 12.4± 3.10 1.72± 0.02 1.68± 0.41 1.36± 0.00 3.37± 1.21 121.± 11.3 92.6± 1.46 1.44± 0.24 0.98± 0.15 0.17
1HG7 Fish 7.14 66 8.14± 0.37 2.23± 0.16 1.67± 0.22 1.09± 0.01 1.96± 0.35 137.± 18.8 122.± 6.10 0.09± 0.68 0.33± 0.14 0.18
5B5H Fungus 22.4 223 9.57± 2.51 3.32± 0.62 1.91± 0.58 1.70± 0.00 2.74± 0.92 138.± 5.25 122.± 1.90 0.47± 0.44 0.40± 0.10 0.36
3WP9 Bacteria 23.5 224 15.7± 1.60 3.32± 0.10 3.32± 0.20 1.67± 0.00 4.37± 0.38 145.± 4.48 120.± 3.00 1.54± 0.29 0.94± 0.30 0.70
6BG8 Bacteria 26.3 239 8.86± 1.07 3.52± 0.07 1.41± 0.22 1.75± 0.00 2.11± 0.26 140.± 4.77 128.± 2.29 0.00± 0.25 0.52± 0.07 0.84
1L0S Insect 9.07 88 12.0± 1.73 2.16± 0.04 1.57± 0.26 1.14± 0.00 3.07± 0.56 133.± 3.30 101.± 1.58 1.36± 0.19 1.18± 0.25 1.34
3P4G Bacteria 33.9 301 21.0± 3.61 2.86± 0.07 1.53± 0.41 2.40± 0.01 5.29± 1.44 163.± 7.75 127.± 1.83 2.26± 0.45 1.77± 0.32 1.98
2PNE Insect 6.49 81 15.3± 2.75 1.05± 0.09 1.54± 0.26 1.38± 0.01 4.38± 0.65 149.± 6.23 106.± 4.58 2.24± 0.57 2.36± 0.85 2.13
1EZG Insect 8.39 82 15.0± 2.08 1.46± 0.02 1.57± 0.28 1.17± 0.00 3.73± 0.48 107.± 3.57 89.8± 1.51 1.28± 0.27 1.77± 0.24 2.22
4NU2 Bacteria 25.5 216 17.7± 1.50 3.16± 0.07 2.97± 0.56 1.65± 0.00 5.24± 0.35 136.± 4.68 114.± 1.59 1.91± 0.15 2.19± 0.13 2.54
4DT5 Insect 14.5 143 21.7± 2.63 1.43± 0.05 3.78± 0.44 1.56± 0.01 6.48± 0.75 136.± 6.39 108.± 3.06 2.71± 0.38 3.37± 0.49 3.43
1M8N Insect 12.5 120 15.3± 0.75 2.18± 0.02 2.24± 0.32 1.34± 0.00 5.04± 0.54 150.± 4.82 96.6± 1.13 2.96± 0.20 4.06± 0.23 4.28

Mp is the molecular mass of the protein. N is the number of solvent-accessible residues in the protein (defined in Materials and Methods), and NB is the number of residues in the IBS. Height,
H, is the maximum distance from the ice binding plane S (defined in the text) to the geometric center of any residue in the protein measured in the direction normal to S. The width of the IBS, D,
is the minimum edge length of a rectangle that bounds all coordinates in S. Rg is the radius of gyration measured using the GROMACS 2016.4 tool gmx polystat. A, LB , and LN (defined in the text)
are computed from molecular simulation. LM ∆TC and NN ∆TC are predicted values using the LM and the NN, respectively. Exp. ∆TC at 0.3 g/L was interpolated from experimental data using
Eq. 3. All errors are one SD.
*Only the C-terminal domain of 3CM4 was used for the study.
†Residue numbers 61–68 were excluded from PDB ID code 3WHD, as they are not part of the main backbone.

Kozuch et al. PNAS | December 26, 2018 | vol. 115 | no. 52 | 13253

http://www.rcsb.org


A

B

C

D

Fig. 2. Secondary/tertiary structure (Left) and surface structure with the
IBS shown in light blue (Right). (A) Protein ID code 1WFA. Type I α-helical
fish protein. Predicted IBS matches that identified by ref. 3. (B) Protein ID
code 1HG7. Type III globular fish protein. Predicted IBS matches that identi-
fied by ref. 16. (C) Protein ID code 3P4G. Ca2+-dependent bacterial protein.
Predicted IBS matches that identified by ref. 39. (D) Protein ID code 1M8N.
Hyperactive AFP from the spruce budworm beetle. Predicted IBS matches
that determined by ref. 40. Visualization done with PyMOL (41).

(35). Since a fitting function is still desired to avoid statistical
error in the experimental data, we use an expression based on
the Langmuir adsorption model (36):

∆T =α

(
KC

1 +KC

)
, [3]

where K is a constant. This model fits the data for all AFPs
much better (solid lines in Fig. 1), but we emphasize that this
is a phenomenological choice, not a rigorous derivation in this
context. Additionally, our treatment (as well as Eq. 2) ignores the
interesting sigmoidal behavior of AFP activity noted at extremely
low concentrations (37). We consider this approximation quan-
titatively sufficient for all relevant concentrations and use it to
compare ∆T at a selected concentration.

Which Properties Characterize Antifreeze Activity? To construct a
predictive model, input variables must first be selected. We
begin by assuming that a given AFP is characterized by two
surfaces: the planar IBS, which faces into the ice crystal after
binding, and the nonplanar, nonice-binding surface (NBS), which
faces into liquid water and prevents additional ice growth. A
detailed justification for this assumption is given by Knight and
Wierzbicki (38). Next, we quantify the slow hydrogen bond
dynamics (mentioned above) using a hydrogen bond lifetime,
L (defined below). Three variables were then chosen for our
analysis.

i) A: the area of the predicted IBS.
ii) LB : L measured near the IBS.

iii) LN : L measured near the NBS.

The logic for selecting each parameter is as follows. (i) The
larger the area of the IBS, the more likely that contact with the
ice will lead to binding and the greater the surface coverage will

be. (ii) Slow hydrogen bond dynamics near the IBS has long been
recognized as a signature of AFPs, and therefore, we hypothesize
that AFPs with larger LB will be better able to recognize/bind ice.
(iii) By the same argument, if LN is large, this indicates that the
protein will be more susceptible to ice overgrowth on the NBS,
destroying the antifreeze effect. Therefore, we expect ∆T to be
positively correlated with A and LB and negatively correlated
with LN .

Work by Naullage et al. (9) suggests that bulkier AFPs should
display increased ∆T . We, therefore, also tested the inclusion
of the following variables: protein height, H ; distance across the
binding plane, D ; molecular mass of the protein, Mp ; and radius
of gyration, Rg . The inclusion of these variables in the models
discussed below did not significantly increase prediction accuracy
and led to overfitting. As such, they are not considered in the
following work. This is not to say that the bulkiness of the protein
is irrelevant to antifreeze activity. It could be that A captures this
property appropriately or that bulkiness is less important at fixed
mass concentration. Nevertheless, we provide the values of the
variables in Table 1 in case this information could prove helpful
to the reader.

A

B

Fig. 3. ∆TC values predicted (Pred.) by (A) LM and (B) NN compared with
values from experimental (Exp.) data in Table 1. Dashed lines are y = x, and
the blue regions represent an error of±0.5 K. Error bars represent one SD in
the predicted value. Error is a result of uncertainty in the measured variables
due to thermal motion.
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Automated Detection of the IBS. The determination of the IBS is
critical to our analysis. Since we intend our method for materials
design, we keep this calculation as general as possible, selecting
the IBS based on geometric requirements and the optimization
of our three physical variables as described next.

For each protein, standard molecular dynamics simulations
were performed as described in Materials and Methods. From
the simulation data, an average protein structure composed of
residue coordinates is generated, and a water–water hydrogen
bond lifetime, Li , is assigned to each residue (the procedure
is described in Materials and Methods). The residues are then
grouped into planes using the following procedure.

i) Using any three noncollinear residues, define a plane P .
ii) Identify a set S of all residues within 0.11 nm of P .

iii) If S contains eight or more residues and all residues have at
least two neighbors in S within 1 nm, continue. Otherwise,
discard the set. This ensures a connected set with a relevant
number of residues.

iv) Calculate the number of residues not in S found above or
below P , defined as n1 and n2. If min(n1,n2) = 0, continue.
Otherwise, discard the set. This effectively eliminates all
planes “inside” the protein structure.

v) Add set S to the set of possible IBSs, Sall .
vi) Repeat for all possible sets of three noncollinear residues.

For each S in Sall , we then calculate LS ,B , the average of
Li for all residues in S weighted by the solvent-accessible sur-
face area (SASA) of each residue, and LS ,N , being the same as
LS ,B but for all residues not in S . We also calculate AS , which is
defined as the area enclosed by the convex envelope containing
the projection of all of the solvent-accessible atoms correspond-
ing to the points in S onto plane P—essentially the planar area of
the IBS.

Since the scoring function is not known a priori, we choose the
IBS simply as the S that maximizes the expression

A∗S + (LS ,B −LS ,N )∗. [4]

Here, the asterisks denote that the value was normalized by the
maximum of the respective quantity observed in Sall so that all
values can be compared on a one-to-one basis. AS , LS ,B , and
LS ,N of the S selected as the IBS then become A, LB , and LN ,
respectively, for the scoring functions described below. If no S
is found during evaluation (i.e., Sall is an empty set), the pro-
tein can be considered a non-AFP and scored as having a ∆T
of zero. A schematic of this process is included in SI Appendix,
Fig. S1.

We note that the IBS predicted by our method shows excellent
agreement with the IBS suggested by experiment and com-
putationally by Doxey et al. (24). Fig. 2 shows a graphical
display of the IBS for selected AFPs and additional details.
This automated method successfully identifies the IBS based
on geometry, and on the dynamic properties of water near the
protein.

Predicting Antifreeze Activity Using an NN. We measured our
selected variables for each protein using 10-ns blocks from 30
to 100 ns for a total of 7 measurements per protein and 154 mea-
surements overall. Averages are shown in Table 1. We first fit
the data (excluding the two homologs) to the simplest possible
equation, a linear combination:

∆TC = a0 + a1A+ a2LB + a3LN . [5]

Here, a0 through a3 are fitted constants, and ∆TC is the
experimental ∆T evaluated at a concentration of 0.3 g/L using

Eq. 3. This concentration was selected to avoid saturation effects
(where ∆T is nearly constant with increasing concentration) and
extrapolating the data. While this treatment is somewhat biased
against AFPs like PDB ID code 4DT5 that show better perfor-
mance at higher concentrations, some compromise is necessary,
since an accurate single-variable equation for ∆T as a function
of concentration is not available.

The results of this LM are shown in Fig. 3A, and the values
of the fitted coefficients in Eq. 5 are as follows: a0 = −0.167 K,
a1 = 0.456 K/nm2, a2 = 0.032 K/ps, a3 = −0.0411 K/ps. The per-
formance of the LM is quite mediocre, with a mean error
from experiment of 0.51 K and a correlation coefficient of
R2= 0.80. Clearly, Eq. 5 is not complex enough to accu-
rately capture ∆TC . We show it here, however, as it does
exhibit an important qualitative insight: our coefficients match
the physical intuition discussed earlier. A and LB are posi-
tively correlated with ∆TC , and LN is negatively correlated
with ∆TC .

Given the quantitative shortcomings of the LM, we turn to a
non-LM in the form of an NN. The NN is trained on the same
154 data points as the LM. To minimize overfitting, we use a val-
idation holdout set along with L2 regularization (42) and model
averaging (43). Details are given in Materials and Methods. Five-
fold cross-validation for the NN shows a mean deviation from
experiment of 0.36 K, suggesting that the NN is quite robust.
When trained on 70% of the data, the NN shows a mean error
from experiment of 0.19 K and an R2 of 0.97, a significant
improvement compared with the LM. Results are given in Fig. 3
and Table 1. This NN is remarkable in its accuracy given the
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Fig. 4. Average behavior of the NN: (A–C) holding two variables at their
average value and (D–F) holding one variable at its average value (〈A〉 =
3.57 nm2, 〈LB〉 = 131 ps, 〈LN〉 = 113 ps).
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diversity of the proteins in the dataset and that it only requires
three variables (A, LB , and LN ) as input.

While the NN performs extremely well for almost all proteins
in the dataset, it does struggle to accurately predict our one plant
AFP, PDB ID code 3ULT (also known as Lolium perenne ice-
binding protein, LpIBP), isolated from ryegrass. This error may
be due to the lack of other plant AFP samples in the model, but
interestingly, this is not the first instance where the ryegrass AFP
has underperformed expectation. Work by Middleton et al. (44)
showed that, while PDB ID codes 3ULT and 1EZG (an insect
AFP; also known as Tenebrio molitor antifreeze protein, TmAFP)
are very similar in structure, PDB ID code 1EZG exhibits a ∆T
more than 10 times that of PDB ID code 3ULT. Importantly,
ice growth experiments in the same study showed that PDB ID
code 1EZG binds to all ice faces, while PDB ID code 3ULT
binds almost exclusively to the basal plane. This difference would
not be captured by our model given that we make no distinc-
tion regarding which ice face the AFP prefers. Incorporating this
information may lead to increased accuracy in future work.

As an additional test of the NN, we also score the two homologs
in our dataset that were not included in any of the training pro-
cedures. The selected homologs are (i) the C-terminal domain of
sialic acid synthase (PDB ID code 3CM4), which is a homolog of
type III AFPs like PDB ID code 1HG7, and (ii) a C-type lectin
(PDB ID code 3WHD), which is a homolog of type II AFPs like
PDB ID code 2PY2. Both homologs were evaluated in the same
manner as the rest of the AFPs and received TC scores of nearly
zero (Table 1), confirming that the NN can discriminate even
against AFP homologs.

For a better understanding how the NN scores AFPs, we hold
two of three variables constant at their average values in the
dataset and vary the third. An effective trend for each variable
is, therefore, calculated as shown in Fig. 4. Overall, the curves in
Fig. 4 are very clear: ∆TC is positively correlated with A and LB

and negatively correlated with LN , in agreement with the LM.
Importantly, the NN additionally shows that there are certain

thresholds at which ∆TC changes dramatically with respect to
the input variables. Moving from A = 2 to 3.5 nm2 results in
very little change, but moving from A = 3.5 to 5 nm2 results in a
nearly fourfold increase in ∆TC . Similarly, for LB between 110
and 125 ps, ∆TC is roughly zero, but for LB between 125 and
140 ps, there is a significant gain in activity, which then slows after
140 ps. With respect to LN , there is a nearly linear drop in activ-
ity with increasing LN until ∆TH is nearly zero at LN > 115 ps.
We imagine that this information might be of use when deciding
how to construct, run, and attain convergence of a computational
design process. We also include the behavior of the NN as a func-
tion of two variables (holding the third constant at its average
value in the dataset) in Fig. 4.

Conclusions
This work presents a straightforward and physically motivated
method for predicting the antifreeze activity of AFPs from
molecular simulation. The method supports current understand-

ing that AFPs recognize and bind ice with a water layer defined
by long hydrogen bond lifetimes near the IBS. We show that
a simple NN produces quantitatively accurate predictions of
thermal hysteresis. Furthermore, the NN suggests that short
hydrogen bond lifetimes on the NBS are also quite important
for producing high-activity AFPs. We hope that this information
will aid in the development of advanced antifreeze materials.

Materials and Methods
Molecular Dynamics. All molecular dynamics simulations were performed
using GROMACS 2016.4 (45–48). Protein structures were obtained from the
Research Collaboratory for Structural Bioinformatics (RCSB) PDB and sol-
vated in at least 1.5 nm of water in all directions using periodic boundary
conditions for a protein–protein self-image distance of at least 3 nm. Water
was modeled using the Transferable Intermolecular Potential, 4-point, Ice
(TIP4P/Ice) model (49) for its realistic melting temperature of ∼270 K (50),
and proteins were modeled by the Amber03w force field (51) for its compat-
ibility with four-site water models (52, 53). Additional details and comments
on computational efficiency are included in SI Appendix.

Protein Structure Coordinates. An average protein structure was first gen-
erated by averaging over atomic coordinates for the simulation window.
This structure was then reduced to a set of N residue coordinates using
the geometric center of all atoms with an SASA ≥0.01 nm2 in each
residue. If a residue has no atoms with SASA ≥ 0.01 nm2, it is eliminated.
SASA is determined using GROMACS 2016.4 following the method of
Eisenhaber et al. (54).

Hydrogen Bond Lifetimes. We define a hydrogen bond lifetime, Li , as the
average time that it takes for the hydrogen bond autocorrelation func-
tion (HBAFi) to decay to 0.1. HBAFi was defined for water–water hydrogen
bonds occurring between water molecules within 0.8 nm of any atom
in residue i. HBAFs were calculated over 1-ns blocks and averaged over
the sample simulation window. Calculations were performed using the
Python package MDAnalysis (55, 56), which uses the definition provided
by Rapaport (57). For a select few partially buried residues, there exist
trapped water molecules that do not influence ice binding but neverthe-
less, drive Li→∞. We, therefore, ignore any Li longer than 1 ns by setting it
to zero.

NN. The NN was trained using the machine learning suite in Mathematica
11.3 (58). It was composed of one three-node batch normalization layer, four
fully connected hidden layers with six nodes each, and a final single-node
output layer. Linear, Ramp, Linear, Ramp activation functions, respectively,
were used for the hidden layers. A minimum of 10,000 training rounds using
the ADAM algorithm (59) were used to minimize a mean squared error loss
function. L2 regularization coefficient 0.01 was used for all training. Stan-
dard fivefold cross-validation was used to check performance (60). The final
NN is an average of five separately trained NNs using different random sam-
plings of 70% of the data, with the remaining 30% of the data acting as
a validation holdout set to reduce the overfitting and error from outliers.
Experimentation with larger/deeper NNs and more complex activation func-
tions lead to worse cross-validation scores. A grid of points scored by the NN
is included in Dataset S1.
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47. Szilárd P, Abraham MJ, Kutzner C, Hess B, Lindahl E (2015) Tackling exascale soft-
ware challenges in molecular dynamics simulations with GROMACS. Solving Software
Challenges for Exascale, Lecture Notes in Computer Science, eds Markidis S, Laure E
(Springer, Cham, Switzerland), Vol 8759, pp 3–27.

48. Abraham MJ, et al. (2015) GROMACS: High performance molecular simula-
tions through multi-level parallelism from laptops to supercomputers. SoftwareX
1-2:19–25.

49. Abascal JL, Sanz E, Fernández RG, Vega C (2005) A potential model for the study of
ices and amorphous water: TIP4P/Ice. J Chem Phys 122:234511.

50. Garcı́a Fernández R, Abascal JLF, Vega C (2006) The melting point of ice Ih for com-
mon water models calculated from direct coexistence of the solid-liquid interface. J
Chem Phys 124:144506.

51. Best RB, Mittal J (2010) Protein simulations with an optimized water model: Cooper-
ative helix formation and temperature-induced unfolded state collapse. J Phys Chem
B 114:14916–14923.

52. Beauchamp KA, Lin YS, Das R, Pande VS (2012) Are protein force fields getting better?
A systematic benchmark on 524 diverse NMR measurements. J Chem Theory Comput
8:1409–1414.

53. Palazzesi F, Prakash MK, Bonomi M, Barducci A (2015) Accuracy of current all-atom
force-fields in modeling protein disordered states. J Chem Theory Comput 11:2–7.

54. Eisenhaber F, Lijnzaad P, Argos P, Sander C, Scharf M (1995) The double cubic lattice
method: Efficient approaches to numerical integration of surface area and volume
and to dot surface contouring of molecular assemblies. J Comput Chem 16:273–284.

55. Michaud-Agrawal N, Denning EJ, Woolf TB, Beckstein O (2011) MDAnalysis: A toolkit
for the analysis of molecular dynamics simulations. J Comput Chem 32:2319–2327.

56. Gowers RJ, et al. (2016) MDAnalysis: A Python package for the rapid analysis
of molecular dynamics simulations. Proceedings of the 15th Python in Science
Conference (Scipy). Available at https://conference.scipy.org/proceedings/scipy2016/
oliver beckstein.html. Accessed October 31, 2018.

57. Rapaport D (1983) Hydrogen bonds in water. Mol Phys 50:1151–1162.
58. Wolfram Research Inc. (2018) Mathematica (Wolfram Research, Inc, Champaign, IL).
59. Kingma DP, Ba JL (2014) Adam: A method for stochastic optimization. arXiv:1412.

6980v9. Preprint, posted December 22, 2014.
60. Kohavi R (1995) A study of cross-validation and bootstrap for accuracy estimation

and model selection. Proceedings of the International Joint Conference on Artificial
Intelligence. Available at http://ai.stanford.edu/∼ronnyk/accEst.pdf. Accessed Octo-
ber 31, 2018.

Kozuch et al. PNAS | December 26, 2018 | vol. 115 | no. 52 | 13257

https://dl.acm.org/citation.cfm?doid=1015330.1015435
https://conference.scipy.org/proceedings/scipy2016/oliver_beckstein.html
https://conference.scipy.org/proceedings/scipy2016/oliver_beckstein.html
http://ai.stanford.edu/~ronnyk/accEst.pdf

