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We use all-atom modeling and advanced-sampling molecular dynamics simu-

lations to investigate quantitatively the effect of peptide bond directionality

on the equilibrium structures of four linear (two foldable, two disordered) and

two cyclic peptides. We find that the retro forms of cyclic and foldable linear

peptides adopt distinctively different conformations compared to their parents.

While the retro form of a linear intrinsically disordered peptide with transient

secondary structure fails to reproduce a secondary structure content similar

to that of its parent, the retro form of a shorter disordered linear peptide

shows only minor differences compared to its parent.
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Peptide backbones are referred to as nonpalindromic,

because there is a specific bond (and hence sequence)

directionality from the N-terminus (amino group end)

to the C-terminus (carboxy group end), which is not

the same as that resulting from moving from the

C-terminus to the N-terminus. Reversal of the peptide

bond, with the resulting peptides referred to as retro

peptides, has been an active subject of protein and

peptide research, and has been considered in drug

design, peptidomimetics, and molecular recognition

feature (MoRF) prediction [1–5]. Earlier, it has been

hypothesized that backward reading of the primary

structure may result in mirror image protein structure

[6], a view supported by lattice model simulations,

which show that the retro form of the B domain of

Staphylococcal protein A can fold into a three-helix

bundle similar to its parent [7]. Later, however, CD

and NMR experiments together with computational

modeling showed evidence that the retro forms of the

B domain of Staphylococcal Protein A, the SH3

domain of a-spectrin, and the B1 domain of Strepto-

coccal Protein G are unfolded, unlike their parents [8].

Additionally, the resolved crystal structure of the retro

form of GCN4 leucine zipper in retro form showed

that it folds into a highly stable structure, distinct

from the parent peptide’s native structure [9]. These

findings led to consensus on the view that peptide

bond order has an intimate relationship with the fold-

ing characteristics of peptides. More recently, retro

peptide structure has been studied by combining struc-

ture prediction algorithms and short molecular

dynamic simulations using atomistic models [10],

showing that although retro peptides may not fold as

their parents, ‘they retain secondary structure prefer-

ences similar to their parents’.

Amino acid order reversal has mostly been consid-

ered in the context of peptide drug design. Peptide-

therapeutics have generally been found to have high

binding affinity, specificity, and low toxicity, compared

to other small-molecule analogs. However, in addition
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to their superior properties, they have certain weak-

nesses that can limit their usage. One such weakness is

their comparatively low stability against proteolytic

degradation; they often have a short half-life in the

body and are degraded before reaching their target.

However, as opposed to levorotary [(L)-forms] pep-

tides, dextrorotary [(D)-forms] peptides are much more

stable against enzymatic degradation. The use of D-

enantiomers of peptide drug candidates has, therefore,

been proposed as a strategy to develop longer half-life

peptide drugs. Nonetheless, because the D-peptide is

the mirror image of the L-peptide [11,12], it does

not preserve the side-chain geometry of the parent

L-peptide, which plays a critical role in binding to the

target [13]. Accordingly, retro isomerization has been

brought into play here [1,14,15]: the same orientation

of the side chains can be recovered by inverting the

peptide bond sequence of the D-analog, as can be visu-

alized in Fig. S1, resulting in the retro (inverted amino

acid order)-inverso (inverted backbone chirality) pep-

tide. Throughout this work, the term ‘retro isomeriza-

tion’ is meant to denote backward reading of the

amino acid sequence. It is not to be confused with

‘retro-inverso peptide’, which denotes a peptide whose

amino acid sequence is read backwards (retro) and

each of whose individual amino acids is replaced by its

mirror-image enantiomer (opposite chirality). Retro-in-

verso peptides are not considered in this work, except

for literature discussion, and pedagogical purposes

(Fig. S1). We do not simulate retro-inverso peptides. In

spite of above-described theoretical advantages, retro-

inverso drug design has shown mixed success [16–18].

The retro-inverso design approach has typically

failed for peptides with a relatively higher secondary

structure content [19]. This failure has largely been

attributed to structural differences arising from stereo-

chemical inversion (inverso part of the retro-inverso

concept) such as the difference between right- and left-

handed helices, for the L- and D-forms of a helical

peptide, respectively [19]. However, as mentioned

above, a reversed amino acid sequence may fail to pre-

serve the parent backbone structure. Side-chain geome-

try equivalence between parent and retro-inverso

peptides is based on the assumption of backbone

structure preservation. For example, the alanine pep-

tides in Fig. S1 have the same backbone torsional

angles (φ = 180°, w = 180° for all peptide bonds) in

both the normal and retro-inverso forms of the pep-

tide. If the backbone structures of the normal and

retro forms were different, there would not be side-

chain geometry equivalence between them.

While it has been established that reversed sequences

of folded proteins are not able to adopt the same

structure as their parents, it is not presently under-

stood how retro sequences of nonfoldable peptides

behave, compared to their parents. Here, we include

two special classes of peptides, linear intrinsically dis-

ordered peptides and cyclic peptides. Retro inversion

has been used with some success for drug design

involving intrinsically disordered proteins [20,21] and

in MoRF prediction algorithms [5]. Intrinsically disor-

dered proteins or regions do not fold into well-defined,

three-dimensional structures but they can show some,

often transient, structural order at the secondary level.

While some intrinsically disordered peptides only

adopt coil-like extended structures [22,23], others can

populate transiently formed local secondary structures

[24–27]. In order to address systematically the effect of

peptide bond sequence (retro isomerization) on back-

bone structure, we consider two linear foldable, two

linear intrinsically disordered, and two cyclic peptides,

both in their normal and reversed amino acid order.

To our knowledge, this is the first atomistically

detailed simulation study that systematically tests the

effect of retro isomerization on peptide structure by

studying the equilibrium ensembles. We find that while

the retro forms of cyclic and linear foldable peptides

are distinctly different from their parents, the effects in

the case of intrinsically disordered peptides depend on

the degree of structural order in the parent peptide.

The retro form of one of the disordered peptides,

which has partial secondary structure content, fails to

reproduce parent’s structure, whereas the retro form of

the other disordered peptide considered here shows

high structural similarity to its parent to the extent

that structural order can be quantified.

Methods

We investigate the effect of retro isomerization for four lin-

ear and two cyclic peptides. The primary structures of the

studied peptides are shown in Table 1. Initial coordinates

of the linear peptides are generated using the CHARMM pro-

gram [28] as fully extended configurations which are then

energy-minimized using the steepest descent algorithm and

relaxed in gas-phase simulations (T = 300 K) for 1 ps. The

crystal structure of the cyc1 peptide is obtained from the

Cambridge Structural Database (ID: BAMLIK) [29] and is

used as the initial configuration for the simulation of cyc1

peptide. The Protein Data Bank (PDB) ID: 1JBL [30] is

used for the initial coordinates of the 1JBL peptide. The

coordinates of retro forms of the cyclic peptides are initially

generated as linear peptides with the same backbone tor-

sional angles as their parent peptide. Following that, the

backbone is cyclized by forming the amide bond between

N and C terminus, that is, by imposing the appropriate

bond, angle, dihedral, and nonbonded 1–4 interaction
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parameters, and running a steepest decent energy minimiza-

tion. The coordinates of cyclized peptides are then relaxed

in gas-phase simulations for 1 ps.

Trp-cage, Ab16-20, p5315-29, cyc1, and 1JBL peptides are

modeled using the Amber03w protein force field combined

with the TIP4P/2005 water model [31,32], while the GB1

peptides are modeled using the Amber03* protein force

field combined with the TIP3P water model [33]. Force

fields are chosen according to the data in the literature;

while the Amber03w (TIP4P/2005) force field has been

shown to better represent disordered proteins and Trp-cage

[31,34,35]; the Amber03* (TIP3P) force field has been

shown to produce folding thermodynamics in close agree-

ment with the experimental data for b-hairpins [36,37]. Lin-
ear peptides (both the normal and retro forms), Trp-cage,

Ab16-20, p5315-29, and GB1 are solvated in a truncated octa-

hedron box containing 2688, 1325, 2040, and 2718 water

molecules, respectively. Cyclic peptides (both the normal

and retro forms), cyc1 and 1JBL are also solvated in a

truncated octahedron box containing 1388 and 1931 water

molecules, respectively. Initial coordinates of the solvated

peptides are energy-minimized and equilibrated in an NVT

(T = 300 K, qwater � 1 kg�L�1) simulation, followed by an

NPT (P = 1 bar, T = 300 K) simulation, each for 100 ps.

Further production simulations are performed in the NPT

ensemble. Temperature is maintained using the Nos�e–
Hoover thermostat [38,39] with a 1 ps time constant and

pressure is maintained at 1 bar using a Parrinello–Rahman

barostat with isotropic coupling using a time constant of 2

ps.

We perform parallel tempering in the well-tempered

ensemble (PTWTE) simulations [40–42] of the peptides for

at least 300 ns/replica. The well-tempered ensemble ampli-

fies the fluctuations of the potential energy (maintaining

the same average potential energy), thereby increasing the

potential energy distribution overlap between adjacent

replicas and significantly reducing the number of replicas

required to achieve an adequate average exchange accep-

tance [41]. Temperature ranges, number of replicas, result-

ing average replica-exchange acceptance rate and energy

biasing parameters are given in the SI (Table S1). Conver-

gence is monitored by following the cumulative average of

the radius of gyration for each peptide at 300K, as shown

in Figs S2 and S3. A certain amount of initial simulation

data is treated as equilibration and excluded from the anal-

ysis, as also shown in Figs S2 and S3.

We simulate our systems using the GROMACS 2016.3

[43,44] MD engine and PLUMED 2.3.1 for metadynamics cal-

culations [45]. Systems are propagated using the leap-frog

algorithm with a 2 fs time step. The temperature of each

replica is maintained using the Nos�e–Hoover thermostat

[38,39] with a 1 ps time constant. Electrostatic interactions

are calculated using the particle-mesh Ewald method [46]

with a real space cutoff distance of 1 nm. A 1-nm cutoff

distance is used for the van der Waals interactions.

Secondary structure assignment of the GB1, Trp-cage,

and p5315-29 peptides is performed using the DSSP algo-

rithm, which is based on hydrogen bonding patterns [47].

Details of b-sheet and a-helix assignments are provided by

Kabsch and Sander [47]. The average b-sheet and a-helix
fractions are calculated as the ensemble average of the

above-described instantaneous quantity.

Per-residue turn fractions of the short cyclic peptide are

calculated according to the φ and w angles sampled by the

i + 1 and i + 2 residues. We analyze type I, II, I’, and II’

turns. We first calculate the φ and w angles for each residue

and for each configuration in the ensemble. Then, for each

pair of i + 1 and i + 2 residues, we search whether the dihe-

dral angle criteria are satisfied. Ideal φ and w angles for

i + 1 and i + 2 residues are taken from the work by Lin

and coworkers [48] and �30° is allowed for fluctuations

around the ideal values for each angle. The angle criteria

are visually represented in Fig. S4. If the angle criteria are

satisfied by both residues, we then check whether a back-

bone hydrogen bond forms between residues i and i+3 [49].

If this is also satisfied, residues from i to i + 4 are assigned

to be in a turn structure. We only find type I turn for

the cyclic hexapeptide, and, therefore, we only report

per-residue fraction of type I turn.

a-helix, b-strand, and ppII helix assignments for the

longer cyclic peptide are performed according to the φ and

w angles. The angle requirements for each structure type

are shown in Fig. S5. In addition, we also impose a conti-

guity criterion of at least three consecutive residues to

be found in the relevant basin of the φ-w space (a-basin,
b-basin, and ppII basin, respectively for a-helix, b-strand,
and ppII helix).

Clustering is performed based on structural similarity of

the backbone heavy (i.e. non-hydrogen) atoms following

the GROMOS algorithm [50] using a 0.15-nm root mean

Table 1. Amino acid composition of the peptides studied in this

work

Peptide Primary Structure Secondary Structure

GB1 GEWTYDDATKTFTVTE b-hairpin

rGB1a ETVTFTKTADDYTWEG

Trp-cage NLYIQWLKDGGPSSGRPPPS Helix

rTrp-cagea SPPPRGSSPGGDKLWQIYLN

p5315-29 SQETFSDLWKLLPEN Intrinsically disordered

rp5315-29
a NEPLLKWLDSFTEQS

Ab16-20 KLVFF Intrinsically disordered

rAb16-20
a FFVLK

cyc1 cyclo(-GHGAYG-)

rcyc1a cyclo(-GYAGHG-)

1JBLb cyclo(-GRCTKSIPPICFPD-)

r1JBLa,b cyclo(-DPFCIPPISKYCRG-)

a Lower-case letter ‘r’ in front of the peptide’s name denotes

‘retro’. b We note that there is a disulfide bond between cysteines

of 1JBL (and r1JBL).
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square deviation (RMSD) cutoff distance. For each con-

former in the ensemble, other conformers with respect to

which the RMSD is 0.15 nm or less are found. The struc-

ture with the highest number of similar conformers (RMSD

within 0.15 nm) forms the most populated cluster, together

with the other conformers within the given cutoff distance.

We report the most populated cluster with the percentage

of the population (number of conformers in this cluster

with respect to the total number of conformers).

Results and Discussion

Linear peptides

Four linear peptides are selected as representative of

the typical structures that a peptide can assume. While

Trp-cage [51] and GB1 [52] are well-known helix and

b-hairpin folders, respectively, Ab [22,23] and p53 [53]

are classified as intrinsically disordered peptides. The

p53 peptide is known to transiently form local helical

structures, [53] whereas Ab peptides are more similar

to a random coil [22,23]. Retro-inverso forms of Ab16-
20 and p5315-29 fragments have previously been pro-

posed as peptide-based drug candidates [20,54]. While

the retro-inverso Ab16-20 fragment has been shown to

have similar target binding as its parent [20,21], the

retro-inverso form of the p5315-29 fragment was ulti-

mately found not to possess the same binding ability

as the parent peptide [55].

Figure 1 shows the comparison of the peptides

structures with their retro analogs at ambient condi-

tions. We show the quantification of the structural

observables that are most relevant to the structure of

the parent peptide. The GB1 peptide folds into a

b-hairpin [56], as we also observe here. However, the

retro form of the peptide fails to fold into a stable

b-structure (Fig. 1A). The most populated structure

(see the Methods) of rGB1 contributes only 5% to its

aqueous solution equilibrium ensemble, suggesting that

this retro isomer does not fold into a stable alternative

structure. Trp-cage is a helix folder with a a-helix near

the N terminus and a 310-helix near the C terminus

[57]. The retro form of Trp-cage, however, is only able

to form an a-helix approximately five times less fre-

quently in the same region as shown in Fig. 1B (N ter-

minus for the parent peptide, C terminus for the retro

peptide). Moreover, the 310-helix of the native Trp-

cage near its C terminus is completely lost in the retro

form of the peptide. Contributing only 6% of the

entire population, the most populated cluster does not

suggest the presence of an alternative stable structure,

either. We find that rTrp-cage has a significant fraction

of 310-helix between residues 10 and 15. In an earlier

experimental study [58], rTrp-cage was found to be

unfolded in aqueous solution. However, in 30% 2,2,2-

trifluoroethanol (TFE) solution, rTrp-cage was found

to stabilize a structure (published with a PDB ID:

2LUF), which contains an a-helix between residues 8

and 15. We note that this range of rTrp-cage residues

encompasses the region that we find to form a rela-

tively large fraction of 310-helix in aqueous solution.

TFE is known to induce helix formation, therefore,

it is possible that partially and transiently forming

310-helices in rTrp-cage in aqueous solution is stabi-

lized and elongated upon addition of TFE [58].

In line with earlier findings [8], the retro forms of

parent-foldable linear peptides investigated here are

not foldable. They preserve only some residual sec-

ondary structure content, and they fail to stabilize a

folded structure. These findings suggest that although

the average hydropathy and net charge per residue

indices alone work well to separate known foldable

and disordered proteins [59], they are not sufficient cri-

teria for predicting disorder in sequences [60].

To date, the equilibrium structure of the retro form

of an intrinsically disordered peptide has not been

compared to its parent’s structure under same solution

conditions. In Fig. 1C,D we present a structural com-

parison of the normal and retro forms of fragments of

two intrinsically disordered peptides. As the Ab16-20
peptide is too short to analyze hydrogen bonding pat-

terns for secondary structure calculation, we show the

Ramachandran map of each residue, except for termi-

nal residues, since the latter do not have a complete

set of φ and w angles (the peptide is uncapped). The

angles mostly populate the top-left corner of the

Ramachandran map, indicating that the residues are in

an extended configuration. A visual inspection of the

most populated clusters of the normal and retro forms

of the peptide confirms this conclusion (Fig. 1C,

right). There are only minor differences between the

Ramachandran maps of the normal and retro forms of

the Ab16-20 peptide and an extended backbone is

observed in either form. On the other hand, for a par-

tially structured disordered peptide (p5315-29), retro

isomerization causes major structural changes, as evi-

dent from the per-residue secondary structure analysis

(Fig. 1D). The per-residue equilibrium fractional

assignment to alpha helix configuration is larger and

extends over a longer residue sequence in the rp5315-29,

suggesting that retro isomerization results in enhanced

ordering, as measured by secondary structure propen-

sities. In the work by Lu and coworkers [55], the

retro-inverso form of a p53 fragment was found to

have a distinct stable left-handed helical configuration

in TFE solution, whereas the parent form of the
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Fig. 1. Comparison between ensemble-average structure-related measures for the retro peptides and their parents (linear peptides). (A) Per-

residue fractional assignments to turn and b-sheet configurations for b-hairpin former GB1 and its retro isomer. (B) Per-residue fractional

assignments to a and 310 helical configurations for the helical Trp-cage peptide and its retro isomer. (C) Free energy as a function of

backbone torsion angles for the three nonterminal residues in the Ab16-20 peptide (top) and its retro isomer (bottom). (D) Per-residue

fractional assignments to a- and 310-helices for the disordered p5315-29 and its retro isomer. The most populated clusters of the peptides

(both normal and retro, as labeled on top of each image) are illustrated at the bottom of each panel. Reported near the label of each cluster

is the percent occurrence of the most populated cluster (see the Methods). Structures are colored according to the amino acid order. The

amino acids from N terminus to C terminus (in the normal peptide) are colored from red to blue.
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fragment was found to be only partially ordered in the

same solution conditions, as measured by CD and

NMR spectroscopy, although both the normal and

retro-inverso forms were found to be predominantly

disordered in an aqueous solution (phosphate buffer).

Accordingly, these authors have concluded that an

apparent increase in structural order occurs in the

retro-inverso form of the peptide compared to the nor-

mal form [55]. Our findings showing increased struc-

tural order upon retro isomerization of p53 are,

therefore, qualitatively consistent with Lu and cowork-

ers’ experimental results, insofar as quantitative mea-

sures of structural properties that are insensitive to

chirality must be the same between chirally inverted

peptides (such as retro and retro-inverso forms of the

p53 fragment), while the ones sensitive to chirality

must be exact mirror images of those of the parents

[11,12,61]. Our results emphasize that secondary struc-

ture is a strong function of backbone directionality for

sufficiently long peptides, even if the secondary struc-

ture is only local, as in the p5315-29 peptide.

Cyclic peptides

In addition to the above-discussed linear peptides, we

also study cyclic peptides of two different lengths. We

select a short cyclic peptide to represent a sequence

free of prolines and noncanonical amino acids, as they

may impose structural constraints on the backbone

[62]. The longer peptide, on the other hand, includes

prolines and a disulfide bond.

Ring strain due to backbone cyclization limits the

number of configurations that can be adopted by cyclic

peptides compared to linear peptides, the constraint

being more pronounced for shorter cyclic peptides.

Cyclic hexapeptides studied by experiments and simula-

tions [48,63–65] exhibit primarily b-turn configurations.

The conformational switches that they show are typi-

cally switches between different b-turn types. Accord-

ingly, in this work, we analyze the per-residue fractions

of type I, II, I’, and II’ turns. Turn types are decided

according to Ramachandran angles occupied by resi-

dues i + 1 and i + 2 (4-residue turn, indexed from i to

i + 3) (see Methods for further details). According to

these angle criteria, we only find type I turn configura-

tions for the cyclic hexapeptide studied here.

In Fig. 2A, we show a structural comparison

between the normal and retro forms for the short cyc-

lic peptide. We show Ramachandran maps for each

residue in Fig. S6(A), and we find that the most popu-

lated basins are significantly different between the nor-

mal and retro forms of the cyc1 peptide. ALA-(4 for

normal, 3 for retro), for example, switches from a

compact configuration to a highly extended one (cyc1–
rcyc1). While both the normal and retro forms of the

hexapeptide show a significant fraction of type I turn

per-residue (Fig. 2A), the regions involved in the turn

differ, implying that retro isomerization does not yield

a symmetric transformation for this cyclic peptide.

Similar observations apply to the longer peptide

(1JBL): there are remarkable differences between the

Ramachandran maps of the individual amino acids.

As the peptide is longer, in this case, we calculate the

per-residue fraction of secondary structures, a-helix,
b-strand, and ppII helix (see the Methods for struc-

tural assignment details). We find that the fractions of

locally forming secondary structures are quite different

between normal and retro forms of the 1JBL, too

(Fig. 2B). Our findings are consistent with previous

NMR experimental work studying retro, inverso, and

retro-inverso analogs of cyclic peptides, which show

that the retro peptide conformations are significantly

different from the conformations adopted by their

parents [66].
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Conclusion

Although it was initially thought that reversing peptide

sequences would lead to a symmetry transformation

resulting in comparable structures with respect to the

parent peptide [6,7], subsequent evidence has shown that

the directionality of the peptide bond is an important

contributor to a peptide’s unique structural properties

[8,9]. Here, we study, for the first time, the equilibrium

ensembles of retro peptides in atomistic detail with

respect to their parents including linear foldable, linear

intrinsically disordered, and cyclic peptides.

In agreement with previous findings [8,10,67], our

results showed that reverse reading of the foldable

peptides lead to a nonfoldable molecule. However,

although these retro peptides fail to stabilize a three-

dimensional structure, they preserve their intrinsic

preference toward their parent’s secondary structure.

The transition from a foldable to a nonfoldable pep-

tide is particularly striking, as the average hydropho-

bicity, charge composition, and even amino acid order

are preserved in retro isomers (only the direction dif-

fers). These findings imply the need for consideration

of backbone directionality for disorder prediction:

although the average hydropathy and net charge per

residue indices alone well separate known foldable and

disordered proteins [59], and they are not the sufficient

criteria for predicting disorder [60].

The disordered peptides studied here are ones whose

retro-inverso isomers have previously been considered

as drug candidates [20,54]. Retro-inverso isomers have

been considered as topochemical equivalents to their

parents in terms of providing identical side-chain ori-

entation for target binding [1]. However, achieving

identical side-chain orientation requires identical back-

bone structure (Fig. S1). Retro isomerization does not

preserve the structure for foldable proteins. Therefore,

retro-inverso drug candidates for foldable peptides are,

therefore, not likely to be successful in reproducing the

binding ability of the parent peptide. However, the

extent of structure preservation upon reversing the

peptide bond direction has remained an open question

for disordered peptides. Here, we find that the retro

isomer structure of a short (penta)peptide, Ab16-20,
which has an extended backbone structure in its nor-

mal form, is not significantly different from that of its

parent peptide. The retro-inverso isomer of this pep-

tide has been found to have a binding affinity to its

target similar to the affinity that the normal form of

the peptide has toward the same target [20]. On the

other hand, for the p5315-29 fragment (although it is

predominantly coil-like, it has a considerable fraction

of helical structures), we find that the rp5315-29 peptide

does not reproduce the same or similar backbone

structure. In particular, rp5315-29 has a much longer

and larger per-residue fraction of a-helices and, consis-
tently, lower per-residue fraction of 310 helix. We also

note that retro-inverso p5315-29 has been found to have

much lower binding affinity to its target (MDM2 pro-

tein) compared to the binding affinity that p5315-29 has

to the same target [55].

It is well understood that total chiral inversion of an

amino acid sequence yields mirror image structures;

for example, right-handed helical structures become

left handed in the same region. Accordingly, failure of

retro-inverso drug candidates, when it happens, is

attributed to the topological differences between the

mirror image structures [19]. However, if the amino

acid order reversal is already causing a major change

in the structure, total chiral inversion only makes a

mirror image of the changed structure, suggesting that

retro isomerization in retro-inverso drug design might

be the major contributor to the failure of these drugs.

Our results, therefore, suggest that checking whether

peptide structure is conserved upon retro isomerization

would be a particularly useful first test when proposing

a retro-inverso drug candidate. The use of peptides

whose retro-inverso forms’ biochemical efficacy has

been previously evaluated experimentally [20,55] has

been particularly useful to us in order to arrive at this

conclusion.
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pered ensemble simulations of peptides.

Fig. S1. Side-chain orientation equivalence of an L-

peptide, alanine-tetrapeptide (A) and the retro-inverso

analog of the peptide (B).

Fig. S2. Radius of gyration of each linear peptide as a

function of time (black) and cumulative average of

radius of gyration as a function of time (red) at 300 K.

Fig. S3. Radius of gyration of each cyclic peptide as a

function of time (black) and cumulative average of

radius of gyration as a function of time (red) at

300 K.

Fig. S4. Ramachandran map showing the angle criteria

(for i + 1 and i + 2 locations) of forming a type I turn.

Fig. S5. Ramachandran map showing the angle criteria

to form a (blue), b (magenta) and ppII (green) struc-

tures.

Fig. S6. Free enery as a function of backbone torsion

angles for the cyc1 peptide (A) and the 1JBL peptide

(B) Turn, a-helix, b-strand and ppII helix fractions per

residue (Figure 2) are calculated based on these torsion

angles (see the main text).
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