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ABSTRACT
We study the sensitivity and practicality of Henderson’s theorem in classical statistical mechanics, which states that the pair potential v(r)
that gives rise to a given pair correlation function g2(r) [or equivalently, the structure factor S(k)] in a classical many-body system at number
density ρ and temperature T is unique up to an additive constant. While widely invoked in inverse-problem studies, the utility of the theorem
has not been quantitatively scrutinized to any large degree. We show that Henderson’s theorem has practical shortcomings for disordered
and ordered phases for certain densities and temperatures. Using proposed sensitivity metrics, we identify illustrative cases in which distinctly
different potential functions give very similar pair correlation functions and/or structure factors up to their corresponding correlation lengths.
Our results reveal that due to a limited range and precision of pair information in either direct or reciprocal space, there is effective ambiguity
of solutions to inverse problems that utilize pair information only, and more caution must be exercised when one claims the uniqueness
of any resulting effective pair potential found in practice. We have also identified systems that possess virtually identical pair statistics but
have distinctly different higher-order correlations. Such differences should be reflected in their individually distinct dynamics (e.g., glassy
behaviors). Finally, we prove a more general version of Henderson’s theorem that extends the uniqueness statement to include potentials that
involve two- and higher-body interactions.

Published under license by AIP Publishing. https://doi.org/10.1063/5.0021475., s

I. INTRODUCTION

The relationship between microscopic forces and the structure
of matter is of fundamental interest in classical statistical mechan-
ics and underlies the study of bottom-up material design,1–3 fluid
and solvation models,4,5 and biological molecules.6–8 An important
theorem due to Henderson states that in a classical many-body sys-
tem, the pair potential v(r) that gives rise to a given equilibrium
pair correlation function g2(r) at fixed number density ρ and tem-
perature T > 0 is unique up to an additive constant.9,10 In inverse
statistical-mechanics settings, where the goal is to deduce pair poten-
tials from pair statistics, the theorem is often cited to validate
either the proposed inverse methods or the effective pair potentials
found.11–13

However, there exist several issues pertaining to fundamen-
tal aspects and the practicality of Henderson’s theorem. First, the

theorem breaks down at zero and infinite temperatures. The original
paper by Henderson claims that the theorem also holds for T = 0,
but this cannot be true for classical ground states, since it is well
known that there exist infinitely many different potential functions
consistent with the same ground-state configuration.2,14 Indeed,
the existence of “universal optimality” of certain lattices rigor-
ously proves this statement.15 Different potentials could also exhibit
similar sequences of ground-state crystal phases as the density
varies.16 At positive but finite temperatures, Henderson’s theorem
holds rigorously, but its practical effectiveness is an open question,
since the sensitivity of pair statistics on pair potentials is not known
a priori, i.e., the functional derivative δg2/δv or δS/δv. For the poten-
tial to be uniquely determined, g2(r) or S(k) must be known exactly
and over an infinite range, which is never achieved in experiments
or computer simulations.17 However, to our knowledge, the afore-
mentioned sensitivity has not been quantitatively scrutinized to any
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FIG. 1. At 0 < T < ∞, Henderson’s theorem is not practically applicable if very
similar pair correlation functions correspond to distinctly different pair potentials.

large degree, and its dependence on the density and temperature has
not yet been studied.

In this work, we focus on the practical utility of Henderson’s
theorem (Fig. 1). This interesting question was raised as an unsolved
problem by Potestio.18 Based on sensitivity metrics that we introduce
here, we show that we can devise very different potentials whose cor-
responding pair statistics g2(r) and/or S(k) are similar within typical
numerical or experimental errors up to some maximum value of r
or k, respectively, typically measured in practice. The cases that we
identified include ordered and disordered phases at various densi-
ties and temperatures. Our findings imply that it is insufficient to
use Henderson’s theorem alone to claim the uniqueness of effective
pair potentials found in practice. Thus, our work has implications
for the common and important practice of ascertaining effective pair
interactions of complex many-body systems from their pair statistics
alone.4,6,17,19–33

In Sec. II, we provide basic definitions, including those for pair
statistics, and sensitivity metrics that measure the variation in the
pair statistics associated with any given variation in the correspond-
ing pair potential. In Sec. III, we describe the numerical method-
ologies that we have designed to identify cases in which different
potentials give similar pair statistics, as measured by the sensitiv-
ity metrics. In Sec. IV, we present examples in fluid and crystal
phases as well as unusual low-temperature disordered states in two
dimensions (2D), all of which possess low sensitivity metrics, thus
demonstrating the practical shortcomings of Henderson’s theorem.
Specifically, at temperatures above freezing or condensation tem-
peratures, but far below the infinite-temperature limit [where g2(r)
is identically unity], we identified low-density fluids where S(k)’s
are insensitive to variations of v(r) and high-density fluids where
g2(r)’s are insensitive. Such insensitivity also applies to certain crys-
tals at T below half of the melting temperature. We also report a
case that we have discovered in which a liquid and a disordered low-
temperature state below the melting temperature have similar pair
statistics. In Sec. V, we study the dependence of this sensitivity on
the density, temperature, and dimensionality. In Sec. VII, we gener-
alize Henderson’s theorem by extending the uniqueness statement to
potentials that involve two- and higher-body interactions. We make
concluding remarks in Sec. VIII.

II. DEFINITIONS AND PRELIMINARIES
In this section, we introduce some fundamental concepts in sta-

tistical mechanics of classical many-body systems. Then, we define
metrics that quantify differences in potentials and pair statistics, as
well as the sensitivity of pair statistics on pair potentials.

A. Pair statistics
We study many-particle systems in d-dimensional Euclidean

space Rd, which completely statistically characterized by the n-
particle probability density functions ρn(r1, . . . , rn) for all n ≥ 1.
In the case of statistically homogeneous systems, ρ1(r1) = ρ and
ρ2(r1, r2) = ρ2g2(r), where r = r2 − r1 and g2(r) is the pair correla-
tion function. If the system is in addition statistically isotropic, g2(r)
= g2(r), where r = ∥r∥. The ensemble-averaged structure factor S(k)
is defined as

S(k) = 1 + ρh̃(k), (1)

where h(r) = g2(r) − 1 is the total correlation function and h̃(k) is
the Fourier transform of h(r).

For a single periodic configuration containing N point particles
at positions rN = (r1, r2, . . ., rN ) within a fundamental cell F of a
lattice Λ, the scattering intensity S(k) is defined as

S(k) =
∣∑N

i=1 e−ik⋅ri ∣2

N
. (2)

For an ensemble of periodic configurations of N particles within the
fundamental cell F, the ensemble average of the scattering intensity
in the infinite-volume limit is directly related to the structure factor
S(k) by

lim
N,VF→∞

⟨S(k)⟩ = (2π)dρδ(k) + S(k), (3)

where VF is the volume of the fundamental cell and δ is the Dirac
delta function.34 In simulations of many-body systems with finite N
under periodic boundary conditions, Eq. (2) is used to compute S(k)
directly by averaging over configurations.

B. Distance and sensitivity metrics
Here, we first define metrics that quantify “distances” between

functions associated with pair statistics and pair potentials. Based on
these quantities, we then define sensitivity metrics that measure the
variation in pair statistics associated with any given variation in the
corresponding pair potentials.

Let v(0)(r), v(1)(r) be stable pairwise additive radial poten-
tials whose Fourier transforms in Rd exist,35 g(0)2 (r), g(1)2 (r) be
the corresponding radial distribution functions at given ρ, T, and
S(0)(k), S(1)(k) be the corresponding structure factors. We define the
“distance” between v0 and v1 as

Dv(v(0), v(1)) = ∫
Rd
[exp(−v(0)(r)) − exp(−v(1)(r))]

2
dr, (4)

where Dv is equivalent to the L2-norm of the difference in the Mayer
functions y(r) = exp(−v(r)/kBT) − 1 at kBT = 1 and gives a norm
to the space of pair potentials. The exponential transformation in
Eq. (4) ensures that Dv is bounded for stable and square integrable
potentials. Similarly, the “distance” in the Fourier transforms ṽ of
the potentials is defined as
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Dṽ(ṽ(0), ṽ(1)) = ∫
Rd
[ỹ(0)(k) − ỹ(1)(k)]

2
dk

= (2π)dDv(v(0), v(1)), (5)

where ỹ is the Fourier transform of y. The “distance” between pair
statistics Df is defined as the L2-norm,

Df (f (0), f (1)) = ∫
Rd
[f (0)(x) − f (1)(x)]

2
dx, (6)

where f (x) is g2(r) or S(k). The metric Df is defined only for sys-
tems at positive temperatures since it diverges for two ground states
of different crystal structures. Finally, the sensitivity metrics of pair
statistics on pair potentials for systems (0) and (1) are defined as

C0,1
g2 =

Dg2(g
(0)
2 , g(1)2 )

Dv(v(0), v(1))
=
∫Rd[h̃(0)(k) − h̃(1)(k)]

2
dk

Dṽ(ṽ(0), ṽ(1))
, (7)

C0,1
S =

DS(S(0), S(1))
Dṽ(ṽ(0), ṽ(1))

= ρ2C0,1
g2 . (8)

If the systems in question are clear from the context, the superscripts
(0) and (1) can be omitted. We note that the state ρ = 0, kBT = 1
can be thought of as a reference state, as Cg2 is unity for any pair of
potentials. We consider systems to be of low sensitivity if Cg2 and CS
are smaller than 0.005 and high sensitivity if they are greater than 1.

We remark here that one could employ other metrics to ana-
lyze the relationship between pair statistics and pair potentials. A
commonly used metric is the Jensen–Shannon divergence between
two systems.36 It is defined as

DJS =
−ρ2

2kBT ∫Rd
[v(0)(r) − v(1)(r)][g(0)2 (r) − g(1)2 (r)]dr. (9)

In fact, DJS = D0,1 + D1,0, where Di ,j is the relative entropy (or the
Kullback–Leibler divergence) of system i with respect to system j.
The relative entropy is a natural metric of the “distance” in proba-
bility distributions and arises in the proof of Henderson’s theorem.
It does not directly measure distances in pair statistics or pair poten-
tials but is rather a mixture of the two, and hence, we do not consider
this metric in our work.

In this work, unless otherwise stated, systems labeled with (0)
are called target systems, i.e., systems whose pair statistics are to
be reconstructed via inverse methods. Systems labeled with (1) are
called inferred systems, i.e., they are solutions to inverse problems
targeting g(0)2 (r) or S(0)(k).

C. Common pair potentials
This subsection defines a variety of common potentials used

in this work. The generalized Lennard-Jones (LJ) potential vLJ is
defined as

vLJ(r; σ, ϵ, a, b) = ϵ[(σ
r
)

a
− (σ

r
)

b
], (10)

where σ > 0, ϵ > 0, and a > b > 0. The power-law (PL) repulsive
potential is defined as

vPL(r; σ, ϵ, a) = ϵ(σ
r
)

a
, (11)

where σ > 0, ϵ > 0, and a > 0. The Gaussian-core (GC) potential is
defined as

vGC(r; σ, A) = A exp(− r2

σ2 ), (12)

where σ > 0 and A > 0.
The “overlap” potential is defined as37

voverlap(r; V0, K) = V0

π(Kr)2 [J1(
Kr
2
)]

2
, (13)

where V0 > 0, K > 0, and J1 is the first-order Bessel function. The
Fourier transform of voverlap(r) yields the overlapping area of two
2D disks whose centers are separated by a certain distance. The
“overlap” potential is reminiscent of the effective interaction used
to model multilayered ionic microgels.38 Finally, a potential used to
model the effective pair interactions of “star” polymers39 is given by

vstar(r; σ, f )

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

5
18

f
3
2

⎡⎢⎢⎢⎢⎣
− ln( r

σ
) +
⎛
⎝

1 +

√
f

2
⎞
⎠

−1⎤⎥⎥⎥⎥⎦
, r ≤ σ

5
18

f
3
2
⎛
⎝

1 +

√
f

2
⎞
⎠

−1

( r
σ
)
−1

exp
⎡⎢⎢⎢⎢⎣
−
√

f
2
( r
σ
− 1)
⎤⎥⎥⎥⎥⎦

, r > σ,

(14)

where σ > 0 and f > 0 is the number of branches on a polymer
particle.

We selected these potentials due to their variety of interac-
tion ranges, repulsion steepness, monotonicity, or minima positions
and available phases. The LJ and power-law potentials are short-
ranged hard-core potentials that diverge as r → 0. The Gaussian
core and the “star” potentials are bounded and have been used to
model polymers. The “overlap” potential is a long-ranged, bounded
potential that exhibits unusual disordered ground states at certain
densities.37

D. Inverse algorithms
In this subsection, we briefly describe some inverse-problem

concepts and algorithms that we will employ in Sec. III to iden-
tify cases of low sensitivity metrics. We consider the class of inverse
problems where the goal is to deduce effective pair potentials consis-
tent with some given target pair statistics f ∗(x).2,40

We begin by summarizing a general inverse procedure that
encompasses previous methodologies. Let U be the space of all stable
and square integrable pair potentials on Rd whose Fourier trans-
forms exist. An inverse procedure usually follows an iterative process
that starts with an initial trial potential vt ,0 ∈ U. A Monte Carlo sim-
ulation of a many-body system is performed under vt ,0 to obtain an
ensemble of equilibrium configurations, from which the trial pair
statistics f t ,0(x) are computed. Specifically, g2(r) is computed from
an ensemble-averaged pair distance histogram, and S(k) is computed
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from the ensemble-averaged scattering intensity [Eq. (2)]. The pro-
cess terminates if f i is deemed close to the target f ∗, i.e., Df (f t ,i, f ∗)
≤ ε for some tolerance ε on the order of experimental or simula-
tion errors. If not, an algorithm-specific functional F : U → U, called
updating rule, maps vt ,0 to an improved trial potential vt ,1 by taking
into account the difference between f t ,0 and f ∗. This process iterates
until it finds a trial potential vt ,i in the ith iteration such that Df (f t ,i,
f ∗) ≤ ϵ. The potential vt ,i is then considered a solution to the inverse
problem. Figure 2 illustrates the general inverse procedure described
above.

There are various algorithms implementing the general pro-
cedure described above. They differ in their updating rules and
requirements for trial potentials.19–21,27,31–33 Algorithms applied in
this work are Iterative Boltzmann Inversion (IBI)21 and gradient
descent optimization, chosen because of their generality and imple-
mentation simplicity. IBI uses unparameterized potentials and has a
point-by-point updating rule,

vt,i+1(r) = vt,i(r) + λ ln( gt,i
2 (r)

g∗2 (r)
), (15)

where λ > 0 is a tunable “step size” parameter. The initial trial
potential vt ,0 for IBI is usually the potential of mean force (PMF)
corresponding to the target pair correlation function, given by21

vPMF(r) = −kBT ln(g∗2 (r)). (16)

IBI is a general algorithm that has been used to study inverse prob-
lems of disordered phases.41 However, for crystal phases, the trial
potentials may fail to converge because Eq. (15) always generates
long-ranged trial potentials for long-range correlations. Therefore,
when targeting crystal g2(r)’s, the trial potentials contain many
unphysical deep minima.

Gradient descent optimization uses parameterized trial poten-
tials vt ,i(r; ai), where ai is the vector of potential parameters. The
parameters are updated in each iteration by the rule

ai+1 = ai − μ∇Df ( f ∗, ft,i), (17)

where μ > 0 is the “step size” parameter. Implementation details for
both algorithms will be given in Sec. III.

FIG. 2. Illustration of a general inverse procedure.

III. METHODOLOGY
In this section, we describe our methods to identify low-

sensitivity cases, i.e., examples in which Cg2 and/or CS have poten-
tially low values. Finding such cases would demonstrate practical
shortcomings of Henderson’s theorem. In this section and Sec. IV,
we restrict our attention to stable, square integrable, and isotropic
pair potentials on R2 whose Fourier transforms exist.

A. Setup of the inverse problem
Let v0(r) be a known pair potential for the target system, with

corresponding pair statistics g(0)2 (r) or S(0)(k) at ρ, T. We aim to
find an inferred pair potential v1(r) with pair statistics g(1)2 (r) and
S(1) (k) such that the distance metric between v0(r) and v1(r) is large,
whereas the distance metrics between the target and inferred g2(r)’s
and/or S(k)’s are comparable to typical errors in experiments or sim-
ulations up to ranges typically measured, defined more precisely
below. To do this, we implemented inverse algorithms that target
g(0)2 (r), as described in Sec. II D. IBI was used to target disordered
states, and gradient descent optimization was used for crystals states.
Note that we did not directly target S(0)(k) “on the fly” due to the
lack of a general Fourier-based inverse algorithm. Instead, whenever
a small CS is prescribed, we applied Eq. (1) to obtain g(0)2 (r) from
the targeted S(0)(k).

B. Maximizing the potential-distance metric
between target and inferred potentials

Ideally, for any prescribed Dg2 or DS, it is desirable to find the
potential v1(r) such that the distance metric between the target and
inferred potentials is maximized. However, due to the computa-
tional challenge of this task, we instead attempted to identify inferred
potentials that yield low sensitivity metrics. To do this, we required
that the trial potentials vt ,i(r) possess distinct features from v0(r) in
terms of monotonicity, steepness of repulsive forces, and positions
of minima/maxima. Therefore, in gradient descent optimization, the
parameterized trial potentials were constrained to functional forms
different from v0(r). For example, if v0(r) is a power-law potential,
vt ,i(r) were set to be LJ potentials. For IBI, since the trial potentials
are not parameterized, we set the initial guess potential vt ,0(r) to be
distinct from v0(r) in the aforementioned senses. Examples are given
in Sec. IV A.

In some instances, to further increase the difference between
v0(r) and v1(r), we added a small perturbing function p(r) or p̃(k)
to g(0)2 or S(0)(k) and set the perturbed pair statistics as the target
of the inverse procedure. The L2-norm of the perturbing function
was smaller than that caused by typical experimental errors. Exact
expressions of the perturbing functions we used will be given in
Sec. IV.

C. Computation of sensitivity metrics
Since we focus on practical aspects of Henderson’s theorem,

we select ranges of pair statistics typically measured in simula-
tions or experiments and commonly used as targets for practi-
cal inverse problems. To compute the distance metrics defined in
Eqs. (4)–(6), we cut off the integration at r = 8 in direct space and
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k = 20 in Fourier space. The definitions of the unit length depend on
the potentials [e.g., the parameter σ for vLJ(r)], but in all cases, we
note that the first peaks of g2(r) are in the range 0.5 ≤ r ≤ 2.0. We
computed CS directly by both DS/Dṽ and ρ2Cg2 and found that they
agreed with each other very well (relative error <0.5%) except for
crystal phases, indicating that the ranges that we used to compute
Eqs. (4)–(6) are large enough to approximate the integrations over
infinite volume.

D. Simulations of trial potentials and stopping
criteria

In our implementation of inverse algorithms, the trial pair cor-
relation functions gt,i

2 (r) were obtained from Monte Carlo simula-
tions with 400 particles for fluids or 418 particles for crystals in the
triangle lattice arrangement in 2D under periodic boundary condi-
tions, averaged over 200 equilibrium configurations. We chose suit-
able stopping criteria to be those determined by typical experimental
errors in pair statistics, which we quantified as a root mean square
error (RMSE) of 0.03 for both g2(r) and S(k).42 Up to the ranges spec-
ified in Sec. III C, this RMSE corresponds to Dg2 = 0.18, DS = 1.1
in 2D. Our stopping criteria were Dg2(g

(0)
2 , gt,i

2 ) ≤ 0.05 for IBI and
Dg2(g

(0)
2 , gt,i

2 ) ≤ 0.10 for gradient descent optimization. The former
criterion is comparable to random errors of these simulations. The
latter criterion is more relaxed because there are fewer degrees of
freedom to optimize for parameterized potentials, and precision up
to simulation errors often cannot be achieved. However, both crite-
ria are much more stringent than the typical experimental errors just
defined.

E. Large-scale simulations
After an appropriate potential v1 was found by inverse algo-

rithms, we carried out large-scale simulations to obtain highly pre-
cise pair statistics, as reported. Monte Carlo simulations were per-
formed for 1000 particles for fluids or 1020 particles for crystals in
the triangle lattice arrangement in 2D (Secs. IV and V) and 4000
particles in 3D (Sec. V in the discussion of dimensionality) under
periodic boundary conditions, averaged over 500 equilibrium con-
figurations. These simulations are able to achieve random error
Dg2 ≤ 0.01.

IV. EXAMPLES THAT YIELD LOW SENSITIVITY METRICS
In this section, we focus our attention to the potentials defined

in Sec. II C and present various states of matter that yield low sen-
sitivity metrics Cg2 and/or CS. These include fluids at high and low
densities, crystals, and unusual disordered low-temperature states.

A. High-density fluids
High-density fluids include liquids and supercritical fluids with

liquid-like densities. For these states, short-range interactions dic-
tate much of the pair statistics. In Fig. 3, we show an example, at
ρ = 1.29, kBT = 4, where widely different pair potentials produce
similar g2(r) [Figs. 3(a) and 3(b)]. The potential v0 is defined by
v0(r) = voverlap(r; 1000, 7.6634) [Eq. (13)]. This choice of parameters
sets the unit length at the first minimum of v0(r). The potential v1(r)

was obtained by IBI targeting g(0)2 (r), where the initial guess poten-
tial was vGC(r; 100, 1) [Eq. (12)], deliberately set to have a much
larger repulsive range than v0. As seen from Fig. 3(a), the appar-
ent distinction in the pair potentials affects the tail of g2(r) only
slightly, but in Fourier space, the difference is manifest in the small
k behavior of the structure factor [Fig. 3(c)]. The red-dashed curve
in Fig. 3(b) shows that v1(r) − 5.0 agrees very well with v0(r) for r
< 1. Therefore, in this example, v1 captures the interparticle forces,
i.e., the steepness of v0 in the small r range, but intermediate- to
long-range interactions were not well captured.

Zhang and Torquato43 developed a relation between the struc-
ture factor and the Fourier transform of the potential ṽ(k), provided
that the k-vectors were independent,

ṽ(k) = kBT( 1
S(k) − 1), (18)

which is exact in the infinite density limit. Indeed, we found that
Eq. (18) is already a good approximation for liquid densities. Taking
derivative of ṽ(k) with respect to S(k) while fixing k, we have

δṽ(k)
δS(k) = −kBT

1
(S(k))2 . (19)

It is, therefore, predicted that for high-density fluids, the pair poten-
tial is sensitive to variations in S(k) where the latter has small val-
ues. In practice, we found that perturbing at regions of k where
S(k) ≤ 0.01 suffices to exhibit this effect. Figure 4 shows an example
at ρ = 0.75, kBT = 0.58, where v0(r) = vLJ(r; 1, 4, 6, 12) and v1(r) was
obtained by IBI targeting g2(r) corresponding to a perturbed struc-
ture factor S∗(k) = S(0)(k) + p̃(k). The perturbing function is given
by

p̃(k) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

0, k ≤ a

A sin(2πw
k − a
b − a

)

2πk
, a < k < b

0, k ≥ b,

(20)

where we set A = −0.3, a = 0.1, b = 5, and w = 1. The initial trial
potential was obtained by Eq. (18). It can be seen from Figs. 4(a)
and 4(c) that comparing the target and inferred systems, both the
pair of g2(r)’s and the pair of S(k)’s agree very well, even though the
pair potentials have their minima at completely different r, and their
repulsive parts are in no way similar [Fig. 4 (b)]. Indeed, the inset of
Fig. 4(b) shows that the forces derived from the target and inferred
potentials are significantly different for interparticle distances in the
vicinity of the first peak of g2(r). It is reasonable to assume that due
to an effective hard core in both potentials, steric constraints on
local packing configurations play a more important role in determin-
ing the pair statistics than the precise forms of the intermolecular
forces.

The low sensitivity of g2(r) on pair potentials for high-density
fluids dominated by steep short-range repulsive interactions is
expected from the modern liquid-state theory, where it is known
that away from the critical point, the local structure of a fluid
is primarily determined by steric effects caused by the repulsive
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FIG. 3. (a) Pair correlation functions of two high-density fluids, where g(0)
2 (r)

was set as the target to obtain the inferred system. (b) Black solid: v0(r) = voverlap
(r ; 1000, 7.6634); red solid: v1 obtained by IBI with the initial guess vGC(r ; 100,
1), targeting g(0)

2 (r). Red dashed: v1(r) − 5.0. (c) Structure factors of the fluids.

ρ = 1.29, kBT = 4, T ≈ 6.0T(0)
freeze ≈ 6.0T(1)

freeze. Dv = 35.3, Dg2 = 3.7 × 10−3,
Ds = 0.24. Cg2 = 1.0 × 10−4, CS = 1.7 × 10−4.

forces.44,45 Indeed, using different parameterizations in Empirical
Potential Structure Refinement (EPSR), Soper found various pair
potentials that reconstruct the pair statistics of a LJ fluid reason-
ably well.23 Several other studies have also noticed the propensity of

FIG. 4. (a) Structure factors of two high-density fluids, where a slightly perturbed
S(0)(k), namely, S∗ (k), was set as the target to obtain the inferred system. (b)
Black solid: v0(r) = vLJ(r ; 1, 4, 6.12); red solid: v1 generated using IBI targeting
g2(r) corresponding to the perturbed S(0)(k). Inset: Forces generated by the target
and inferred potentials. (c) Pair correlation functions of the fluids. ρ = 0.75, kB

T = 0.58, T ≈ 1.4T(0)
freeze ≈ 1.2T(1)

freeze. Dv = 50.5, Dg2 = 0.050, DS = 1.1,
Cg2 = 9.9 × 10−4, CS = 5.6 × 10−4.

IBI, which targets g2(r) only, to arrive at potentials different from
the true ones while reproducing the target g2(r) within numeri-
cal errors.32,46–48 This effective nonuniqueness has inspired studies
to improve on the standard IBI procedure such that the derived
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effective pair potentials can reproduce thermodynamic properties at
multiple state points.49,50 Still, we believe that the examples in Figs. 3
and 4 are the most compelling illustrations of this low sensitivity so
far. Furthermore, Fig. 4 clearly shows that even short-ranged repul-
sive forces can be difficult to reproduce by inverse procedures. These
examples imply that in inverse problems for high-density fluids, S(k)
or other long-range information must be incorporated into the tar-
get, and extremely precise structure factor data must be provided
where S(k) is small.

B. Low-density fluids
Due to the relation, Eq. (1), at low densities, a small perturba-

tion in S(k) at large k could lead to large variations in g2(r) at small
r, and conversely, perturbations of S(k) at small k affect the large-r
behaviors of g2(r). The variations in g2(r)’s, in turn, could imply sig-
nificant differences in the corresponding pair potentials according
to Eq. (16).

Figure 5 shows an example at ρ = 0.05, kBT = 1, where the pair
of S(k)’s are similar, whereas the pair of g2(r)’s are distinctly differ-
ent in so far as small-r behaviors are considered. Both potentials
were found by IBI. The potential v0(r) was obtained by targeting a
predefined pair correlation function g∗(0)2 (r), given by

g∗(0)2 (r) = max(gstar
2 (r), 0.2), (21)

where gstar
2 (r) is the pair correlation function corresponding to the

“star” potential vstar(r; 1, 18) [Eq. (14)]. The potential v1(r) was
obtained by targeting the pair correlation function correspond-
ing to a perturbed S(0)(k). The perturbing function p̃(k) is given
by Eq. (20) with A = 1, a = 15, b = 20, and w = 2. We chose
such p̃(k) to mimic the effect of small uncertainties in real data
in the tail of S(k). As we can see in Fig. 5(a), the difference in
the structure factors is only slightly noticeable in the tail region
where S(0)(k) is identically unity. However, as shown in Figs. 5(b)
and 5(c), the functions v1(r) and g(1)2 (r) for the inferred system
possess high-frequency oscillations that are not observed for the
target system. Importantly, this example demonstrates the ambi-
guity of solutions to inverse problems targeting pair statistics over
a finite range: Since S(0)(k) and S(1)(k) are almost identical for
k < 15, an inverse procedure that targets S(1)(k) only for the range
k < 15 will not be able to reconstruct the high-frequency oscilla-
tions in v1(r). We remark that potentials like v1(r) are unlikely to be
found in laboratory, but we mathematically demonstrate that S(k)
can be insensitive to the pair potential at low densities. We also note
that S(k)’s at low densities can be well approximated by the Baxter
model, where the second-virial coefficients are similar for different
potentials.28

C. Crystals
“Universal optimality” mentioned in the Introduction estab-

lishes that many pair potentials share the same ground state crystal
configuration. For the same lattice at a positive temperature (but
below melting), the pair statistics is dictated by phonon behaviors.

Figure 6 shows two triangle lattice states at ρ = 1.15, kBT = 0.1,
where v0(r) = vPL(r; 1, 3.77, 4) [Eq. (11)] and v1(r) = vLJ(r; 1, 9.2, 4, 3)

FIG. 5. (a) Structure factors of two low-density fluids, where a slightly perturbed
S(0)(k) was set as the target to obtain the inferred system. (b) Two potentials found
by IBI, described in Sec. IV B. (c) Pair correlation functions of the fluids. ρ = 0.05,
kBT = 1, T ≈ 6.7T(0)

condense ≈ 6.7T(1)
condense. Dv = 0.35, Dg2 = 0.29, Ds = 0.030.

Cg2 = 0.82, CS = 2.0 × 10−3.

[Eq. (10)]. v1(r) is found by gradient descent optimization of the
parameter ϵ in vLJ(r; 1, ϵ, 4, 3), targeting g(0)2 (r). The temperature
is about 0.17 of the melting temperature for v0(r) at this density.
As seen from Cg2 and CS, the sensitivity of pair statistics on pair

J. Chem. Phys. 153, 124106 (2020); doi: 10.1063/5.0021475 153, 124106-7

Published under license by AIP Publishing

https://scitation.org/journal/jcp


The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

FIG. 6. (a) Pair correlation functions of two crystals adopting the triangle lattice
structure, where g(0)

2 (r) was set as the target to obtain the inferred system. (b)
Black solid: v0(r) = vPL(r ; 1, 3.77, 4); red solid: v1(r) = vLJ(r ; 1, 9.2, 4, 3). (c)
Structure factors of the two crystals. ρ = 1.15, kBT = 0.1, T ≈ 0.17T(0)

melting

≈ 0.17T(1)
melting. Dv = 36, Dg2 = 0.011, DS = 2.3, Cg2 = 3.1 × 10−4,

CS = 1.6 × 10−3.

potential is extremely low. DS in Fig. 6(c) is large due to the very
high peaks, but the percentage difference of peak height is smaller
than 0.2%. We will see in Sec. V that the sensitivity metrics of these
two potentials are low for a wide range of densities and temperatures.

Also, note that the relation CS = ρ2Cg2 does not hold in this case
because the cutoff r = 8 is too small compared to the range required
to approximate the volume integration in the Fourier transform
of h(r).

FIG. 7. (a) Pair correlation functions of a disordered low-temperature state (target)
and a liquid state (inferred), where g(0)

2 (r) was set as the target to obtain the
inferred system. The inset shows the long-range correlations. (b) Black solid: v0(r)
= voverlap(r ; 1000, 4.7896); red solid: v1(r) found by IBI targeting g(0)

2 (r). (c) Struc-
ture factors of the two systems. The spiky “shoulders” are true features of these
S(k)’s. ρ = 0.9766, kBT = 0.07. Dv = 6.2, Dg2 = 6.9 × 10−3, DS = 0.35, Cg2 =
1.1 × 10−3, CS = 1.0 × 10−3.
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D. Low-temperature disordered states
The “overlap” potential has disordered ground states at certain

densities, where g2(r) and S(k) contain no δ-peaks. These ground
states highly degenerate and include lattice structures, although dis-
ordered states are entropically favored. Such disordered ground
states have the intriguing property of being “stealthy hyperuniform,”
i.e., the structure factors vanish at some finite interval 0 < k < K,
and their pair correlation functions closely resemble those of a typ-
ical dense liquid.37 At small but positive temperatures, we hypoth-
esize that inverse algorithms targeting such g2(r)’s could arrive at
liquid-like states instead of the true disordered low-temperature
states.

In Fig. 7(b), v0(r) = voverlap(r; 1000, 4.7896), which has a disor-
dered ground state at ρ = 0.9766. The parameters of v0 are chosen
so that the first peak of g(0)2 (r) occurs at r = 1.0. At kBT = 0.07, we
used IBI to search for a potential that reconstructs g(0)2 (r), where
the initial trial potential was the PMF. The inferred potential, v1(r), is
apparently different from v0(r) in its minima positions and steepness
of repulsion [Fig. 7(b)]. Figure 7(c) shows that S(k)’s of both sys-
tems agree closely except at k < 0.3: S(0)(0) = 0.0018, whereas S(1)(0)
= 0.16. The fine-scale features of S(k) are real, and we verified that

FIG. 8. Plot of the sensitivity metrics for the two potentials v0(r) = 3.77r−4 and
v1(r) = 9.2(r−4 − r−3). (a) Plot of ln Cg2 against ρ at different T. (b) Plot of CS
against ρ at different T.

they correspond to the highly nontrivial long-range correlations in
g2(r)’s, as shown in the inset of Fig. 7(a). Although the phase dia-
gram of v1(r) has not yet been studied, the much higher isothermal
compressibility of the inferred system compared to the target system
suggests that the former is a fluid state. Furthermore, we verified
that g(1)2 (r) continues to change significantly upon cooling below
T = 0.07 (not shown), whereas g(0)2 (r) stays nearly the same, sug-
gesting that the inferred system shown in Fig. 7 is not near its ground
state.

V. EFFECT OF DENSITY, TEMPERATURE,
AND DIMENSIONALITY

The density and temperature dependence of the sensitivity
metrics, described by Eqs. (7) and (8), is shown in Fig. 8 for the
fluids of the two potentials v0(r) = 3.77r−4 and v1(r) = 9.2(r−4

− r−3). The curve of kBT = 2 has outliers because of liquid–vapor
coexistence for v1. The higher temperatures are supercritical. One
observes from Fig. 8(a) that at fixed temperature and low to medium
densities, Cg2 decreases exponentially with ρ. At fixed density, Cg2

decreases approximately as 1/T. We conclude that low sensitivity in
g2(r) is found at high-density, high-temperature states. Physically,
high densities force particles to be close to each other and weakens
the influence of long-range interactions. High temperatures reduce
the difference in Boltzmann factors exp(−Φ/kBT), where Φ is the
configurational energy. Figure 8(b) plots CS with respect to ρ, T.
We see that the low sensitivity of S(k) occurs at high temperatures
and both low and high densities. Low CS at low ρ is due to the
factor ρ2 in Eq. (8). We also computed the sensitivity metrics for

FIG. 9. Plot of ln(Cg2) for the two potentials v0(r) = 2 exp(−r2) and v1(r)
= 3 exp(−r2). The blue curve marks the states of solid–fluid phase transition of
v1. At temperatures slightly above phase transition states, Cg2 reaches a maxi-
mum at intermediate ρ, corresponding to the structural anomaly observed for the
Gaussian core model.
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crystals of the same potentials and found that low sensitivity occurs
at T/Tmelting < 0.5.

As another example, we computed Cg2 for two Gaussian
potentials v0(r) = vGC(r; 2, 1) and v1(r) = vGC(r; 3, 1) at various

FIG. 10. (a) Black solid: v0(r) = vPL(r ; 1, 3.77, 4); red dashed: v1(r) = vLJ(r ; 1,
9.2, 4, 3). (b) Pair correlation functions of v0 and v1 in 2D and 3D. (c) Structure
factors of v0 and v1 in 2D and 3D. For 2D, ρ = 1.15, kBT = 1.5, Dv = 36, Dg2

= 0.025, DS = 1.3, Cg2 = 6.9 × 10−4, CS = 9.2 × 10−4. For 3D, ρ = 1.37,
kBT = 0.7, Dv = 190, Dg2 = 0.045, DS = 21, Cg2 = 2.3 × 10−4,
CS = 4.4 × 10−4.

states around solid–fluid phase transition. For temperatures kBT/A
< 0.011, the Gaussian core potential in 2D exhibits re-entrant melt-
ing upon compression.51 Figure 9 shows that the sensitivity is highest
at phase transition states. For fluids at high enough temperatures,
Cg2 decreases with density, similar to Fig. 8. However, at lower tem-
peratures such that T/Tmelting < 5, Cg2 reaches a maximum at inter-
mediate densities (ρ ≈ 0.4). We believe that this is related to the
“structural anomaly” observed for the Gaussian core model, i.e., the
fluid state at which the entropy reaches a minimum as the density
varies.52 Unlike the potentials in Fig. 8, these two Gaussian potentials
do not generally give low sensitivity in the crystal phase at positive
temperatures, although the ground states for both are the triangle
lattice.

To demonstrate the effect of dimensionality, we compute sen-
sitivity metrics for potentials in Fig. 6 in both 2D and 3D. In 2D,
the state is ρ = 1.15, kBT = 1.5, a dense fluid. In 3D, the density
and temperature chosen are ρ = 1.37, kBT = 0.7. The two states
are comparable in terms of heights of the first peaks of g2(r) and
S(k). In fact, assuming the effective particle diameter is 0.925 in 2D
and 0.95 in 3D [positions of the first peaks of the corresponding
g2(r)’s], ρ/ρmax ≈ 0.85 in both the 2D and 3D states, where ρmax
is the density of the densest sphere packing. It can be seen from
Fig. 10 that the pair statistics are similar for both 2D and 3D. Cg2 and
CS are lower in 3D, probably due to the decorrelation principle in
higher dimensions, which results in the faster decay of g2(r) to unity
in 3D.53

VI. DEGENERACY PROBLEM
Although the target and inferred systems presented in Sec. IV

have nearly identical g2(r)’s, their higher-order correlation func-
tions can be generally different from one another, which is known
as the “structural degeneracy problem.”54,55 It has been noted
that higher-order correlations play important roles in modeling
molecular systems.56–58 Therefore, we explore whether any of the
target and inferred particle configurations that we have consid-
ered have apparently different high-order statistics. We found that
the potentials shown in Fig. 7 provide good examples of such
instances. Figure 11 shows snapshots of the target and inferred
systems that are obtained from the potentials shown in Fig. 7.
Compared to the inferred system, the target system has smaller

FIG. 11. Snapshots of the systems in Fig. 7. The target system has more “striped”
features than the inferred system.
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FIG. 12. Plot of the conditional nearest-neighbor distribution function GV (r) for the
systems described in Fig. 7.

local density fluctuations, and it has more nearly linear chains of
particles.

To quantify higher-order structural differences, we have com-
puted the conditional nearest-neighbour distribution function GV (r)
for both systems, defined as follows: Given that a spherical region
ΩV (r) of radius r is empty of particles, ρs1(r)GV (r)dr is the probabil-
ity of finding particles in the spherical shell of volume s1(r)dr encom-
passing the cavity, where s1(r) is the surface area of a d-dimensional
sphere of radius r.59 It has been shown that GV (r) for general many-
body systems can be explicitly expressed in terms of certain integrals
involving the infinite set of many-body correlation functions {g2, g3,
. . .}.60 Figure 12 plots GV (r)’s for the target and inferred systems
described in Fig. 7. The two GV (r)’s become increasingly different
as r increases above 0.5. This implies that the higher-body correla-
tion functions of the target and inferred systems are substantially
different.

VII. EXTENSION OF HENDERSON’S THEOREM
In this section, we present a more general version of Hen-

derson’s theorem, extending the uniqueness statement to poten-
tials that involve two- and higher-body interactions. Suppose the
potential energy Φ of a many-body system involves at most n-body
interactions,

Φ(rN) =
N

∑
i
ϕ1(ri) +

N

∑
i<j

ϕ2(ri, rj) +⋯ +
N

∑
i<j<⋯<m

ϕn(ri, rj, . . . , rm),

(22)

where ϕk is the k-body interaction term. The generalized Henderson
theorem can be stated as follows:

Theorem 1 (Henderson). At fixed ρ, T, the potential Φ that
produces a given set of equilibrium n-point probability density func-
tions {ρ1(r),. . ., ρn(r1,. . ., rn)} is unique up to an additive constant.

Proof. The proof is exactly analogous to Henderson’s proof
about pair correlation functions. For an ensemble α of point

configurations, the ensemble-averaged energy per particle can be
expressed as

⟨Φ⟩α
N
= ∫ ϕ1(r)⟨ρ1(r)⟩αdr +⋯ +

1
n! ∫ ⋯

× ∫ ϕn(r1, . . . , rn)⟨ρn(r1, . . . , rn)⟩αdr1⋯drn, (23)

where ⟨⟩α is the ensemble average. Let Φ0, Φ1 be two potentials
involving up to n-body interactions that have the same equilibrium
probability density functions, i.e., ⟨ρk⟩0 = ⟨ρk⟩1 for all k, where ⟨⟩0,
⟨⟩1 are the canonical ensemble averages corresponding to Φ0 and
Φ1, respectively. The Gibbs inequality states that for two probability
distributions w0(rN ) and w1(rN ),

∫ w0 lnw1drN ≤ ∫ w0 lnw0drN , (24)

where the equality holds if and only if w0 = w1. Let w0, w1 be the
canonical probability distribution corresponding to Φ0, Φ1, respec-
tively, i.e., wα = exp(−βΦα)/∫exp(−βΦα)drN , where β = 1/kBT. At
finite T, Eq. (24) gives

⟨Φ1⟩1
T
− S1 =

F1

T
≤ ⟨Φ1⟩0

T
− S0, (25)

⟨Φ0⟩0
T
− S0 =

F0

T
≤ ⟨Φ0⟩1

T
− S1, (26)

where Fα = −kBT ln ∫ exp(−βΦα)drN is the Helmholtz free energy
and Sα = −∫wα ln wαdrN is the entropy. Adding Eqs. (25) and (26),
and using the definition (9), we have

DJS =
⟨Φ0 −Φ1⟩1

T
− ⟨Φ0 −Φ1⟩0

T
≥ 0, (27)

and the equality holds if and only if w0 = w1. By assumption, ⟨ρk⟩0 =
⟨ρk⟩1 for all k, so ⟨Φ0 −Φ1⟩0 = ⟨Φ0 −Φ1⟩1 [Eq. (23)]. The equality in
Eq. (27) holds, and we have w0 = w1. Due to the strict monotonicity
of wα with respect to Φα at positive T, we conclude that the potentials
Φ0 and Φ1 differ by no more than an additive constant, which proves
the theorem. ◽

The practicality of the generalized Henderson theorem, i.e., the
sensitivity of many-body correlation functions to many-body inter-
actions, must be scrutinized as in this work. For states where it
is practically applicable, the generalized theorem could potentially
guide the inverse design of many-body systems with three-body
interactions. This is especially important for particles constrained on
a 2D surface, e.g., air–liquid interface,61 where many-body configu-
rations can be relatively easily sampled, and g3 or even g4 is readily
obtainable.62

Although the proof of Henderson’s theorem does not directly
contain information about the sensitivity of pair statistics on pair
potentials, one can show that the effect of the Gibbs inequality
[Eq. (24)] on this sensitivity is insignificant, i.e., a small Jensen–
Shannon divergence always corresponds to similar probability dis-
tributions. This is due to Pinsker’s inequality, which states that the
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total variation of two probability distributions w0, w1 is bounded
above by

√
2D1,0, where D1,0 is the relative entropy of w1 with respect

to w0.63,64

Therefore, for cases where pair statistics are insensitive to pair
potentials, we postulate that the main cause is the low sensitivity of
w = exp(−βΦ)/∫exp(−βΦ)drN with respect to Φ. Roughly speaking,
the expression Q := ∣δ exp(−βΦ)/δΦ∣ = β exp(−βΦ) correlates with
the sensitivity of w on Φ, which apparently vanishes when T = 0 and
T =∞ for finite Φ.

We note that several prior papers have generalized Henderson’s
theorem along similar lines.65–68 However, our proof is simpler and
shows that Henderson’s original argument is directly generalizable
to the many-body cases.

VIII. CONCLUDING REMARKS
The results that we have obtained provide helpful insights into

inverse statistical mechanics problems where one attempts to find
effective pair potentials that are consistent with given pair statis-
tics. We have shown that Henderson’s theorem does not imply
uniqueness of solutions to inverse problems encountered in practice.
Depending on the states and the pair statistics of interest, the inverse
algorithm should be carefully chosen, and the solutions should be
interpreted with caution. For fluids in general, g2(r) is insensitive
to pair potentials at high temperatures for medium to high densi-
ties, and S(k) is insensitive to pair potentials at high temperatures
for both low and high densities. Therefore, for such portions of
the phase diagrams, inverse algorithms are unlikely to capture the
complete functional forms of the target interactions, which, by Hen-
derson’s theorem, are unique, in principle. Furthermore, since we
have shown that S(k)’s are insensitive to v(r) where it has small
values [S(k) < 0.01 as a rule of thumb], it is crucial that target struc-
ture factors are extremely precise in these regions. If this is not
possible, the solutions to inverse problems are effectively ambigu-
ous. For crystals of the same ground state, we found that the sen-
sitivities are generally low for T < 0.5Tmelting , but we also found
high-sensitivity cases, as shown in Fig. 9. Finally, we observed that
states near phase transitions usually give high sensitivities. Our find-
ings highlight the importance of incorporating information other
than pair statistics to determine effective pair interactions, such as
pressure.46–50

It is theoretically desirable to analyze the differential J(r, r′)
= dg2(r)/dv(r′). The quantity J corresponds to the curvature of the
relative entropy.69 However, our preliminary calculations of J for the
cases in Sec. IV suggest that random noise in g2(r) usually results in
the overestimation of the magnitude of J for r′ > 4, where |dv(r′)| is
small. It would be desirable to pursue such analysis in future studies
with highly precise structural data.

Our work also has implications in the study of the dynam-
ics of classical many-body systems (e.g., glass formation). Systems
with the pair interactions shown in the middle panel of Fig. 7 have
very similar g2(r)’s but distinctly different higher-order correlation
functions (see Sec. VI). Such differences should be reflected in indi-
vidually distinct dynamics, which is a subject worthy of future study.
Thus, the determination of effective pair interactions only from the
pair statistics19–21,27,31 could produce misleading conclusions about
non-equilibrium properties of a many-body system.

A further implication of our results concerns the choice of
benchmark systems used to test inverse algorithms. The most com-
mon choices are dense LJ fluids and liquid aluminum under some
model potential with multiple minima.19,27 As we have shown, these
are systems for which Cg2 and CS are small. For such states, the
trial potential functions usually converge, as expected, because their
functional forms can be varied significantly by changing the steep-
ness of repulsive forces and positions of minima/maxima, without
causing significant changes to the pair statistics. During the opti-
mization of the trial potential, the algorithm is unlikely to encounter
trial systems that are dramatically different from the target system,
which may cause the trial potentials to diverge. On the other hand,
states where Cg2 and CS are large, such as those near phase transi-
tions, would pose much more challenging with respect to conver-
gence. During optimization, slight changes in trial potentials could
lead to markedly different pair statistics. Trial potentials may diverge
accordingly and be unable to arrive at a solution to the inverse prob-
lem. We observed this divergent behavior in IBI for liquid states
close to the freezing point. Such states are rarely chosen as bench-
marks for inverse algorithms, and we believe that research in this
direction is worth pursuing.

Finally, we point out that Frommer et al. showed that Hen-
derson’s original proof incorrectly assumes that Gibbs’s variational
principle for finite volume extends to the thermodynamic limit.70

The authors demonstrate that the uniqueness theorem is applica-
ble to a strict subset of all superstable potentials,71 beyond which
they could not prove or disprove Henderson’s uniqueness the-
orem. Therefore, in the thermodynamic limit, there might exist
some exotic superstable potentials, not in the aforementioned class,
that exactly reproduce the pair statistics of the LJ potential. Such
examples, if found, would provide strict violations of Henderson’s
theorem.
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