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ABSTRACT

Supported by simple table-top experiments involving stackings of ball bearings and theoretical analysis, we have discovered crystal packings
of identical hard spheres that are permeated by a high concentration of large tunnels and yet are jammed (mechanically stable). We show
that starting with a strictly jammed hexagonal close-packed (hcp) crystal of identical hard spheres, removal of certain subsets of those
spheres can produce mechanically stable vacancy arrangements involving compact (equilateral triangle) trivacancies such that they produce
linear trivacancy tunnels. These tunnels can extend over the entire macroscopic length of the hcp medium, and their width is sufficient to
allow contained “test” hard spheres with diameters less than

ffiffiffi
5

p � 1 ¼ 1:23606 . . . to migrate over that entire length without contacting the
static tunnel-wall spheres. A search for the stable (strictly jammed) periodic framework that hosts the highest density of parallel trivacancy
tunnels has identified a structure exhibiting a packing fraction f ¼ π=

ffiffiffiffiffi
32

p ¼ 0:55536 . . ., which is equal to 3/4 of the maximum monova-
lent sphere packing fraction fmax ¼ π=

ffiffiffiffiffi
18

p ¼ 0:74048 . . .. In that periodic arrangement, filling the interior of the contained tunnels with
movable unit-diameter spheres may approach the greatest possible “rattler” density within jammed monovalent sphere systems subject to
periodic boundary conditions. It will be of interest to study the physical and chemical properties of these anisotropic porous crystal struc-
tures. Our findings may have practical implications for engineered separation and catalytic processes.

Published under license by AIP Publishing. https://doi.org/10.1063/1.5129458

I. INTRODUCTION

The importance of packing hard particles in various types of
containers and the questions that they raise have a long history,
spanning problems from practical relevance to those of a funda-
mental nature. Bernal commented that “heaps (dense arrangements
of particles) were the first things that were ever measured in the
form of basketfuls of grain for the purpose of trading or the collec-
tion of taxes.”1 On the scientific side, Kepler conjectured in 1611
that the packing fraction of identical hard (nonverlapping) spheres,
f, cannot exceed that of the face-centered-cubic (fcc) arrangement
and its stacking variants, such as the hexagonal close-packed crystal
(hcp) (fmax ¼ π=

ffiffiffiffiffi
18

p ¼ 0:74048 . . .). This conjecture was proved
by Hales2 almost four centuries later.

“Jammed” packings are those hard-particle configurations in
which each particle is in contact with its nearest neighbors in such
a way that mechanical stability of a specific type is conferred to the

packing.3 Understanding the characteristics of jammed packings
provides basic insights into the structure and bulk properties of
crystals, glasses, granular media, colloids, random media, and bio-
logical systems.4–17 “Strict” jamming is the most stringent jamming
category, since in such packings, there can be no “collective” parti-
cle motions that lead to unjamming, and they are stable against
both uniform compression and shear deformations.3

In the case of strictly jammed packings of identical hard
spheres, the focus of this work, mechanical stability requires that the
average number of spheres in contact with a sphere, Z, be at least
equal to 6 in the large-system limit. This minimal-contact require-
ment, called “isostaticity,”5,13 nonetheless enables packing arrange-
ments that span a relatively wide range of packing fractions. For
example, the aforementioned densest sphere packings as well as max-
imally random jammed configurations8 are strictly jammed with
packing fractions f ¼ 0:74048 . . . and f � 0:64, respectively.13
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Remarkably, one can achieve strictly jammed packings of identi-
cal spheres of a unit diameter with an anomalously low density
(f ¼ ffiffiffi

2
p

π=9 ¼ 0:49365 . . .) that are subpackings of the densest
crystal packings with a high concentration of self-avoiding “tunnels”
that are chains of monovacancies permeating the structures.18 These
structures are conjectured to be the strictly jammed sphere states in
three dimensions with the minimal packing fraction and allow
hard “test” spheres of diameter 0:732 05 to freely migrate over the
entire structure without contacting the static tunnel-wall spheres.
Interestingly, the magnetic properties of these tunneled crystals
were studied by examining the classical Heisenberg Hamiltonian
for Ising, XY, and Heisenberg spins on these structures.19

Crystal structures with such controlled porous tunnels have
implications for separation technology for substances whose con-
stituent particles have just the right size to diffuse along those
tunnels, leaving behind larger impurity particles.20 In the event that
a metallic element or alloy were to be rendered in the form of a
tunneled crystal, the electronic characteristics would be strongly
influenced by the structural anisotropy. The anisotropic porosities
of tunneled crystals could serve as catalytic substances for reactants
that fit into these pores.21

Therefore, a natural question of applied interest is the follow-
ing: Can tunnels that are substantially wider be made in packings
of identical spheres while maintaining mechanical stability? If so,
can the tunnels be arranged so that they comprise a relatively large
fraction of the space? This paper provides affirmative answers to
both of these questions. Supported by simple table-top experiments
involving stackings of ball bearings and theoretical analysis, we
have discovered crystal packings of identical hard spheres that are
permeated by large tunnels that are larger than a sphere diameter
and yet are mechanically stable.

Section II begins with a review of the “Barlow packings,”22,23

the infinite family of crystalline arrangements that attain the
maximum possible density for monodisperse hard-sphere systems.2

Section III analyzes the geometry of compact trivacancies that
can exist as isolated stable local deformations within a specific
Barlow packing, the hexagonal close-packed (hcp) crystal.
Section IV begins by recalling the previously studied mono-
vacancy-tunneled Barlow packings that apparently can attain the
lowest-density strictly jammed configurations of monodisperse
hard spheres.18 By analogy, we then show how properly oriented
compact trivacancies can be arranged relative to one another in
sequential hcp layers so as to constitute a linear “trivacancy
tunnel” that in principle can span an entire crystal length. The
local geometrical arrangement of the static hard spheres forming
the wall of such a trivacancy tunnel allows determination of
intratunnel mobilities for various size-modified test spheres, with
results presented in Sec. V.

The existence of the Barlow packings modified by the inclu-
sion of periodic arrangements of monovacancy tunnels,18 in partic-
ular, as modified hcp crystals, suggests searching for
trivacancy-tunneled analogs. Section VI presents an example,
although evidence suggests that such analogs cannot attain the
same strictly jammed low density limit apparently achieved by the
monovacancy family. Finally, Sec. VII contains several discussion
issues and conclusions, especially in regard to future extensions of
the work reported herein.

II. BARLOW PACKINGS

For convenience in the following, it will be assumed that the
monodisperse hard (nonoverlapping) spheres forming the crystal
media of interest have unit diameters. If these unit-diameter
spheres were to have their centers confined to a single plane
(spanned by coordinates x and y), their densest arrangement in
that plane would be a triangular lattice, with each sphere contacting
six nearest neighbors. This periodic pattern constitutes the basic
planar layer unit whose repeated replication forming similar but
laterally displaced parallel layers above and below (altitude coordi-
nate z) an initial triangular layer generates three-dimensional
layered Barlow packings.

Figure 1 illustrates the primary layer packing characteristics. It
explicitly shows the close-packed triangular lattice arrangement of
one layer, to be designated as layer placement “A.” A subsequent
parallel layer, either above or below A, has two possible lateral posi-
tions that permit its closest contact with A by resting its spheres in
the available depressions presented by the A layer geometry. These
two options have been located and identified, respectively, as “B”
and “C” in Fig. 1. Subsequent layers will also be classified as A, B,
or C depending on which of those previous arrangement types lies
directly above or below in the direction z. The obvious constraint
that must be obeyed to attain three-dimensional maximum sphere
density is that no pair of nearest-neighbor layers has the same clas-
sifying letter. The resulting Barlow packings are then identified by
their corresponding layer letter sequences, i.e.,

. . .BACBACBCACACBCBCBCA . . . ,

in which each letter cannot have its own kind as a nearest neighbor.
The vertical displacement between successive (contacting) layers of
unit-diameter spheres is given by

Δz ¼
ffiffiffiffiffiffiffi
2=3

p
¼ 0:81649 . . . : (1)

FIG. 1. Two-dimensional jammed layer “A” of unit-diameter spheres. The posi-
tions “B” and “C” identify alternate “pocket” choices for placement of neighbor
layers closest to layer “A.”
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Every one of the possible Barlow structures exhibits the same
maximum possible unit-sphere density,2 which amounts to a
packing fraction given by

wmax ¼
π
ffiffiffiffiffi
18

p ¼ 0:74048 . . . : (2)

The structurally simplest, and best known, Barlow packings
are the face-centered cubic (fcc) crystal and the hexagonal close-
packed (hcp) crystal. Their respective letter sequences (aside from
trivial relettering) amount to the following 3-letter and 2-letter
periodic repeat units,

fcc: . . .ABCABCABCABC . . . ; . . . (ABC)n � � � ,
hcp: . . .ABABABABABAB . . . ; . . . (AB)n . . . :

It is only the hcp crystal packings that enable one to construct the
trivacancy structures described below.

III. COMPACT INTRALAYER TRIVACANCIES

The fundamental structural unit for the formation of hcp
tunnels to be considered in Sec. IV is a compact equilateral-triangle
trivacancy. Figure 2 illustrates the basic fact that formally, there are
two distinct types of locations for an intralayer trivacancy, located
between a pair of completed layers (identified as A as in Fig. 1).
These alternative pocket choices are denoted by “S” and “U,” with
corresponding intralayer triangle rotations that differ by
180�(equivalently 60�). Only one of these alternatives is configura-
tionally stable (S). The other is unstable (U), lying upon a sphere in
the A layer below and under a sphere in an A layer above, where
either of those spheres would be unconstrained with respect to
uninhibited displacement into the center of that misplaced triva-
cancy. Analogously, because the surrounding crystal structure is

hcp, stability (S) of an isolated trivacancy in one vertical direction
implies stability in the opposite vertical direction. Note in passing
that such full stability would not be possible if the surrounding
crystal structure were fcc.

Each stable compact trivacancy is surrounded in its layer by
nine immediate neighbors. Three of these nine contact four spheres
in the layer, and the other six contact five spheres in the layer.
Upon accounting as well for the hcp layers above and below that
one containing the trivacancy, the contact numbers each increase
by 6, to 10 and 11, respectively.

In the hcp medium, all stable compact trivacancies in B layers
between A layers will exhibit the same orientation. However, stable
compact trivacancies occurring in the A layers will all be rotated by
180�(equivalently 60�) compared to those in the B layers.

Single compact trivacancies can in principle also occur in the
hcp medium but rotated spatially out of the x, y plane to reside
simultaneously in two contacting layers. One of these layers would
then house two of the three vacancies, and the other layer would
house the remaining vacancy. Such alternative configurations play
no role in the following trivacancy tunnel analysis.

It will be assumed in the following that the hcp medium of
interest is subject to appropriate periodic boundary conditions that
enforce the maximum possible jamming density. The presence of
well isolated compact trivacancies in an hcp medium apparently
does not undermine the strict jamming property of that medium.

IV. hcp VERTICAL TRIVACANCY TUNNEL

By selecting proper trivacancy positions on successive hcp
layers, it is possible to create a stable trivacancy tunnel of arbitrary
length. Figure 3 illustrates the relative configurations of a

FIG. 2. Intralayer compact trivacancy locations within an hcp crystal medium,
showing both the stable (S) and the unstable (U) possibilities. For consistency
with Fig. 1, the complete layers below and above these location possibilities
would be designated “A,” and the intermediate layer housing in either of these
isolated trivacancy locations would be designated “B.”.

FIG. 3. Relative position of two vertically adjacent trivacancies (within nearest-
neighbor hcp crystal layers). For visual simplicity, explicit sphere contours are
shown only for one layer (A), while the center positions of the three missing
spheres in the adjacent layer (B) are merely located by dots, connected by
dashed lines.
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neighboring pair of overlapping trivacancies that serve to generate
a tunnel whose overall direction is parallel to the vertical z axis.
The trivacancies residing on each of the A planes are replicas of
one another, differing sequentially only by a z direction displace-
ment 2Δz , from Eq. (1). The same is true of the intervening B layer
trivacancies. Figure 3 clearly shows that the orientations of the
overlapping A and B trivacancies differ by 180� (equivalently 60�).

Examination of Fig. 3 reveals that the centroids of each of the
two trivacancy species lie, respectively, on two distinct, but closely
spaced, vertical (z direction) lines. The horizontal separation
between these parallel lines is 3�1=2 .

It is worth mentioning that the vertical line piercing the A
layer trivacancy centroids passes precisely through the center posi-
tion that would have been occupied by one of the missing spheres
in each of the B layer trivacancies. Of course, the reciprocal relation
is also true: The vertical line piercing the B layer trivacancy cen-
troids passes precisely through the center position that would have
been occupied by one of the missing spheres in each of the A layer
trivacancy centroids.

If the strictly jammed hcp crystal medium contains an even
number of layers, i.e., equal numbers of alternating A and B layers,
then it qualifies as required for periodic boundary conditions in the
z direction. We may assume that the lateral directions also involve
periodic boundary conditions. Under these circumstances, the local
stacking of trivacancies in the manner indicated in Fig. 3 can be
extended so as to form a trivacancy tunnel that extends the entire
vertical length of the hcp crystal and crosses the periodic boundary
condition without any structural disruption. That is, the tunnel can
be a stable structural feature of unlimited length.

The layer geometric information illustrated in Fig. 3 permits
determination of the contact numbers (from above, within, and
below a chosen layer) for the spheres located at the edges of a triva-
cancy. These are the wall spheres of the trivacancy tunnel. One
finds that for the nine trivacancy edge spheres in a single layer, two
have 8 contacts, two have 9 contacts, one has 10 contacts, and four
have 11 contacts. These are basic features that underlie the mechan-
ical stability of the trivacancy tunnel contained within the jammed
hcp medium. Figure 4 replicates the pattern of Fig. 3 but labels the
nine trivacancy edge spheres of layer A with their respective
contact numbers.

As a useful context, one can also examine the wall contact
geometry for the simpler monovacancy tunnel in the hcp crystal
medium. In that case, the A and B alternating layers have their
respective monovacancies differing in lateral (x, y) positions by the
minimum possible amount. Figure 5 presents the corresponding
simpler version of Fig. 4, showing that two of the monovacancy
wall spheres in layer A each have 9 contacts, while the remaining
four wall spheres have 11 contacts.

The collective or strict jamming property that may apply to an
hcp system penetrated by at least a single trivacancy tunnel implies
that it should be feasible to construct a related mechanical model,
exploiting gravity for jamming stability. Figure 6 presents a photo-
graph of a corresponding arrangement of 336 steel ball bearings
that are 11/16 in. in diameter. The example shown includes four
layers of vertically stacked trivacancies resting upon a complete (no
vacancy) bottom layer for stability. If more space and more ball
bearings were available, there is no reason to doubt that this

“pyramidal volcano” structure could be extended to many more
layers of the vertical trivacancy tunnel.

V. INTRATUNNEL PARTICLE MOBILITY

An obvious question to be addressed about the trivacancy
tunnel is how it might serve as a transport channel for a sufficiently
small inserted particle. In order to understand the underlying
tunnel geometry that controls such transport possibilities, it is
useful to identify the location of a single central z-direction axis
that passes equivalently through both A and B trivacancies in the
hcp crystal medium. The obvious choice is the unique axis that lies
exactly midway between the parallel pair of vertical axes described
in Sec. IV that pass, respectively, through the A and B layer triva-
cancy centroids. This central z-direction axis will be assigned

FIG. 5. Total contact numbers for the six wall spheres in layer A for a monova-
cancy tunnel. The center position of the single missing sphere in layer B is
shown as a black dot.

FIG. 4. Total contact numbers indicated for the A layer trivacancy edge spheres
appearing explicitly in Fig. 3.
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vanishing lateral coordinates,

x ¼ y ¼ 0: (3)

In order to complete the geometric location of the x, y, z coordi-
nate system origin, the choice for z ¼ 0 will be placed midway
between an A layer and its contacting B layer directly above.
Referring to Eq. (1), this implies for that layer pair,

(z)A ¼ �1=
ffiffiffi
6

p
, (z)B ¼ 1=

ffiffiffi
6

p
: (4)

While moving along the tunnel-central z axis, the closest
encounter to wall spheres in each A or B layer, respectively,
involves just a pair of equivalent spheres. Figure 7 provides a

simple view from above of the locations of the corresponding four
unit-diameter spheres in the contacting A and B layers just below
and above the coordinate origin. The coordinates of the centers of
these four “gateway” spheres have been listed in Table I. The four
spheres are equidistant from the coordinate origin (indicated as �
in Fig. 7), specifically at distance

lgate ¼
ffiffiffi
5

p
=2 ¼ 1:11803 . . . : (5)

If a mobile sphere were to have its center confined to the
x ¼ y ¼ 0 central axis, its diameter would be subject to an upper
limit to avoid colliding with the just-mentioned pairs of tunnel-wall
spheres from each layer through which it passes. This limit is deter-
mined by the closest occurrence when passing precisely through
the layer’s plane. From entries in Table I, one finds that the central
axis at the layer height is at distance (13=12)1=2 from the sphere
centers of that layer’s wall pair. This implies that the maximum
diameter of a central-axis-confined hard sphere that could move by
without overlapping those fixed wall spheres is given by

dmax ¼
ffiffiffiffiffiffiffiffiffiffi
13=3

p
� 1 ¼ 1:08166 . . . : (6)

Therefore, unit diameter hard spheres could slide the entire length
of the linear trivacancy-tunnel central axis without encountering
any wall contact.

Unimpeded linear displacement does not identify the
maximum diameter that a mobile hard sphere could possess while
still being able to navigate through a trivacancy tunnel. In order to
do so, however, that maximal mobile hard sphere would have to
follow a nonlinear “zig-zag” path. In particular, its path would have
to pass precisely through the center of each gateway rectangle (as in
Fig. 7), in a direction that, at that passage moment, is perpendicular
to the plane of the gateway rectangle. From Eq. (5), one sees that
the maximum diameter allowing the mobile sphere to slide tangen-
tially past the four wall spheres would be

dmax ¼
ffiffiffi
5

p � 1 ¼ 1:23606 . . . : (7)

For comparison, analogous results can be computed for a vertical
monovacancy tunnel in the hcp crystal. Its structure was illustrated
in Fig. 5. Again, this involves a rectangular gateway of four tunnel
wall unit spheres but now more closely spaced. The maximum
diameter of a mobile sphere confined to move along the tunnel’s
central axis turns out to be equal to

dmax ¼
ffiffiffiffiffiffiffi
7=3

p
� 1 ¼ 0:52752 . . . : (8)

FIG. 6. Photograph of a ball-bearing stacking (N ¼ 336) with four layers of a
single trivacancy tunnel. Each ball bearing has a diameter of 11/16 in.

FIG. 7. Rectangular gateway for mobile (size-altered) test hard spheres,
between a contacting pair of A and B layers. The coordinate origin O
(x ¼ y ¼ z ¼ 0) has been defined to occur at the midpoint of the rectangle.
The four gateway-wall particles have been designated: A1, A2, B1, B2.

TABLE I. Coordinates locating the centers of the four “gateway” spheres illustrated
in Fig. 7.

Sphere x y z

A1 −1 �1=
ffiffiffiffiffi
12

p �1=
ffiffiffi
6

p
A2 1 �1=

ffiffiffiffiffi
12

p �1=
ffiffiffi
6

p
B1 −1 1=

ffiffiffiffiffi
12

p
1=

ffiffiffi
6

p
B2 1 1=

ffiffiffiffiffi
12

p
1=

ffiffiffi
6

p
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For a movable sphere whose center is allowed to deviate from the
tunnel’s central axis, the corresponding maximum diameter is
given by

dmax ¼
ffiffiffi
3

p � 1 ¼ 0:73205 . . . : (9)

These results obviously are substantially smaller than the trivacancy
size limits (6) and (7).

VI. PERIODIC TUNNEL ARRANGEMENTS

Having determined the sphere packing geometry for a single
trivacancy tunnel in Sec. IV, it is natural to inquire if a periodic
arrangement of such structures could exist in the hcp crystal
medium, while maintaining the overall strict jamming property.
This would amount to one type of generalization of the case of
monovacancy tunneled crystals.18 If such trivacancy structures can
exist, they should exhibit the property of hyperuniformity.24,25

Figure 8 shows a possible intralayer periodic pattern of triva-
cancies that might produce the desired objective. If this were an A
layer, its immediate B layers below and above would involve the
same trivacancy periodic pattern but rotated by 180� and translated
laterally to conform to the vertical structure specified earlier in
Fig. 3 for each tunnel.

Using the same steel ball bearing mechanical model packing
shown earlier in Fig. 6 with a single trivacancy tunnel, we have
verified the mechanical stability of three simultaneous nearest-
neighbor trivacancy tunnels, arranged just as indicated in Fig. 8 as
mutual nearest neighbors. Figure 9 presents such a photograph of
this mechanically stable ball-bearing arrangement, demonstrating
that they are at least collectively jammed3 (i.e., each sphere is
locally jammed, and there are no collective motions of subsets of
spheres that unjam the packing). The fact that three nearest-
neighbor trivacancy tunnels are mechanically stable in this finite
packing strongly suggests that one can extend the number of

nearest-neighbor tunnels in this way with increasing system size, as
desired.

If the unit vectors ux , uy , and uz are defined so as to be,
respectively, aligned along the axes for the Euclidean coordinates x,
y, and z that were introduced earlier, a primitive unit cell for this
periodic trivacancy tunnel structure has a parallelogram prism
shape and size specified by the following edge vectors:

a1 ¼ 3ux �
ffiffiffi
3

p
uy , a2 ¼ 3ux þ

ffiffiffi
3

p
uy , a3 ¼

ffiffiffiffiffiffiffi
8=3

p
uz: (10)

This unit cell contains a basis of 18 spheres, 9 from each of a con-
tacting pair of A and B type layers. Figures 10(a) and 10(b) indi-
cate, respectively, how the spatial extensions of the primitive cell
can be related geometrically to the short-range order of spheres
and vacancies in those contacting A and B layers.

One sees in Fig. 8 that all remaining unit spheres serve as wall
particles but only for the nearest trivacancy. Nearest-neighbor tri-
vacancy pairs are separated by two lines of remaining spheres.
Overall, this layer pattern involves a loss of one-fourth of the
spheres compared to those comprising a complete triangular lattice
layer. The corresponding trivacancy-tunneled hcp crystal, therefore,
would have a packing fraction equal to

w ¼ (3=4)wmax ¼ 0:55536 . . . : (11)

Any attempt to reduce w by creating a periodic layer pattern with
closer trivacancies evidently runs the risk of violating the strict
jamming criterion.

By referring to the wall-particle contact numbers shown
earlier in Fig. 4, one concludes that the average contact number per
sphere, Z, in the three-dimensional periodic structure defined by

FIG. 8. Periodic intralayer pattern of trivacancies, to be used to generate a peri-
odic array of tunnels in an hcp crystal medium. Solid black dots indicate the
center positions of the vacated spheres. This pattern contains a sphere lateral
density equal to three-quarters of that in the completed triangular lattice.

FIG. 9. Photograph of a mechanically stable ball-bearing arrangement in two
adjacent layers of three nearest-neighbor trivacancy tunnels.
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Fig. 8 is given by

Z ¼ (1=9)[2(8)þ 2(9)þ 10þ 4(11)]

¼ 88
9
¼ 9:77777 . . . :

(12)

Thus, not surprisingly, such packings are “hyperstatic”; i.e., Z
exceeds the isostatic value of 6. This result contrasts with the hyper-
static but uniform contact number per particle of 7 that is present
for all remaining spheres present in hcp crystal media containing
the maximum number of monovacancy tunnels.18

VII. DISCUSSION

Supported by simple table-top experiments involving stackings
of ball bearings and theoretical analysis, we have discovered that a
singular removal process of the hcp packing results in mechanically
stable crystal packings that are permeated by a high concentration
of trivacancy tunnels. In fact, one can remove up to 25% of the
spheres of the original fully dense hcp crystal, yielding a packing

fraction as low as f ¼ π=
ffiffiffiffiffi
32

p ¼ 0:55536 . . . and an average
contact number per sphere of Z ¼ 9:77777 . . .. These packings are
at least collectively jammed, and we conjecture that they are also
strictly jammed, especially since their average contact number is
substantially larger than that of the strictly jammed monovalent
vacancy tunnels with Z ¼ 7.18 It remains for a future study to
apply rigorous linear-programing jamming algorithms26 to test that
such tunneled crystals are truly strictly jammed.

Various stochastic methods of numerically generating jammed
sphere packings typically create structures containing a low concen-
tration of “rattlers.”27–29 These are particles surrounded by neigh-
bors that are themselves jammed, but that are arranged
geometrically in such a way as to form a rigid cell large enough to
permit its occupant sphere to displace locally, subject to cell confi-
nement. Based on the intratunnel sphere mobility results in Sec. V,
it is worth emphasizing that trivacancy tunnels offer an extreme
version of possible rattler motion. Specifically, a unit sphere
inserted into a trivacancy tunnel is uninhibited for displacement
along the entire (possibly macroscopic) length of the tunnel.
Furthermore, a single tunnel can simultaneously host a large
number of unjammed spheres that can move along its length, while
experiencing collisions with one another as well as with the fixed
wall spheres. These intratunnel rattlers constitute an effectively one-
dimensional sphere system. It remains to be determined rigorously
what the maximum possible linear density of such rattler spheres
could be within a trivacancy tunnel. However, the ability of unit
spheres to move unencumbered by the walls along tunnel’s central
axis and to stack there in contact with each other indicates that the
linear density maximum can be no less than unity.

It is reasonable to suppose that the highest density of rattlers
within a three-dimensional strictly jammed surrounding frame-
work, subject to periodic boundary conditions, would be obtained
with the periodic structure identified in Fig. 8. This presumes that
each of its trivacancy tunnels would be saturated internally with
movable rattler spheres. If the rattler spheres within a tunnel were
confined to its central axis and in mutual contact as mentioned
above, the corresponding rattler density would equal the following
fraction of the host framework’s sphere packing fraction,

(1=9)
ffiffiffiffiffiffiffi
2=3

p
¼ 0:09072 . . . : (13)

However, this amounts to a lower bound on the maximum possible
density because the rattlers can displace slightly away from that
central axis, and thus away from contact with neighbor rattlers,
allowing a somewhat greater intratunnel density. If indeed suitably
displaced rattlers could each occupy a lateral extreme of “its own”
trivacancy, the fraction in Eq. (13) would climb to the value

1=9 ¼ 0:11111 . . . : (14)

This value of 11:111% rattlers considerably exceeds the roughly
1%–3% rattler density range typically observed in random jamming
numerical procedures for monodisperse spheres.29 It is a fascinat-
ing open question whether there exist collectively or strictly
jammed packings of identical spheres whose rattler fraction
exceeds 1=9.

FIG. 10. Primitive cell arrangements of spheres and vacancies for the periodic
trivacancy tunnel structure emerging from the layer pattern presented in Fig. 8.
The inclusion patterns for A and B layers are shown, respectively, in panels (a)
and (b). The boundaries of the primitive cell are shown as dashed lines. Black
dots locate the positions of the centers of vacated spheres.
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An initial investigation of alternate strictly jammed polyva-
cancy tunnels hosted by an hcp crystal medium has failed to iden-
tify the possibility of larger compact vacancy clusters within a layer
compared to the trivacancy case analyzed herein. It should also be
mentioned for completeness that stable divacancy tunnels can be
erected, but they do not present sufficient width to allow internal
motion of unjammed unit-diameter rattlers.

Having established the mechanical stabilities of monovacancy
and trivacancy tunnels, including their periodic crystal arrange-
ments, it is natural to raise corresponding questions/issues about
analogous divacancy tunnels. At least within an hcp unit-sphere
medium, divacancies do not appear to offer any surprising struc-
tural novelties. In particular, end-to-end sequences of contacting
divacancies amount structurally simply to monovacancy tunnels.
Other arrangements of contacting divacancies amount to monova-
cancy tunnels with sidewise excess single vacancies. Of course,
divacancies could be spatially placed to create monovacancy tunnel
branches; however, tunnel branching goes beyond the subject
matter considered here and in Ref. 18.

An interesting research issue for future study is whether our
lowest-density crystal packings with trivacancy tunnels can be
experimentally realized in the laboratory with colloids. It is possible
that recently developed inverse statistical-mechanical techniques
that enable one to design “patchy” colloid interactions for a given
target structure30 could offer experimentalists a guide to produce
trivacancy-tunneled colloidal crystals.
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