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ABSTRACT
A traditional basic descriptor of many-particle systems has been the distribution of interparticle pair distances. In the case of structureless par-
ticles at thermal equilibrium, with just additive pair interactions, this suffices to determine pressure and mean energy. However, it is usually
the case that a given set of pair distances can emerge from a multiplicity of distinguishable many-particle configurations. This paper focuses
on the ways in which such a configuration detail can be overlooked. After providing some elementary small-system examples in which full
pair distance specification still permits distinct configurational pattern ambiguity, subsequent analysis concentrates on large-system classical
canonical ensembles. In that context, configurational degeneracy is analyzed in two-dimensional systems for the shape distribution of tri-
angles, whose chirality occurrence can be controlled by suitable three-particle interactions. For many-particle systems in three dimensions,
the possibility is explored that a set of three-particle “pair-invisible” interactions can exist which modify the three-particle distribution func-
tion, but which have no effect on the pair distribution function, and thus remain undetected by conventional diffraction experiments. For
illustration, a specific mathematical example is presented, applicable to the case where two-particle interactions vanish.

Published under license by AIP Publishing. https://doi.org/10.1063/1.5096894

I. INTRODUCTION

The instantaneous spatial configuration of a number N of iden-
tical structureless particles in d-dimensional Euclidean space Rd

involves a set of N(N − 1)/2 scalar pair distances. In general, this
set is insufficient to determine uniquely the shape exhibited by
the detailed configuration geometry of that N-particle set. But in
certain circumstances, it can provide significant basic information.
The many-body formalism of classical statistical mechanics presents
well-known examples of such sufficiency: If the particles constitute
a uniform fluid phase and interact just with spherically symmetric
pair interactions, then under thermodynamic equilibrium condi-
tions, the isotropic pressure and mean interaction energy depend
geometrically only on the isotropic pair distribution function ρ(2)(r),
i.e., the distribution of scalar distances.1,2

History presents an example in which the scalar pair distance
distribution has been used frequently to supply an approximation

for the corresponding three-particle distribution function ρ(3)(r12,
r13, r23). That example is the “Kirkwood superposition approxima-
tion.”3,4 Specifically, this assumes that the three-particle distribution
function can be replaced by a suitably normalized product of pair
distribution functions for each of the three particle pairs involved.
In particular, this generates nonlinear integral equation approxi-
mations for the pair distribution functions that are amenable to
numerical solution.5

The primary objective of the present investigation is to illus-
trate and examine the geometric uncertainties intrinsic to the scalar
pair distance distribution when it is considered alone. This will
first involve specific small-N cases to highlight the underlying basic
problem, followed by analysis of large-N asymptotic-limit cases for
well-defined equilibrium statistical ensembles.

As an appropriate starting point, Sec. II presents some ele-
mentary small-N examples for simple two- and three-dimensional
particle configurations, explicitly exhibiting distinctively alternative
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shapes with identical scalar distance sets. In preparation for analy-
sis of the structural degeneracies that larger many-particle sets can
exhibit, Sec. III recalls some preparatory statistical mechanical for-
malism for configuration ensembles. This is followed by Sec. IV
in which it is emphasized that scalene triangles confined to two
dimensions possess an intrinsic chirality, which automatically gen-
erates geometric ambiguity in an N-particle analysis based only on
the pair distance distribution. A set of three-particle interactions is
then introduced to exercise some control over that two-dimensional
ambiguity.

Section V presents some general features of classical N-particle
canonical equilibrium systems in three dimensions. Specifically, it
considers the configurational distribution details resulting from cou-
pling 3-particle interactions into systems initially subject only to
2-particle interactions. The underlying intention is ultimately to
identify nontrivial “pair-invisible” 3-particle interactions that leave
the system’s pair distribution function unchanged. Section VI pro-
vides a clear circumstance for attaining that goal by assuming that
the pair interactions vanish, i.e., the N-particle system is an ideal gas
prior to coupling in the 3-particle interactions. Section VII provides
a specific mathematical example of a vanishing influence of three-
particle interactions upon the pair distance distribution, at least in
the leading two orders of perturbation. The results presented in
Secs. VI and VII are augmented by the Appendix suggesting a future
numerical approach to the identification of three-particle interac-
tions obeying the vanishing influence requirement on the pair dis-
tance distribution. Section VIII presents various discussion issues
and conclusions.

II. SMALL-N ELEMENTARY EXAMPLES
A sensible starting point for the wider examination of the

structural degeneracy problem involves full geometric description
of some specific spatial patterns for a small number of points. Two
cases will be described in detail, but many other examples can easily
be created.

The first example consists of four points in two-dimensional
Euclidean space. This has been previously described in a pub-
lished paper6 but provides a useful initial illustration for the present
analysis. With an appropriate selection of the six pair distances,
this involves geometric degeneracy between “kite” and “trapezoid”
shapes that are illustrated in Fig. 1. Aside from overall expan-
sion/contraction of the patterns (as well as the trivial possibilities
of pattern translation and rotation), there is an additional parameter
choice 1/2 < x < 1 that controls the specific shapes of the “kite” and
“trapezoid” alternatives. The scalar lengths shown in Fig. 1 have the
following x-dependent magnitudes:

a(x) = (2x2 − 3x + 5/4)1/2,

b(x) = (2x2 − x + 1/4)1/2,
c(x) = 2x − 1,
d(x) = 1.

(1)

It should be noted in passing that if one were to choose x > 1,
the outer boundary of the “kite” pattern would become an isosce-
les triangle, but its structural degeneracy property with the trapezoid
would persist.

FIG. 1. The (a) “kite” and (b) “trapezoid” geometrically degenerate configuration
pair for four points in two dimensions.6 The six scalar pair distances adopt four
interrelated values a(x), b(x), c(x), d(x) specified in Eq. (1).

A second example again involves four points but now inhab-
iting three-dimensional Euclidean space. The six pair distances are
restricted so as to possess only two magnitudes: three have a short
distance s and the other three have a longer distance l, subject to the
constraints,

0 < s < l < [(51/2 + 1)/2]s. (2)

FIG. 2. Distinct tetrahedra that can be constructed from three short pair distances
s (blue lines) and three larger pair distances l (red lines) subject to the constraints
in Eq. (2).
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FIG. 3. Planar achiral pattern adopted jointly by the tetrahedra shown in Fig. 2(c)
and 2(d) as the distance ratio l/s→ (51/2 + 1)/2, the “golden ratio.”

These pair distances can be arranged into four distinct tetrahedral
shapes, illustrated graphically in Fig. 2. Two of these tetrahedra,
Figs. 2(a) and 2(b), possess reflection and rotation symmetries. The
other two, Figs. 2(c) and 2(d), are asymmetric but constitute mirror
images of each other. Note that the upper limit imposed on l repre-
sents the collapse of the chiral patterns 2(c) and 2(d) to a common
planar nonchiral pattern, illustrated in Fig. 3.

Reference 6 provides additional examples of structural degen-
eracy in two and three dimensions, including cases with more than
four point particles (N > 4). Furthermore, structural degeneracy
situations have also been identified for the N → +∞ limit, where
the point collections constitute a continuous phase pattern in a
heterogeneous two-phase region.7

III. STATISTICAL MECHANICAL FORMALISM
The general issue of structural degeneracy underlying the dis-

tribution of scalar distances is also relevant to selected cases of con-
figurational ensembles. For the present analysis, attention will now
be focused on canonical ensembles of N ≥ 3 identical point particles
in a fixed d-dimensional volume V, at temperature T > 0. The vol-
ume V will be simply connected and will be required to have a shape
exhibiting a reflection symmetry, i.e., the shape of V is achiral. It will
also be assumed that V possesses rigid boundaries that are particle-
impenetrable but that otherwise are noninteracting with the con-
tained particles. This section will present some relevant definitions
and relations for such canonical ensembles.

The N particles at positions r1⋯rN within V will be pre-
sumed to experience a potential energy function Φ(r1⋯rN) that is
bounded below and fully symmetric with respect to particle location
exchanges. The classical canonical partition function then has the
form8

QN(T,V) = (λTdNN!)−1ZN(T,V),

ZN(T,V) = ∫
V
dr1⋯∫

V
drN exp[−Φ(r1⋯rN)/kBT].

(3)

Here, kB is Boltzmann’s constant, λT stands for the mean thermal de
Broglie wavelength of the particles, assumed to have mass m, and h
is Planck’s constant

λT =
h

(2πmkBT)1/2 . (4)

Density distribution functions ρ(n)(r1⋯rn), for n particles, 1 ≤ n ≤ N,
in this canonical ensemble are defined by

ρ(n)(r1⋯rn) = [ N!
(N − n)!ZN

]∫
V
drn+1⋯∫

V
drN

× exp[−Φ(r1⋯rN)/kBT]. (5)

These functions provide the simultaneous occurrence probability
of any n particles in incremental volumes located at the positions
r1⋯rn.2 The pair distribution function ρ(2)(r1, r2) for given values of
N, T, and V contains sufficient information to allow extraction of
P(r), the ensemble average distribution of scalar pair distances,

P(r) = (1/2)∫
V
dr1 ∫

V
dr2δ(r − ∣r1 − r2∣)ρ(2)(r1, r2), (6)

where δ(⋯) is the Dirac delta function. If Rmax represents the largest
scalar distance that fits inside V, then

∫
Rmax

0
P(r)dr = N(N − 1)/2. (7)

For present purposes, it will suffice to restrict the N-particle
potential energy function just to pair and triplet interactions

Φ(r1⋯rN) =
N
∑
i=2

i−1
∑
j=1

φ2(rij) +
N
∑
i=3

i−1
∑
j=2

j−1

∑
k=1

φ3(ri, rj, rk). (8)

The functions '2 and '3 are each constrained to be invariant to
translation and proper rotation of the particle pair or triplet geome-
try involved. One of the primary interests in Secs. IV–VII concerns
how the scalar pair distribution P(r) would change (if at all), starting
just with the collection of pair interactions '2 and then continuously
coupling in the three-body interactions '3.

IV. TRIANGLE CHIRALITY IN TWO DIMENSIONS
The lack of symmetry for scalene triangles implies that each one

possesses three unequal side lengths. For d = 2, this creates the exis-
tence of chiral pairs of scalene triangles, a typical example of which is
illustrated in Fig. 4. Such triangles can be classified by the rotational
direction around which the side-length sequence must proceed in
the short-medium-long order, the two possibilities of which are
simply “clockwise” and “anticlockwise.” If the N-particle system’s
potential energy function Φ contains only isotropic pair interac-
tions '2(rij), then the canonical ensemble configurational probabil-
ity inside a d = 2 symmetric container shape V, proportional to the
Boltzmann factor exp(−Φ/kBT), necessarily assigns equal probabili-
ties to the clockwise and the counterclockwise versions of all triangle
mirror-image pairs. However, for this d = 2 situation, appropriately
chosen triplet interactions '3(ri, rj, rk) can upset that probability
equality.

A passing comment about the 4-point, 6-distance degener-
acy examples displayed in Fig. 1 may be useful. The “kite” shape,
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FIG. 4. Two scalene triangles that are a mirror-image (chiral) pair in two dimensions
(d = 2). The internal arrow rotation directions are determined by the ordering of the
sides: short-middle-long: (a) counterclockwise rotation and (b) clockwise rotation.

Fig. 1(a), contains two isosceles triangles and a mirror-image pair
of chiral scalene triangles. The “trapezoid” shape, Fig. 1(b), contains
two distinct pairs of mirror-image chiral scalene triangles. The “kite”
and “trapezoid” shapes each possess reflection symmetries and are
therefore achiral.

In this two-dimensional scenario, define a function χ(ri, rj, rk)
to be a chirality identifier for a triangle formed by particles i, j,
and k,

χ(ri, rj, rk) = −1 (counterclockwise rotation shape)
= 0 (isosceles, equilateral, or vanishing area shapes)
= +1 (clockwise rotation shape). (9)

One should note that χ can be computed by augmenting the d = 2
Euclidean space with a third dimension and then observing the
sign of a vector cross product from a directed pair of triangle
side displacements consistent with the assigned short-medium-long
sequence directional ordering.

Then, consider the following family of three-particle interac-
tion functions:

φ3(ri, rj, rk) = ξq(rij, rik, rjk)χ(ri, rj, rk); (10)

here, the spatial function q is chosen to be symmetric with respect to
all permutations of its three scalar distance variables. In particular,
the function q may be chosen to vanish if any of its three distance
variables exceed a selected length L, 0 < L < Rmax, but will otherwise
be required to satisfy q > 0. Equation (10) also includes a coupling
parameter |ξ| ≥ 0 that can be used to continuously turn on the triplet
interactions within the N-particle system.

By employing the chirality identifier χ, it is possible to evalu-
ate the numbers of clockwise (C+) and counterclockwise (C−) tri-
angles present in any N-particle configuration. The corresponding
canonical ensemble averages then satisfy

⟨C+⟩ + ⟨C−⟩ = N(N − 1)(N − 2)/3!, (11)

after acknowledging that χ = 0 cases normally have vanishing prob-
ability. In the absence of three-particle interactions such as shown
in Eq. (10), the ensemble averages as noted earlier must assign equal
probabilities to clockwise and anticlockwise occurrences

⟨C+⟩ − ⟨C−⟩ = 0 (ξ = 0). (12)

Now consider the effect of imposing a small deviation from
the origin of coupling constant ξ. If ξ > 0, the statistical effect of
the 3-particle interactions specified in Eq. (10) would be to reduce
⟨C+⟩ while increasing ⟨C−⟩ by a corresponding amount to main-
tain the validity of Eq. (11). This leading-order influence would be
a perturbation linear in the coupling parameter ξ,

⟨C+⟩ − ⟨C−⟩ = O(ξ) < 0, (13)

and in this leading order should only influence those triangles for
which q > 0, i.e., triangles with all three rij ≤ L. However, it needs
to be stressed that the pair distance distribution function P(r),
Eq. (6), will not exhibit a corresponding modification that is linear
in ξ.

A primary conclusion to be drawn from this elementary analy-
sis is that the Kirkwood superposition approximation3,4 is obviously
incapable of describing any chiral bias among triangles in d = 2
that had been imposed on the canonical triangle distribution func-
tion represented by ρ(3)(r1, r2, r3). Application of the superposi-
tion approximation to the three-particle configuration distribution
inevitably leads to ⟨C+⟩ = ⟨C−⟩.

If the coupling strength parameter ξ were to increase in magni-
tude beyond the weak linear regime, the scalar distance distribution
P(r) and the net chirality measure ⟨C+⟩ − ⟨C−⟩ could develop O(ξ2)
and higher order “corrections.” However, these nonlinear effects
could be neutralized by supplementing the three-particle interaction
form shown in Eq. (10) with additional three-particle interactions
that are themselves higher order in ξ than linear. It should be kept in
mind that the spatial range of these additional '3 components might
have to exceed L.

V. THREE-DIMENSIONAL ANALYSIS
Upon increasing the Euclidean space dimension d from 2 to 3,

the triangle chirality concept specified by χ, Eq. (9), is no longer rel-
evant. However, there are other measures that can be used in three
dimensions to distinguish and classify triangle shapes. One straight-
forward example is the dimensionless ratio of a triangle’s area A to
the square of its perimeter

η(r, s, t) = A(r, s, t)/(r + s + t)2, (14)

where temporarily the three triangle side lengths have been denoted
just by r, s, and t. This specific triangle shape measure lies in the
range

0 ≤ η ≤ (12 ⋅ 31/2)−1, (15)

where the upper limit corresponds to equilateral triangle shape
(r = s = t). Any deviation from that equilateral shape causes η
to decrease, finally vanishing when the triangle degenerates to a
zero-area single line interval.

In order to maintain connection with the results of Sec. IV,
attention now will be focused on the possible existence in d = 3
of three-particle interactions '3 that at given particle density and
temperature will perturb triangle distributions while leaving the pair
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distance distribution unchanged. For notational simplicity, set

Φ(2)(r1⋯rN) =
N
∑
i=2

i−1
∑
j=1

φ2(rij), (16)

Φ(3)(r1⋯rN) =
N
∑
i=3

i−1
∑
j=2

j−1

∑
k=1

φ3(rij, rik, rjk). (17)

Note that the irrelevancy of triangle chirality as d has been increased
from 2 to 3 implies that each three-particle interaction function'3 in
Eq. (17) is now just a function of the three scalar edge distances, not
their vectors as in the prior equations (8) and (10). With these abbre-
viated notations, the formal expression for the canonical ensemble’s
nth order distribution function from Eqs. (3) and (5) can be trivially
rewritten as follows (β = 1/kBT):

ρ(n)(r1⋯rn) = [ N!
(N − n)!ZN

]∫
V
drn+1⋯∫

V
drN

× exp[−β(Φ(2) + Φ(3))],

ZN = ∫
V
dr1⋯∫

V
drN exp[−β(Φ(2) + Φ(3))].

(18)

At this stage, it is useful to invoke a three-particle interaction
generalization of the Mayer cluster expansion that was originally
developed for gas-phase virial series.9 The Boltzmann factor appear-
ing in Eqs. (18) for the three-particle interactions is thus expanded
in the following way:

exp[−βΦ(3)(r1⋯rN)] =
N
∏

1≤i<j<k
[1 + f3(rij, rik, rjk)], (19)

where

f3(rij, rik, rjk) = exp[−βφ3(rij, rik, rjk)] − 1 ≥ −1. (20)

The resulting generalized Mayer cluster expansion is useful if the
triplet interactions '3 (and therefore the corresponding f 3) are weak
and/or if they are short ranged compared to the d = 3 neighbor-
average particle separation measure (V/N)1/3. Equations (18) and
(19) then can serve as the starting points for distribution func-
tion series whose terms involve increasing order of the f 3 effects;
formally, this can be expressed as follows:

ρ(n)(r1⋯rn) =
N
∑
l=0

ρ(n,l)(r1⋯rn). (21)

Here, ρ(n ,0) is the n-particle distribution function in the absence of
triplet interactions Φ(3), ρ(n ,1) represents the leading (linear) order
correction due to weak triplet perturbation, and subsequent terms
systematically present the development of higher order modifica-
tions (quadratic, cubic, quartic, . . .) due to increasing influence of
the triplet interactions via the f 3.

Figure 5 provides a schematic diagram of the various f 3 terms
that are generated upon carrying out the product indicated by the
right member of Eq. (19). The individual f 3’s are represented by tri-
angles, the vertices of which correspond to individual particle loca-
tions. The figure illustrates the fact that the generated terms amount
to connected clusters that result from distinct f 3 triangles sharing

FIG. 5. Schematic diagram of the types of terms that arise from the expansion of
the right member of Eq. (19). Individual f 3 factors are represented by triangles, the
vertices of which are particle positions. Connected clusters of triangles arise from
sharing of one or two vertices.

one or two vertices (particle positions). This characteristic of the
terms produced by the expansion of Eq. (19) will be directly relevant
in Sec. VI.

Using Eqs. (18) and (19), the linear correction term for the
pair correlation function is found to have the following detailed
format:

ρ(2,1)(r1, r2) = ∫
V
dr3ρ(3,0)(r1, r2, r3)f3(r12, r13, r23)

+
1
2 ∫V

dr3 ∫
V
dr4ρ(4,0)(r1, r2, r3, r4)

× [ f3(r13, r14, r34) + f3(r23, r24, r34)]

+
1
6 ∫V

dr3 ∫
V
dr4 ∫

V
dr5[ρ(5,0)(r1, r2, r3, r4, r5)

− ρ(2,0)(r1, r2)ρ(3,0)(r3, r4, r5)] f3(r34, r35, r45). (22)

In principle, this result is applicable to cases where the unperturbed
starting point (Φ(3) = 0) could involve either vapor, liquid, or crys-
talline phases. The last of these would possess distribution func-
tions ρ(n ,0) exhibiting long-range periodic and orientational order.
If Eq. (22) is to be used to identify nonvanishing f 3 functions (i.e.,
nonvanishing '3 interactions) for which the linear response func-
tion ρ(2,1) vanishes identically, it is clear that the results would be
sensitive to the starting thermodynamic phase involved through its
characteristic distribution function details.

VI. PERTURBED IDEAL GAS
For the present exploratory analysis, attention will be focused

on the elementary case with Φ(2) ≡ 0, that is, the N-particle
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canonical ensemble acting as a classical ideal gas before including
coupling via the triplet interactions Φ(3). The basic issue then is
whether any triplet interactions can be identified whose effects at
least in linear order will change ρ(3), while leaving ρ(2) unchanged. In
this case, for the infinite-system limit with number density ρ = N/V,
one has the obvious simplification (n ≥ 1)

ρ(n,0) → ρn. (23)

As a result, the general expression [Eq. (22)] reduces to the following
equation:

ρ(2,1)(r12) = ρ3 ∫ dr3f3(r12, r13, r23) +
1
2
ρ4 ∫ dr3

× ∫ dr4[ f3(r13, r14, r34) + f3(r23, r24, r34)]

= ρ3 ∫ dr3f3(r12, r13, r23) + ρ4∫ dr3 ∫ dr4f3(r13, r14, r34).

(24)

A sufficient f 3 condition to cause this last ρ(2,1) expression (24)
to vanish identically for any r12 ≥ 0 is

∫ dr3f3(r12, r13, r23) = 0. (25)

Consequently, any nonzero f 3 candidate must vary in sign in such a
way that with two of its triangle vertices held fixed, the spatial inte-
gral over the third vertex position vanishes identically. Of course,
such sign variation must be consistent with the permutation sym-
metry of the three vertex locations, and because f 3 is a symmetric
function of three scalar distances, whereas this last condition is just
a “one-dimensional” constraint, one should expect that a nontrivial
family of functions that obey Eq. (25) exists.

The intrinsic linearity of condition (25) implies that if it is sat-
isfied by a triplet function f 3, then so too will it be satisfied by a real
multiple λf 3, provided it continues to obey the inequality shown in
Eq. (20). Note also that if a triplet interaction '3 is identified for
which Eq. (25) is satisfied at some specific temperature, a change
in temperature will no longer permit that condition formally to be
satisfied, but obviously a correspondingly energy-rescaled '3 would
satisfy condition (25).

For the '3-perturbed ideal gas under consideration, with con-
straint equation (25) applied, one finds that the nonvanishing lin-
ear change in the triplet distribution function ρ(3) due to f 3 is
simply

ρ(3,1)(ri, rj, rk) = ρ3f3(rij, rik, rjk). (26)

It is also important to note that the f 3 constraint equation (25)
has a basic simplifying effect on the quadratic perturbation ρ(3,2)

due to the fact that clusters comprised of two connected trian-
gles inevitably have two or four unshared vertices, as illustrated in
Figure 5. Integration over such unshared vertex positions automat-
ically produces a vanishing result. Because this is the outcome for
each of the contributions to the formal quadratic influence, one
concludes that

ρ(3,2)(rij, rik, rjk) ≡ 0. (27)

However, the higher order results ρ(3, l) for l ≥ 3 include nonvanishing
contributions from triangle clusters that contain only shared vertices
and so may not vanish.

VII. ILLUSTRATIVE EXAMPLE
In order to establish that the set of solutions to Eq. (25) is

not empty, it suffices to exhibit at least one example. For notational
simplicity, set

(r12, r13, r23) ≡ (r, s, t). (28)

Then, the illustrative example has the following form:

f3(r, s, t) = F0(r)δ(r − s)δ(r − t) − F1(r)F1(s)F1(t), (29)

where one must require

F0(r) ≥ 0 (30)

in order to satisfy inequality (20).
Upon inserting the f 3 expression (29) into the integral require-

ment (25), one obtains

0 = 2πrF0(r) −
F1(r)
2π2r ∫

∞

0
dk k sin(rk)H2(k). (31)

Here, H(k) is the Fourier transform of the function F1,

H(k) = 4π
k ∫

∞

0
du u sin(ku)F1(u). (32)

Consequently, F0(r) would be determined by the choice of the radial
function F1(u).

In the interest of providing an explicit example, consider the
choice

F1(u) = C exp(−αu2), (33)

where C and α are positive constants. Consequently, one has

H(k) = C(π
α
)

3/2
exp(− k2

4α
). (34)

Equation (31) then leads to the following result:

F0(r) = ( π1/2C3

25/2α3/2r
)exp(−3αr2

2
), (35)

thus completing determination of a solution for integral constraint
equation (25).

Obviously, it would be desirable eventually to construct alter-
native solutions to Eq. (25). In particular, the occurrence of Dirac
delta functions in the f 3 form (29) does not conform to conventional
physical expectations for particle interactions. Instead, one would
like to identify f 3 solutions that are bounded above and continu-
ous. A possibly useful strategy to identify alternative f 3 solutions
to integral equation (25), based upon a temporary discretization
representation, appears in the Appendix.
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VIII. DISCUSSION AND CONCLUSIONS
Beyond its historical relevance to the previously mentioned

Kirkwood superposition approximation,3,4 it is also worth noting a
pedagogic connection of the present investigation to the “Reverse
Monte Carlo Approach.”10 This latter method involves numerical
identification of effective pair potentials Φeff

(2) that alone gener-
ate many-particle simulations whose results closely reproduce mea-
sured pair distribution functions (scalar pair distance distributions)
for a condensed matter system of interest. Not surprisingly, the
identified effective pair potentials depend on the initial system’s
temperature and pressure. Assuming that indeed classical statistical
mechanics applies accurately, this reverse Monte Carlo approach
intrinsically glosses over three-body, four-body, . . ., interactions
that may be present in the initial system of interest. A possibly useful
extension of the reverse Monte Carlo approach would be to iden-
tify at least a three-body effective perturbation that, upon inclusion
with a Φeff

(2) in simulations, could have a negligible effect on the
pair correlation function at one temperature of interest but would
reduce deviations of the reverse Monte Carlo pair distribution func-
tion results for other thermodynamic states of the many-particle
system of interest.

Although there may be a set of “pair-invisible” three-particle
interactions '3 for a many-particle system at given density and tem-
perature, there certainly exist other system properties for which
those interactions could produce “visible” effects. One such case
concerns the adsorption behavior of a fluid phase on a struc-
turally well-defined solid substrate surface. That surface often might
present localized adsorption sites for the fluid’s particles, geomet-
rically arranged into specific triangular shape patterns. As stressed
earlier, the three-particle interactions within the fluid phase have the
effect of reducing the pair distance degeneracy by controlling the
distribution of particle triangle sizes and shapes. Depending on the
specific '3 form, this could either enhance or inhibit the presence
of trimers available for fitting into those triangular adsorption site
geometries, with corresponding influence on the solid-fluid inter-
facial free energy. Detailed analysis of the presence and magnitude
of such adsorption phenomena qualifies for subsequent research
examination.

It is worth noting that, if instead of the triplet interactions Φ(3)

analyzed in Sec. V for d = 3, one were to consider a permutation-
symmetric set of quadruplet interactions Φ(4), then it would be pos-
sible to bias the canonical distribution with respect to the chiral-
ity of tetrahedral particle patterns, such as those illustrated earlier
in Figs. 2(c) and 2(d). Obviously, with only the pair interactions
Φ(2) present, the canonical distribution necessarily assigns equal
probability to left and right handed tetrahedron structures. How-
ever, detailed examination of this Φ(4) extension and its role in
chirality symmetry breaking will need to await a future research
project.

One intriguing possibility for such future research would be to
create an explicit three-dimensional analog of the two-dimensional
chirality identifier χ [Eq. (9)]. This analog would presumably
separate the full configuration space for tetrahedra into a pair
of simply connected subsets with respective identifier values ±1,
subject to a dividing interface that includes all achiral (mirror-
symmetric) tetrahedron configurations with identifier value 0. An
implication of such a definition is that any two tetrahedra with

the same identifier value can be connected configurationally by a
continuous deformation path along which the identifier remains
constant.
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APPENDIX: NUMERICAL APPROXIMATION
For the purposes of this proposed approach to the d = 3 prob-

lem, assume that f 3(r, s, t) vanishes if any one of the three distances
exceeds 0 < L < Rmax. That is, relevant values of f 3 are contained
within the L × L × L cube in r, s, t space

0 ≤ r, s, t ≤ L. (A1)

This overall cube then will be divided into n3 equivalent small cubes,
where n is a positive odd integer. Thus, each of the distances r, s, and
t will be equally divided into intervals of length L/n ≡ δ. By intro-
ducing enumeration indices 1 ≤ j, k, l ≤ n, the centers of these small
cubes will thus be located at

r = ( j − 1/2)δ, s = (k − 1/2)δ, t = (l − 1/2)δ. (A2)

The intention is to use the discrete set of values of f 3 at the
small-cube centers to construct approximate solutions to integral
equation (25). Not all of the n3 centers are relevant; in particu-
lar, those cubes whose three center coordinates r, s, t violate the
triangle inequality must be eliminated. Furthermore, among those
cubes remaining after triangle-inequality elimination, those whose

TABLE I. List of relevant cube center locations for n = 5, subject to permutation-
symmetry elimination constraints [Eq. (A3)]. The integer sets j, k, l determine the r, s,
t coordinate values via Eq. (A2).

j k l j k l

1 1 1 5 3 2
2 1 1 5 3 3
2 2 1 5 4 1
2 2 2 5 4 2
3 2 1 5 4 3
3 2 2 5 4 4
3 3 1 5 5 1
3 3 2 5 5 2
3 3 3 5 5 3
4 2 2 5 5 4
4 3 1 5 5 5
4 3 2
4 3 3
4 4 1
4 4 2
4 4 3
4 4 4
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center coordinates differ only by r, s, t permutations (i.e., j, k,
l permutations) must have identical f 3 value assignments. As an
example, Table I presents the 28 distinct independent cube-center
locations for n = 5, namely, those that do not violate the triangle
inequality and that do not differ only by coordinate permutation.
The specific choices shown conform to the permutation-avoiding
convention

n ≥ j ≥ k ≥ l ≥ 1. (A3)

For arbitrary choice of the positive odd integer n, one finds that the
number of such independent cubes is given by the following cubic
polynomial:

p(n) = (1/24)(2n3 + 15n2 + 10n − 3). (A4)

The discrete sum approximation to the integral equation (25)
appears as follows (r held fixed):

0 = ∫ dr3f3(r, s, t) ≅ [2πδ3/r(j)]∑
k,l

∗s(k)t(l)f3( j, k, l), (A5)

where the asterisk on the summation indicates inclusion of all rel-
evant cubes, including those with permuted indices k and l, with j
fixed. There are n conditions of the type shown in the last line of
Eq. (A5), one for each fixed j value. However, this must be viewed
in the context of the cubic polynomial equation (A4), demonstrat-
ing that as n increases the number of unknown f 3 values assigned
to cube centers far exceeds the number of constraints. By itself, this
implies the existence of a large set of solutions. Of course, one is

ultimately interested in the n → +∞ continuum limit, for which
continuous f 3 functions would be desirable results.

It would be informative to try to obtain relatively simple f 3
solutions, starting with a reasonable approximation for the cube-
center values and then adjusting those assigned values stepwise to
reduce a mean-square error measure. One such pattern might be
based on the triangle measure shown earlier in Eq. (14). Specifically,
as an initial approximation, one could try

f3(r, s, t) ∝ η(r, s, t) − η0, (A6)

where η0 is a positive constant present to provide a necessary sign
change pattern.
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